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Abstract

Functional representation is a well-established ap-
proach to represent dense correspondences between de-
formable shapes. The approach provides an efficient low
rank representation of a continuous mapping between two
shapes, however under that framework the correspondences
are only intrinsically captured, which implies that the in-
duced map is not guaranteed to map the whole surface,
much less to form a continuous mapping. In this work, we
define a novel approach to the computation of a continu-
ous bijective map between two surfaces moving from the
low rank spectral representation to a sparse spatial repre-
sentation. Key to this is the observation that continuity and
smoothness of the optimal map induces structure both on
the spectral and the spatial domain, the former providing ef-
fective low rank approximations, while the latter exhibiting
strong sparsity and locality that can be used in the solution
of large-scale problems. We cast our approach in terms of
the functional transfer through a fuzzy map between shapes
satisfying infinitesimal mass transportation at each point.
The result is that, not only the spatial map induces a sub-
vertex correspondence between the surfaces, but also the
transportation of the whole surface, and thus the bijectivity
of the induced map is assured. The performance of the pro-
posed method is assessed on several popular benchmarks.

1. Introduction

The problem of non-rigid shape matching, which is de-
fined as the problem of finding a meaningful map between
two surfaces, is ubiquitous in computer vision and graph-
ics. A challenging setting for this problem is the one that
involves the application of such methods to shapes that un-
dergo non-rigid transformations, such as articulated mod-

els in different poses. The solution to this problem has
many applications. For instance, dense maps between sur-
faces are often used in the definition of retrieval algo-
rithms [10, 11, 9, 5, 24, 2], to perform shape interpola-
tion [14] and to define statistical models of shapes [12, 3].

Several methods have been proposed over the years by
the research community to tackle this problem [30]. Shape
matching approaches can be split into two main categories:
sparse and dense. Methods that belong to the first category
aim at finding a low number of matches which favour qual-
ity over quantity of matches, while the latter try to find the
whole map between the surfaces.

A recent ground-breaking approach to the estimation
of dense correspondences is represented by the functional
maps framework, proposed by Ovsjanikov et al. [20]. In
their work, the authors shift from studying the problem in
terms of point-wise mappings to a definition of maps be-
tween functional spaces. In particular, they define the func-
tional correspondences in terms of a continuous linear oper-
ator that maps functions defined on a surface onto functions
defined on the target surface. In this setting, the classical
point-wise representation can be seen as a special case in
which the functional map is used to transfer delta-functions
onto delta-functions. The popularity of this approach is
due to its efficiency for representing and computing cor-
respondences and its compactness under specific assump-
tions. One of the drawbacks of this approach is that the
correspondences are only intrinsically captured and the in-
duced functional transformation might not be reducible to
a continuous point-wise map, much less one that is guar-
anteed to be bijective. This, together with the low-rank
approximation of the function transformations, results in a
lack of localization of the mapping, where impulse func-
tions on one surface are mapped onto diffuse functions on
the target.

Different refinement steps have been proposed to im-
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prove ex-post the localization of the correspondences and
reconstruct the point-wise map from the functional repre-
sentation [25, 8]. Finally, the framework has been extended
to deal with non-isometric transformations [21, 17, 26, 16],
partial matching [23, 18, 7] and many other fields of appli-
cation [27, 13, 31].

In this paper, we propose a novel approach to the com-
putation of a continuous bijective map between two sur-
faces. In particular, we move from the low rank spec-
tral representation of the correspondences between surfaces,
i.e. the truncated functional map, to a sparse spatial repre-
sentation, i.e. the spatial map between the surfaces. The
approach is based on the observation that continuity and
smoothness of the optimal map induces structure both on
the spectral and the spatial domain, the former providing ef-
fective low rank approximations, while the latter exhibiting
strong sparsity and locality that can be used in the solution
of large-scale problems. The optimization problem is de-
fined in terms of distortion minimization of functions’ trans-
portation between surfaces. More specifically, we adopt a
Gromov-Wasserstein type distance between the transported
functions, which in the discrete setting results in a spatial
mapping satisfying infinitesimal mass transportation at each
point. The term acts both as a data-fidelity term and a com-
mutativity regularizer, further improving the quality of the
resulting map. The main benefit of the proposed solution
is twofold. First, the spatial map induces sub-vertex cor-
respondence map between surfaces. Second, by enforcing
bidirectional infinitesimal area-transport, the formulation
guarantees continuity and bijectivity of the induced map.

