
A Superresolution Framework for
High-Accuracy Multiview Reconstruction
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Abstract. We present a variational approach to jointly estimate a displacement
map and a superresolution texture for a 3D model from multiple calibrated views.
The superresolution image formation model leads to an energy functional defined
in terms of an integral over the object surface. This functional can be minimized
by alternately solving a deblurring PDE and a total variation minimization on
the surface, leading to increasingly accurate estimates of photometry and geome-
try, respectively. The resulting equations can be discretized and solved on texture
space with the help of a conformal atlas. The superresolution approach to tex-
ture reconstruction allows to obtain fine details in the texture map which surpass
individual input image resolution.

1 Introduction

Modern image-based 3D reconstruction algorithms achieve high levels of geometric
accuracy. However, due to intrinsic limitations like voxel volume resolution and mesh
size, or limits imposed by the application, the geometric resolution of the model is usu-
ally well below the pixel resolution in a rendering. This leads to a number of problems
if one wants to estimate a texture for the model from the camera images. Mainly, since
geometry is never perfectly accurate, the image registration cannot be exactly correct,
which leads to a blurry estimated texture, Fig. 1. Consequently, previous methods on
texture generation usually employ some form of additional registration before estimat-
ing texel color [1–3].

In methods fitting a local lighting model on a per-texel basis, it is generally true
that the fewer source cameras influence the result for a single texel, the sharper the
resulting texture will be. However, if only the contributions of few cameras are blended
for a given texture patch, it is likely that seams and discontinuities arise at visibility
boundaries, so some form of stitching has to take place to smoothen the result [4, 5].
Furthermore, not using all available source images implies discarding a lot of potentially
useful information.

The superresolution framework presented in this paper is designed to alleviate these
problems. We account for the interdependency of geometry and photometry by mini-
mizing a single functional with respect to both a displacement map as well as a super-
resolved texture. The image formation model is based on current state-of-the-art super-
resolution frameworks [6–8], for which there is a well-developed theory [9]. Because
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Fig. 1: From left to right: (a),(b) Two out of fourty input-images for a multiview recon-
struction. (c) Close-up of one of the low-resolution input images. (d) Rendered model
with blurry texture initialized by weighted averaging of input images. (e) High-quality
texture optimized with the proposed superresolution approach.

every patch of the surface is captured from several cameras, by adopting this model
we are able to recover the texture in higher resolution and level of detail than provided
by the input images. By design, the method scales very well with the number f input
cameras: more cameras will always lead to a more accurate solution.

While we introduced superresolution textures in [10], the presented framework is
the first formulation for joint geometry optimization and superresolution texture esti-
mation in multiview stereo. The resulting models are of excellent quality and can be
rendered from arbitrary viewpoints. The displacement map helps with high-fidelity re-
lighting.

2 Displacement Maps and Texture Superresolution

In this section, we introduce a superresolution image formation model, where the cam-
era images depend on the unknown displacement map and texture. The model induces
an energy functional which is minimized by the desired optimal maps. Let I1, . . . , In :
Ωi → R be the input images captured by cameras with known projections π1, . . . , πn :
R3 → R2. The cameras observe a known Lambertian surface Σ ⊂ R3, which is tex-
tured with the unknown texture map T : Σ → R. At each point of the surface, we allow
a small displacement of the geometry in normal direction. This displacement is given
by a displacement map D : Σ → R, the second unknown in the model.

2.1 Variational Formulation

The basic idea is to recover both the unknown texture map as well as the displacement
map as the minimizer of a joint energy functional, consisting of a data term and a
regularization term for both maps,

E(T,D) := Edata(T,D) + Etv(T,D),

with Etv(T ) :=
∫
Σ

σt ‖∇ΣT‖Σ + σd ‖∇ΣD‖Σ ds.
(1)

Here, σt, σd ≥ 0 are parameters controlling the desired smoothness of the texture and
displacement map, respectively. Reasonable choices are σt, σd = 1. The differential op-
erators on the surface and the norm on the tangent space are explained in detail in [11].
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Fig. 2: Texture space and computation grid.

The total variation norm of the texture was chosen as the regularizer, because compared
to alternatives, it is better suited to preserve a crisp texture with sharp high-resolution
features.

The data term is based on the current state-of-the-art superresolution model [8],
with the limitation that we currently do not take noise in the input images into account
explicitly. The idea is that a real-world camera downsamples the input by integrating
over the visible texels inside each sensor element. This integration process is modeled
with a convolution kernel b, which can be derived from the properties of the camera.
Possible choices are discussed in [9], we use a Gaussian with standard deviation of half
the pixel size. The resulting data term is

Edata(T,D) :=
n∑
i=1

∫
Ŝi

(
b ∗ (T ◦ βDi )− Ii

)2
dx. (2)

T ◦βDi denotes the visible texture intensity of the high-resolution input in the image
plane. The backprojection mappings βDi : Si → Σ assign the visible point on the
surface to each point in the silhouettes Si := πi(Σ) ⊂ R2, Fig. 2(a). Note that this
backprojection depends on D. Actual integration takes place over the smaller subset
Ŝi ⊂ Si where all of the kernel covers only points within the silhouette.

2.2 Transformation of the Data Term to the Surface

In order to find a local minimum of the energy, it is necessary that integration for both
data and regularization term takes place over the surface. A straightforward transforma-
tion of the integral yields

Edata(T,D) =
n∑
i=1

∫
Σ

vDi
(
JDi E2

i

)
◦ πDi ds. (3)
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Here, the error images Ei are defined for abbreviation as the difference between the
current rendering of the object and the original images,

Ei := b ∗ (T ◦ βDi )− Ii. (4)

The binary functions vDi : Σ → {0, 1} indicate visibility of a surface point in an image,

vDi (s) :=

{
1 if πDi (s) ∈ Ŝi and s = βDi ◦ πDi (s),
0 otherwise.

(5)

Finally, JDi is the inverse surface area element with respect to the backprojection,

JDi (x, y) =
∥∥∥∥∂βDi∂x × ∂βDi

∂y

∥∥∥∥−1

. (6)

Ji accounts for foreshortening of the surface in the input views, and is small in re-
gions where the backprojection varies strongly, which is usually the case at silhouette
boundaries or discontinuities of the backprojection due to self-occlusions. As a conse-
quence, we have the desirable property that in those regions where texture information
from the image is unreliable, the input is assigned less weight. Note that we did not
need any heuristic assumptions to arrive at this weighting scheme. It is rather a direct
mathematical consequence of the variational formulation.

While in general JDi and vDi depend on the displacement D, in the following we
approximate both by Ji := J 0

i and vi := v0
i . This simplification is necessary to make

the computation of a local minimum technically feasible.

2.3 Solving for the Superresolution Texture

The first step is to keep the displacement D constant and solve for the superresolution
texture T . To this end, we minimize the functional

E(T ) =
∫
Σ

‖∇ΣT‖Σ +
n∑
i=1

(
vi
σt

(
JiE2

i

)
◦ πDi

)
ds. (7)

by solving the Euler-Lagrange equation

divΣ

(
∇ΣT
‖∇ΣT‖Σ

)
+

n∑
i=1

vi
σt

(
Ji
(
b̄ ∗ Ei

))
◦ πDi = 0, (8)

which is a PDE on the surface Σ. The mirrored kernel b̄(x) := b(−x) stems from
directional derivative of the convolution operation [12]. After transformation to 2D tex-
ture space, the Euler-Lagrange equation can be solved via a gradient descent scheme
resembling a deblurring process.

2.4 Solving for the Displacement Map

In the second optimization step, we keep the texture constant. Thus, the functional to
be minimized for the displacement map is

E(D) =
∫
Σ

‖∇ΣD‖Σ +
n∑
i=1

(
vi
σd

(
JiE2

i

)
◦ πDi

)
ds. (9)
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Fig. 3: Illustration of the charts and parametrization mappings. From left to right:
(a) Chart domains dom(τj) in R2 forming the texture space T. (b) Corresponding re-
gions Cj on the surface. (c) Texture map T = T ◦ τj on texture space. (d) Texture T
mapped on surface.