2. Related work
In this paper, we propose a novel approach to the compu-

tation of a continuous bijective map between two surfaces.
Our solution induces a sub-vertex correspondence and it as-
sures the complete transportation of the whole surface, and
thus bijectivity. In this section, we focus on works relevant
to our discussion. We refer to [30] for a comprehensive sur-
vey of correspondence algorithms.

Most early methods designed to solve the non-rigid
shape matching problem focus on the definition of an op-
timization problem which minimizes a distortion measure
between the given surfaces. Kim et al. [15] propose an au-
tomatic pipeline to find an intrinsic map between two non-
isometric surfaces. In their work, they propose to blend to-
gether different maps in order to find a solution that exhibits
a low distortion on the matches of pairs of surfaces differing
by large deformations. The key idea is that it is possible to
tailor different low-dimensional maps for different regions
of the surfaces, while the global map can be expressed as a
weighted combination of them.

In a recent seminal work, Ovsjanikov et al. [20] intro-
duced the functional map framework. The authors propose

to model correspondences between surfaces intrinsically
by modelling the transformation of functions defined over
them. In particular, the mapping is reduced to a linear op-
erator which maps functions defined on a surface into func-
tions on the target surface, which is then represented in a
low-rank truncation of the functional basis. This approach,
and several other approaches based on it (i.e. [18, 23, 21]),
exploits the fact that it is often easier to obtain correspond-
ing functions rather than corresponding points. One of the
major selling points of this work is that, given a low-rank
functional basis, the functional representation can be effi-
ciently computed via linear least squares. Its main draw-
back, on the other hand, is that it only captures correspon-
dences intrinsically, and the estimated functional correspon-
dence might not correspond to a continuous point-to-point
map between the surfaces; the underlying point relation
might be neither injective nor onto, and it might not repre-
sent a point-to-point map at all. Recent research addresses
the problem of point-wise map recovery mainly via ex-post
refinement. Rodolà et al. [25] propose to cast the point-
to-point map recovery as a probability density estimation
problem to obtain both a better distance measure (w.r.t. the
`2) and a tool to impose regularity assumptions on the align-
ment map. In the proposed analysis, the authors show that
it is possible to lift the limiting requirement of the input
shapes being nearly-isometric, which is one of the main as-
sumptions in the original approach. Gasparetto et al. [8]
propose to enforce bijectivity by adding constraints map-
ping delta functions onto smoothed versions of the delta
functions.

The crucial difference between the proposed approach
and the original functional map framework (FM) is the
choice of the domain. Specifically, while both FM and
our approach formulate correspondence as a linear map be-
tween spaces of functions on the shapes, in FM the map
is computed in the spectral domain (Laplacian eigenbasis),
while the proposed approach produces a map directly in the
spatial domain. The clear advantage is that unlike FM, we
do not need an extra step of spatial map recovery, which
adds a significant additional cost and constitutes a challeng-
ing problem on its own [8, 25].