Because the data term is non-convex and no good initialization is readily available, we
minimize it with a different approach. We make the simplifying assumption that for
each point, D is constant in the sampling area of the kernel b, so the energy takes the
form

E(D) =
∫
Σ

‖∇ΣD‖Σ + ρs ◦D ds. (10)

with a point-wise data term ρs. Based on [13], we introduce an auxiliary variable U
and decouple the regularization from the point-wise optimization by defining a convex
approximation to the energy,

E(U,D) =
∫
Σ

‖∇ΣU‖Σ +
1
2θ

(U −D)2 + ρs ◦D ds. (11)

For θ → 0, the solution of this auxiliary problem approaches the solution to the original
problem, as the coupling term forces U to be close to D. The idea is that for fixed
U , we can perform a point-wise optimization in D, since no spatial derivatives of D
appear in the functional. On the other hand, for fixed D, the resulting energy functional
resembles the ROF model, which is convex and thus can also be optimized globally.
Thus, by alternating two global optimization steps, one can arrive at a good minimizer
for the original energy (9), which will however in the general case be only a local
minimum.

3 PDE-based Energy Minimization on Texture Space

In order to obtain a high-resolution representation of texture and displacement map, we
require a global parametrization of the surface and define texture und displacement map
on a grid in 2D space. As the goal is to solve a PDE on the surface, it is desireable to
have the parametrization conformal, because then one gets a particularly simple rep-
resentation of the differential operators [14, 15]. Our method to compute a conformal
atlas is a straightforward implementation of [14]. It is fully automatic and has the de-
sirable property that chart boundaries tend to coincide with high-curvature edges on the
surface.
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Start withD = 0 and setT to the per-texel weighted average of the projected pixel colors
in the input views, with weights given by the backprojection area elementJi. Then,
alternate between solving the following two optimization problems until convergence.
Superresolution texture optimization: KeepD fixed and via gradient descent, obtain
a texture mapT : T → R which satisfies the Euler-Lagrange equation

1

λ
div

„√
λ
∇T
‖∇T ‖

«
+

nX
i=1

vi

σt

“
(JiEi) ◦ φD

i

”
= 0 (12)

on the chart domains dom(τj), j = 1, . . . , k. Here,φD
i := πD

i ◦ τ are the mappings
from texture space into the image planes, taking into account the current displacement.
λ assigns the conformal factor of the parametrization to each point inT, andvi := vi ◦τ
indicates visibility of a texel in imagei. Ei andJi are defined according to Eqns. (??)
and (??), respectively.
Displacement map optimization:KeepT fixed and alternate between solving the fol-
lowing two optimization problems until convergence.

– ForD fixed, find the solutionU for the Euler-Lagrange equation of the ROF model,

1

λ
div

„√
λ
∇U
‖∇U‖

«
+

1

θ
(U − D) = 0 (13)

via gradient descent.
– ForU fixed and everyx ∈ T, find the global optimumD(x) of

(U(x)−D(x))2 + ρτ(x)(D(x)) (14)

using a complete search in the allowed displacement range.

Fig. 4: Algorithm for joint displacement map and superresolution texture.

3.1 Conformal Maps and Differential Operators

Assume for the following that we have a collection of k charts (Cj , τj) with chart areas
Cj ⊂ Σ and mappings τj : dom(τj)→ Cj . The union T := ∪kj=1dom(τj) of the chart
domains is called the texture space, and to simplify notation, the single mappings τj are
combined to form a global mapping τ : T→ Σ. Fig. 3 illustrates the concept. Since the
parametrization is conformal, the Jacobian of each τj is everywhere a scalar λ, called
the conformal factor, times a rotation matrix. Let λ : T→ R be the mapping assigning
the conformal factor to each point in texture space. Then the smoothness term of the
Euler-Lagrange equation (8) can be expressed by pulling it back onto texture space [11]:

divΣ

(
∇ΣT
‖∇ΣT‖Σ

)
=

1
λ

div
(√

λ
∇T
‖∇T ‖

)
, (15)

where T := T ◦ τ is the texture map of the surface defined on the texture space T, see
Fig. 3(c). An analogous expression holds U := U ◦ τ in the gradient descent equation
of the ROF model, Eq. ??. We also define the displacement map D := D ◦ τ on texture
space.
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Fig. 5: Estimated displacement map for the Bunny dataset. From left to right: (a) Ren-
dering with Gouraud shading. The underlying mesh has low geometric detail. (b) Nor-
mal map lighting showing improved geometric detail from the estimated displacement
map. (c) Rendering with superresolution texture and normal map lighting.