Nogneng and Ovsjanikov [19] recently proposed a new
data term that guides the optimization process towards func-
tional maps that are closer to point-to-point maps. The au-
thors encode function preservation via commutativity with
an underlying map, i.e. ‖CA − BC‖2 (where C is the
truncated map, while A and B are the spectral coefficients
of surface descriptors). Differently from the term used in
the optimization problem proposed in Section 4, here the
function preservation is achieved via spectral coefficients
preservation. Finally, Solomon et al. [29] propose an algo-
rithm to compute probabilistic correspondences optimizing
a Gromov-Wasserstein objective. They define the problem



Figure 1. The image shows how the variance changes through different iterations. On the left, the source mesh with a delta function at one
point. On the right, the target mesh with the same delta function projected through the spatial map at different iterations, the first being the
projection obtained from the spectral functional map.

as an optimal transportation problem, using the Kullback-
Leibler as a measure of distortion. An entropic regularizer
is used to penalize non-sparse solutions.

Contributions. Our contributions can be summarized as
follows:

• We define the correspondence problem as an optimal
transport problem with a variance term which assures
bijectivity and sparsity of the solution; the data-fidelity
term used in the optimization problem is defined on the
spatial domain, and assures the commutativity of the
solution.

• The resulting spatial map is a fuzzification of an area-
preserving diffeomorphism, while the induced spar-
sity can be exploited in large scale problems. More-
over, as a result of the induced sparsity and locality,
the spatial map determines a continuous dense intrin-
sic sub-vertex correspondence between surfaces. To
our knowledge, no other method has this property.

• We show how the proposed approach is able to deal
with the challenging setting of partial shape matching.

We want to stress the fact that the proposed approach
does not rely on a particular initialization. Any dense corre-
spondence map can be used to build the initial smooth per-
mutation matrix which will be optimized by the proposed
method.

Finally, in order to assess the accuracy of the retrieved
map, we evaluate our method on standard non-rigid shape
matching datasets and on partial shape matching datasets,
showing that the proposed approach is both flexible and able
to achieve good performance even in the very challenging
setting of partial matching.

3. Background
We model shapes as compact smooth connected Rieman-

nian manifolds equipped with an intrinsic metric d and the
standard measure induced by the volume form.

We define a correspondence between two manifolds
N and M as a bijective function between the manifolds.
Adding continuity and differentiability to the mix, we ob-
tain a requirement that the correspondence be a diffeomor-
phism between the manifolds, i.e., a differentiable and in-
vertible function whose inverse is also differentiable. Area
preservation further imposes the volume of the differential
of the diffeomorphism to be one at each point.

We first relax the binary notion of correspondence
into a fuzzy notion introducing a coupling function
u : N ×M→ [0, 1] such that for every measurable subset
A ⊆ N and B ⊆M,∫

A

∫
M
udydx =

∫
A

dx;

∫
B

∫
N
udxdy =

∫
B

dy. (1)

In other words, u(x, y)dxdy defines a weighted product
measure on N ×M whose marginals are the measures dx
and dy on N andM, respectively. The quantity u(x, y)dx
can be thought of as the infinitesimal amount of mass trans-
ported from point x on N to point y onM. The mapping
can be interpreted as a probabilistic assignment since for
every x ∈ N , u(x, y)/|M| forms a probability distribu-
tion overM, where |M| =

∫
M dy. Conversely, for every

y ∈M, u(x, y)/|N | represents a distribution over N .

Functional correspondence. Given a manifold M, let
f, g :M→ R be real scalar fields on the manifold. We de-
fine the standard inner product 〈f, g〉M =

∫
M f(x)g(x)dx,

where integration is done using the manifold’s Riemannian
metric. Endowed with this scalar product and the resulting



norm, we can define the space of square-integrable func-
tions overM, denoted as

L2(M) = {f :M→ R | 〈f, f〉M <∞} . (2)

Given two manifolds N andM, Ovsjanikov et al. [20]
proposed modelling the correspondences between the
spaces of square-integrable functions L2(N ) and L2(M)
in terms of a linear operator T : L2(N ) → L2(M) map-
ping functions over N onto functions overM. Clearly this
setting generalizes classical vertex-wise correspondences as
this can be achieved by a T that maps delta-functions onto
delta-functions. However, also non-vertex-wise correspon-
dences arise from the formulation.

Given bases {φi}i≥1 and {ψi}i≥1 on L2(N ) and
L2(M) respectively, the functional correspondence can be
expressed w.r.t. to these bases as follows:

Tf = T
∑
i≥1

〈f, φi〉Nφi =
∑
i≥1

〈f, φi〉NTφi

=
∑
ij≥1

〈f, φi〉N 〈Tφi, ψj〉M︸ ︷︷ ︸
cij

ψj , (3)

where the coefficients cij depend on the choice of the bases.
Taking only k elements of each basis, one obtains a rank-k
approximation of T as a k × k matrix C = (cij).

In order to compute C, Ovsjanikov et al. [20] assume to
be given a set of q corresponding functions {f1, . . . , fq} ⊆
L2(N ) and {g1, . . . , gq} ⊆ L2(M). Denoting by aij =
〈fj , φi〉N and bij = 〈gj , ψi〉M the k × q matrices of the
respective coefficients onto the selected bases, functional
correspondence boils down to the linear system

CA = B . (4)

If q ≥ k, the system (4) is (over-)determined and is solved
in the least squares sense to estimate C.

Ovsjanikov et al. [20] also showed that it is convenient to
use the eigenfunctions of the Laplace-Beltrami operators of
N andM as the bases {φi, ψi}i≥1, since under these bases
truncating the series at the first k coefficients has the effect
of “low-pass” filtering over the functional representations.
Further, expressed in the Fourier bases, the matrix C has
interesting properties making it more efficient to estimate.

Discretization. In the discrete setting, the manifold N
is sampled at n points x1, . . . , xn which are connected by
edges E and faces F , forming a manifold triangular mesh
(V,E, F ). Similarly,M is sampled atm points y1, . . . , ym.
In this setting, a function on the manifold is represented
by an n-dimensional vector f = (f(x1), . . . , f(xn))T .
The inner product is discretized as 〈f ,g〉 = fTSg, where
S = diag(s1, . . . , sn) and si = 1

3

∑
jk:ijk∈F Aijk denotes

the local area element.

Similarly, the coupling function u is discretized into a
m× n dimensional matrix U = (uij) with uij = u(xj , yi)
for which the following holds:

sTMU = (sTN1)1T = |N |1T (5)
UsN = (1T sM)1 = |M|1

where sN and sM are the vectors of the the area elements
of N andM respectively.

Note that, in the discrete domain, in general there can be
no bijective map between the vertices on the two meshes.
However, U can fully capture the many-to-many mapping
between the area elements associated to each vertex. In fact,
let θ : N → M be an area-preserving diffeomorphism be-
tween N andM, the corresponding coupling is simply the
integration over the area elements of the operator associ-
ated with θ. In other words, the associated continuous and
discrete couplings are

u(x, y) = δθ(x)(y) (6)

uij =

∫
Ai

∫
Aj

u(x, y) dxdy (7)

where Ai is the surface patch around vertex i and δx(y) is
the Dirac delta function having zero integral and satisfying
δx(y) = 0 for y 6= x. It is easy to show that the function
u(x, y) thus defined is indeed a coupling:∫

M
δθ(x)(y) dy = 1∫

N
δθ(x)(y) dx =

∫
M
δθ−1(y)(s)

ds

|Dθ(s)|
= 1

where |Dθ(s)| is the volume of the differential of the diffeo-
morphism θ, which is equal to 1 since the diffeomorphism
is assumed to be area-preserving.

From the coupling function U , we can define the map-
ping posteriors over N andM respectively as

Π =
1

|N |
USN Ω =

1

|M|
SMU .

For the mapping posteriors, the following holds:

Π1 = 1, sTMΠ = sTN , 1T Ω = 1T , Ω sN = sTM
(8)

4. Problem formulation
Starting from the observation that coupling functions can

be used to effectively transport functions from one manifold
onto the other, we pose the functional mapping in the spatial
domain. In fact, given a coupling u, we can reconstruct the
expectation over the transportation of f : N → R as

ĝ =
1

|N |

∫
N
u(x, y)f(x) dx . (9)
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Figure 2. The graph on the left shows the evolution of the average geodesic error computed on the mesh over the first 100 iterations of the
proposed method. On the right we show the point-wise geodesic errors computed at iterations 1, 30, 60 and 100.