3.2 Discretization and Computation Grid

For discretization, the texture space is subdivided into a grid of texels. The grid needs to
admit a flexible topology, since only texels in the interior of chart domains are connected
to their direct neighbours. On the boundary of charts, neighbourhood is established
according to the correct relationships on the surface. To achieve this, we take the outer
normals of boundary texels in texture space and transform them up onto the surface.
Then, we search for the closest texel of the neighboring chart in this direction, and
assign that one as a neighbour, Fig. 2(b). For discretization of (15), we employ the
scheme from [16] which offers improved rotation invariance. The diffusion tensor G is
set to the (isotropic) regularized TV flow,

G =

√
λ

max(ε, ‖∇T ‖)

[
1 0
0 1

]
, (16)

where ε > 0 is a small regularization parameter.

3.3 Final Algorithm Implementation

Summarizing the results from the previous sections, in order to arrive at an optimal dis-
placement map D and texture T , we need to solve the problem described in Fig. 4. For
reasonable performance, an efficient parallelized implementation of the terms occuring
in the equations is crucial. The most time-consuming part is to compute the backpro-
jection mapping βDi , for which we raytrace the surface using CUDA, employing the
algorithm in [17] to account for the displacement. Ji is obtained numerically from the
backprojection via Eq. (6) using central differences. Having available the backprojec-
tion, we can easily perform the rendering T ◦ βDi of the surface into the ith view using
the current displacement map and texture. For this, we just need to color each image
pixel x with the texel color of the corresponding surface point βDi (x).

Note that while the model is formulated for grayscale textures, it can readily be
extended to color using a multidimensional total variation norm [18] or color image
diffusion [19].
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(a) Per-texel weighted average (b) Superresolution only (c) With displacement map

Fig. 6: While the superresolution texture estimate (b) already improves over the com-
monly used weighted average (a), the jointly estimated displacement map leads to a
much more detailed result (c).

4 Experiments

We performed experiments on three different real-world datasets at input image resolu-
tion 768×584, see Fig. 7. An initial 3D reconstruction was obtained using an implemen-
tation of the algorithm in [20]. For the initial texture map, each texel was assigned the
weighted average color in each camera, with weights given by the backprojection area
element. An optimized displacement map and texture was computed using the proposed
algorithm, which takes about 5 hours until convergence, running on a 2.8 GHz Core 2
Duo processor with CUDA enhancements running on a GeForce GTX. Main memory
required is around 6 GByte. All parameters are set according to the recommendations
in the previous sections, and remained the same for all data sets.

Fig. 6 shows that the initial texture is very blurry due to small inaccuracies in the
geometry, and can already be improved significiantly just by applying the superreso-
lution texture reconstruction. Only when including small scale displacements from the
estimated displacement map, however, almost perfect sharpness can be achieved. A ren-
dering of the final textured model is of at least similar quality than an input image from
the same viewpoint, and in many cases the level of detail is even exceeded, see Fig. 7.
The displacement map can be leveraged to include additional effects into the rendering,
like relighting used the derived normal map, as exemplified in Fig. 5.

5 Conclusion

We proposed the first superresolution approach to multiview reconstruction. Based on
a unifying and elegant mathematical formalism, an algorithm for jointly estimating a
displacement map as well as a high-quality texture for an approximate 3D model was
derived. Both unknowns appear as the solutions to PDEs on the input surface, which can
be solved via total variation minimization techniques on planar 2D texture space with
the help of a conformal atlas. Experiments on several real-world objects demonstrate
that the resulting displacement map improves the accuracy of the geometric model.
Moreover, the computed superresolved textures typically exhibit more visible details
than individual input images.
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(a) Per-texel weighted average (b) Superresolution result (c) Input image

(a) Per-texel weighted average (b) Superresolution result (c) Input image

(a) Per-texel weighted average (b) Superresolution result (c) Input image

Fig. 7: Results from three real-world multiview datasets. The 3D model is rendered with
the texture from texel-wise initialization (a) and the texture resulting from the proposed
joint displacement map and superresolution algorithm (b). The result has more visible
details than an input image taken from the same viewpoint (c). The rows below the large
images show some close-ups. The reader is invited to zoom in on the electronic version
to better appraise the differences.
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