Conversely, a function g : M → R can be mapped back
onto N as

f̂ =
1

|M|

∫
M
u(x, y)g(y) dy . (10)

In the discrete domain we can rewrite these relations as

ĝ =
1

|N |
USN f = Πf , (11)

f̂T = gT
1

|M|
SMU = gTΩ . (12)

For the rest of the paper we will assume the shapes to be
area-normalized and thus drop the terms 1

|N | and 1
|M| .

The spatial functional map can thus be estimated by
searching for coupling matrix U that better transport a set of
functions {fi} i = 1, . . . , k over N onto the corresponding
functions {gi} overM. Here we follow Nogneng and Ovs-
janikov’s commutative descriptor formulation [19] resulting
in the data term

Edata =

k∑
i=1

‖USN diag(fi)− diag(gi)SMU‖ . (13)

Using the same commutative functional formulation, we
additionally introduce a metric distortion term

Edist = ‖USNDN −DMSMU‖ , (14)

where DN and DM are the distance matrices in N andM
respectively.

In order to guarantee that the fuzzy coupling is as close
as possible to an underlying area-preserving diffeomor-
phism, we also require the couplings to have mapping poste-
riors that are as tightly concentrated around as few spatially-
coherent vertices as possible. We do this by adding penalty
terms related to the manifold variance of both the forward
and backward mapping posteriors Π and Ω. Let p :M→ R
be a distribution over a manifoldM, the Karcher mean of p
is the manifold point µ such that

µ = argmin
y

∫
M
d2(x, y)p(x) dx (15)

with the variance of the distribution corresponding to the
attained minimum

Var(p) = min
y

∫
M
d2(x, y)p(x) dx . (16)

Here we propose a quadratic approximation of the vari-
ance:

V (p) =

∫
M

∫
M
d2(x, y)p(x)p(y) dxdy . (17)

Theorem 1. Let M be a Riemannian manifold endowed
with a measure, and let p :M→ R be a probability density
distribution overM, the following holds:

1. Var(p) ≤ V (p) ≤ 4 Var(p)

2. limVar(p)→0
V (p)

Var(p) = 2

Proof. The proof can be found in the supplementary mate-
rial.

Thanks to this result we can use V (p) as a valid proxy of
2 Var(p), especially since we are interested in low variance
solutions. This leads to the following variance terms both
in N andM:

VM(u) =

∫
N

∫
M

∫
M
d2
M(x, y)u(z, x)u(z, y) dxdy dz

VN (u) =

∫
M

∫
N

∫
N
d2
N (x, y)u(x, z)u(y, z) dxdy dz

These penalty terms are easily discretized as the quadratic
forms

VM = Tr
(
UTSMD2

MSMUSN
)

(18)

VN = Tr
(
USND

2
NSNU

TSM
)
. (19)

In a formulation strongly related to ours, Solomon et
al. [29] adopt a similar spatial representation where the cou-
plings are sought to minimize the metric distortion in terms



of the Gromov-Wasserstein distance between the Rieman-
nian Manifolds. Here too the authors are interested in ex-
tracting couplings that are as deterministic as possible and
for this reason they introduce and entropic term that penal-
izes posterior mappings with large support. While this has
similar sparsifying effects as our variance-based regularizer,
it has no knowledge of geometric proximity, which is cen-
tral to the definition of variance. Hence, it does not im-
pose locality and compactness of the support in the same
way that our terms do. Further, by imposing bidirectional
constraints, we enforce the representation to be closer to a
many-to-many map actually induced by a continuous bijec-
tive mapping between the underlying manifolds.

Putting the terms together, we obtain the following for-
mulation:

minimize
U

k∑
i=1

‖USN diag(fi)− diag(gi)SMU‖ (20)

+ α‖USNDN −DMSMU‖
+ β1 Tr

(
UTSMD2

MSMUSN
)

+ β2 Tr
(
USND

2
NSNU

TSM
)

subject to U ≥ 0

Usn = 1

UT sm = 1

where α, β1, and β2 are coefficients used to balance the
effects of the penalty terms.

4.1. Dealing with partiality

In order to allow partiality, and, in particular, to be able
to map partial shapes to a reference full shape as in [23], we
relax the bidirectional area transportation constraint from
the coupling, allowing for all y ∈M

0 ≤
∫
N
u(x, y)dx ≤ 1 . (21)

The upper bound is further relaxed by adding a hinge loss
penalty term ∫

M

(∫
N
u(x, y)dx− 1

)
+

dy , (22)

where (x)+ = max(0, x).
This results in the reduced set of constraints in the dis-

cretized problem

U ≥ 0

UT sm = 1

which, by substituting for the mapping posterior Ω =
SMU reduces to the standard multi-simplex

Ω ≥ 0

ΩT1 = 1 .

Under this re-writing, the formulation becomes

minimize
Ω

k∑
i=1

‖S−1
MΩSN diag(fi)− diag(gi)Ω‖ (23)

+ α ‖S−1
MΩSNDN −DMΩ‖

+ β1 Tr
(
ΩTD2

MΩSN
)

+ β2 Tr
(
S−1
MΩSND

2
NSNΩT

)
+ γ sTM

(
S−1
MΩSN − 1

)
+

subject to Ω ≥ 0

ΩT1 = 1 .

4.2. Scaling behaviour and sparsity

One problem shared by most spatial approaches is their
scaling behaviour: having to optimize the coupling, the
space requirement grows quadratically with the number of
vertices, while even just computing the objective function
can scale cubically. This clearly limits the resolution and
complexity of the meshes that can be analysed. The spec-
tral representation of the functional map addresses this lim-
itation by adopting a low-rank approximation in the Fourier
basis, which allows us to tame both spatial and time com-
plexity for extracting the solution.

In our approach we deal with the scaling behaviour by
making use of the sparsity of the coupling representation in
the spatial domain when in the vicinity of the solution. As-
suming the existence of an underlying area-preserving dif-
feomorphism between the two manifolds, equation (7) tells
us that the coupling matrix U associated with the optimal
diffeomorphism must not only be sparse, but the support of
each row and column must be compact and local in N and
M respectively.

Further, when sufficiently close to the optimal coupling,
the variance terms induce more compact and local support.
This results in the fact that if we start from a coupling that is
both compact and sufficiently close to the optimal solution,
not only would the sparsity and compactness increase, but
we can safely expect no new elements to enter the support.
This allows us to only work on a low-dimensional face of
the multi-simplex, thus reducing the space and time com-
plexity of the approach.

To this end, we start from a solution C obtained with a
spectral functional map approach. From this we can obtain
the spatial mapping U = ΨCΦT which can then be thresh-



olded to select which couplings to force to zero in the opti-
mization process to sparsify the representation. Finally, an
initialization point for the optimization can be obtained by
projecting the sparsified U onto the discrete coupling con-
straints. Here either least square or Sinkhorn [28] projection
can be used.

Once we have induced a sparse representation for U, the
whole optimization process scales down. Indeed, the area
element matrices SN and SM being diagonal are clearly
sparse and the multiplication by them scales linearly with
the number of couplings. A more interesting analysis comes
from the geodesic distance matrices DN and DM. Here
the compactness of the solution plays an essential role
in the ability to sparsify the computation of the variance
terms: since the marginal mappings obtained from rows and
columns of U have local, compact support, only the dis-
tances within the radius of such support enter in the com-
putation of the variances. Thus not all the entries of the
geodesic distance matrices need to be computed, but rather
we can maintain a local sparse representation easily com-
puted with a marching front approach.

The metric distortion term ‖USNDN −DMSMU‖ on
the other hand, has neither local nor sparse support and
quickly becomes a bottleneck in the scaling behaviour of
the approach. We can solve this by substituting the dis-
tance operators with any other metric-derived operator with
compact, local support; for example a thresholded Gaussian
geodesic kernel K = (kij) with

kij =

{
exp(− 1

2

d2ij
σ2 ) if dij < R

0 otherwise
(24)

where dij is the geodesic distance between vertices i and j,
and R is a the maximum radius of the marginal supports.

5. Experimental evaluation

We compare the spatial map computed as the result of
our optimization problem with the current state-of-the-art
approaches dealing with the non-rigid shape matching prob-
lem. The first method we compare against is the functional
map framework [20] (FM in the graphs’ legend), whose re-
sults are computed using the iterative refinement procedure
proposed in the original work. Then, we compare with the
two refinement processes [25, 8] (CPD and InjCorr respec-
tively) introduced in Section 2. Finally, we compare with
the work of Nogneng and Ovsjanikov [19] (IDPC). They
recently proposed a new approach to the computation of the
functional map between two surfaces using a commutative
descriptor preservation term.

We evaluate the methods quantitatively and qualitatively
on the TOSCA [1] and SCAPE [3] datasets. The former
contains 76 meshes distributed in 9 classes, both humanoid

Figure 3. Qualitative results on the challenging setting of partial
matching. The null mesh is in the first column, while the second
shows the dense correspondence induced by the Partial Functional
Map work. The third column shows the refined map produced by
the proposed approach.

and non-humans. The latter contains 71 meshes represent-
ing the same individual in different poses, and is the re-
sult of the application of a full-body scanning procedure.
The meshes representing the same class in both dataset are
in point-wise correspondence. For this reason, and for ef-
ficiency purposes, we sub-sampled non-coherently all the
meshes. As a result, the processed meshes are no more in
point-to-point correspondence (and differ in the number of
vertices). Finally, using the full-resolution meshes as prox-
ies, we compute the barycentric coordinates of each point
with respect to the other meshes, thus leading to a sub-
vertex ground-truth correspondence map between the sur-
faces. Thanks to this asynchronous simplification process,
we were able to create a high-quality dataset with each mesh
having a small number of vertices (≈3000). This dataset
will be made publicly available, along with the implemen-
tation of our approach. Furthermore, the methods have been
tested also on a dataset in which the vertex-to-vertex corre-
spondence among the shapes have been preserved. Due to
lack of space, the performance achieved by the methods has
been included in the supplementary material.

As a measure of error, we compute the geodesic distance
between the ground-truth and the correspondence map pro-
duced by the different methods. The proposed approach
yields the spatial map Ω as a result, in which each column
represents a fuzzy assignment. Sub-vertex correspondences
are extracted by computing the Karcher mean over the soft-
assignments.

Note that, since the variance term in the proposed opti-
mization process induces sparsity on the computed spatial
map, the resulting soft-assignment concentrates the trans-
ported mass around a small number of points on the tar-
get surface. In the common scenario in which most of the
mass is concentrated on the points of a single triangle of the
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Figure 4. Comparison of the normalized error curves obtained on the re-sampled SCAPE and TOSCA datasets using several shape
matching algorithms, while allowing the symmetric solutions.

mesh, the Karcher mean can be approximated as weighted
barycentric coordinate, where the weights are the normal-
ized probabilities associated to the points of the triangle.

Comparisons. The functional maps used in the compar-
isons both on the original pipeline and on the refinement
approaches, are constructed by solving a least-squares sys-
tem CA = B, where A and B are the spectral coefficients. In
the original work, Ovsjanikov et al. [20] show that adding
descriptors which are in correspondence greatly improves
the quality of the functional map. In this comparison, the
initial correspondence is established using a sparse match-
ing algorithm [22] (≈200 matches between shapes). The
functional map is computed with k = 75 basis functions.
The wave kernel signature [4] is used both in the function
preservation term introduced in Section 4, as well as for the
computation of the sparse matching via [22].

Figure 2 shows the mean geodesic error as it changes
over several iterations of the proposed method. In partic-
ular, the curve on the graph shows the average geodesic
error evolution, while the meshes are rendered using the
point-wise geodesic error as the color-map. Note that the
geodesic error on the fingers of the humanoid (which are
in general hard to match correctly, in particular with meth-
ods based on intrinsic measures) has been corrected in the
first iterations. Similarly, Figure 1 shows the evolution of
the fuzzy mapping of a vertex onto the target shape. It is
quite evident how effective our approach is at improving
the localization of the map. In Figure 4, we show quan-
titative results yielded by the compared methods on both
TOSCA and SCAPE datasets. In particular, the graphs show
the geodesic error curves, which represent the percentage of
points whose normalized geodesic error is below a certain
threshold. From the plotted curves we can see that the pro-
posed method generally outperforms the compared ones.

Partial matching. To assess the performance on the partial
matching setting, we apply our method to the SHREC’16
holes dataset [6]. The shapes included in the dataset
span different classes and are based on the TOSCA high-
resolution dataset. The dataset includes ‘null’ shapes for

each class, i.e. a full shape in a canonical pose. Following
the adaptation of the proposed method introduced in Sec-
tion 4, we perform a part-to-whole matching between a par-
tial shape and its full counterpart. The dataset is provided
with ground-truth vertex-to-vertex correspondence between
partial and full meshes. Since dealing with the partial set-
ting is not the focus of this paper, we present only some
qualitative results. Figure 3 shows these results. Our
method was initialized with a functional map computed us-
ing [23]. In particular, the image shows in the first column
the full mesh, while in the second we show the dense corre-
spondence induced by the partial functional maps pipeline
[23]. The third column presents the correspondence map
obtained with the proposed approach.

6. Conclusion
In this paper we proposed a novel solution to the non-

rigid shape matching problem. We formulated the prob-
lem in terms of a functional correspondence in the spatial
domain, by optimizing how a fuzzy mapping between the
vertices transforms functions defined over one shape onto
corresponding functions over the other shape. One fun-
damental characteristic of the approach is that it does not
assume the existence of vertex-to-vertex correspondences,
but rather can extract a sub-vertex mapping onto the tar-
get shape. We introduced a novel variance-based regular-
izer that enforces both sparsity and locality of the marginal
vertex-correspondences, which, by adopting the loosely lo-
calized initialization provided by spectral functional maps,
allows us to limit the scaling behaviour inherent in spatial
approaches by making use of the intrinsic sparsity and lo-
cality of the support of the coupling function. Further, by
relaxing the coupling constraints in one direction, the ap-
proach was shown to be able to cope with partiality. Exten-
sive comparative evaluations show that our approach pro-
vides better-localized mapping competitive approaches at
the state of the art both on datasets without vertex-to-vertex
correspondences and on datasets with vertex-to-vertex cor-
respondences.
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[18] O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and
D. Cremers. Non-rigid puzzles. Computer Graphics Forum,
35(5):135–143, 2016. 2

[19] D. Nogneng and M. Ovsjanikov. Informative descriptor
preservation via commutativity for shape matching. Com-
puter Graphics Forum, 36(2), 2017. 2, 5, 7

[20] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and
L. Guibas. Functional maps: a flexible representation of
maps between shapes. ACM Trans. Graph., 31(4):30:1–
30:11, July 2012. 1, 2, 4, 7, 8

[21] J. Pokrass, A. M. Bronstein, M. M. Bronstein, P. Sprech-
mann, and G. Sapiro. Sparse modeling of intrinsic corre-
spondences. Computer Graphics Forum, 32(2pt4):459–468,
2013. 2
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