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Abstract

We study the scenario of a multiview setting, where sev-

eral calibrated views of a textured object with known sur-

face geometry are available. The objective is to estimate a

diffuse texture map as precisely as possible. A superresolu-

tion image formation model based on the camera properties

leads to a total variation energy for the desired texture map,

which can be recovered as the minimizer of the functional

by solving the Euler-Lagrange equation on the surface. The

PDE is transformed to planar texture space via an automat-

ically created conformal atlas, where it can be solved using

total variation deblurring. The proposed approach allows

to recover a high-resolution, high-quality texture map even

from lower-resolution photographs, which is of interest for

a variety of image-based modeling applications.

1. Introduction

Recently, image-based methods in conjunction with laser

range scans have emerged as a practical way to obtain high-

quality 3D models, in particular for applications like digital

preservation [3]. Increasing accuracy of image-based 3D

reconstruction methods could soon make it feasible to even

rely on image-based modeling alone [21]. Regardless of

how geometry is obtained though, in most applications it is

important to recover a high-resolution and accurate texture

map for the model, in order to be able to render the model

from novel viewpoints and in different lighting conditions.

In multi-view settings, usually every patch of the surface is

captured from several cameras. Therefore, using a suitable

superresolution model, one should be able to recover the

texture map in higher resolution than provided by the input

images. However, this possibility has not yet been explored,

with most existing methods fitting a local lighting model

per-vertex or per-texel only, disregarding texel interdepen-

dencies. Thus, our paper aims at opening up the highly in-

teresting area of superresolution models on surfaces.

Figure 1. Several input images for a multi-view reconstruction.

Figure 2. Left: Close-up of one of the low-resolution input im-

ages. Center: Rendered model with blurry texture initialized by

weighted averaging of input images. Right: High-quality texture

optimized with the proposed superresolution approach.

1.1. Imagebased texture reconstruction

In image-based texture generation, one faces the problem

of integrating several views of the same surface region into

a single texture map. In most approaches to date, informa-

tion from the cameras is blended per texel, using a suitable

heuristic to weight contributions from different source im-

ages [3, 16, 24]. It is common to perform additional image

registration before estimating surface properties, in order

to correct for geometry errors [3, 8] or object motion [24].

Other algorithms circumvent texel-wise blending by select-

ing large regions which are assigned texture data from a sin-

gle camera. However, those methods then face the problem

of stitching together the different regions. Optimal seam lo-

cations can be estimated beforehand [15], in combination

with multi-band blending at seam locations [1].

Although existing methods produce visually very pleas-

ing results, there is one problem intrinsic to the approach of
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selecting optimal cameras and blending the contributions.

Namely, this technique does not scale favourably with the

number of input cameras. Indeed, the result from blend-

ing becomes more blurred the more images are blended to-

gether, in particular if geometry estimates are not perfectly

accurate. Thus, many algorithms end up throwing away

most information in order to increase sharpness of the re-

sults. However, the fewer cameras contribute to a single

patch, the more visible seams will arise at patch boundaries

which have to be dealt with.

The proposed approach of texture superresolution deliv-

ers a solution to this dilemma. It is based on previous mod-

els employed in 2D superresolution [6, 10, 20, 22] for which

there is a well-developed theory [2]. The main idea is to for-

mulate an image formation process which explicitly models

the downsampling by the cameras. A texture on the surface

is then estimated to optimally fit all input images simulta-

neously, where a good fit is determined by minimization of

an energy functional. The total variation is included as a

regularizer in the functional. In comparison to the above

methods, this approach has the following advantages:

• An arbitrary number of source images can be inte-

grated in a natural way, globally reconstructing a spa-

tially coherent texture map. No inherent scaling prob-

lems arise, in fact, we embrace having more cameras

as this always leads to a more accurate solution.

• The model lends itself to an elegant and unified math-

ematical formulation. Suitable weighting factors for

input image contributions arise naturally, and do not

have to be imposed by heuristic assumptions.

• Neither visibility boundaries nor seams have to be

treated explicitly, since the total variation norm in the

energy already implies minimization of discontinu-

itues.

Due to these unique advantages, the estimated texture maps

are of excellent quality and contain more details than each

single input image taken by itself, Fig. 2.

1.2. Contributions

The main contributions of this paper are the following.

From a theoretical point of view, it introduces the first

model for surface texture superresolution. To our knowl-

edge, this is also the first time a superresolution model is

solved on curved surfaces. While super-resolved textures

were adressed previously, the authors either just perform a

resampling on a higher-resolution grid and thus not actu-

ally solve a superresolution model [13, 19], or they neglect

curvature and in effect perform 2D superresolution [7].

The theoretical derivation of the Euler-Langrange equa-

tions is non-trivial, and also valid for the reconstruction of

other scalar fields with arbitrary point-wise error measures

defined in image space. Thus, it will hopefully spark inter-

est in future studies on surface PDEs for surface property

reconstruction from multiple views.

In the next section, we introduce the image formation

model. The optimal texture map can be recovered as the

minimum of an energy functional, leading to a gradient de-

scent approach to recover the texture. By computing a con-

formal atlas for the surface, one can formulate the Euler-

Lagrange equation as a partial differential equation on tex-

ture space, Sect. 3. Details of the implementation are dis-

cussed in Sect. 4, followed by extensive experiments in

Sect. 5.

2. Superresolution Texture Maps

In this section, we introduce the image formation model

which leads to an energy functional whose minimum is at-

tained at the unknown texture. Let I1, . . . , In : Ωi → R be

the input images captured by cameras with known projec-

tions π1, . . . , πn : R
3 → R

2. The cameras observe a known

Lambertian surface Σ ⊂ R
3, which is textured with the un-

known texture map T : Σ → R. We will for now assume

grayscale images and extend the model to color textures in

Sect. 4.

2.1. Variational Formulation

The basic idea is to recover the unknown texture map as

the minimizer of an energy functional, consisting of a data

term and a regularization term,

E(T ) := Edata(T ) + σEtv(T ),

with Etv(T ) :=

∫

Σ

‖∇ΣT‖
Σ

ds.
(1)

Here, σ ≥ 0 is a parameter controlling the desired smooth-

ness of the result. The differential operators on the surface

and the norm on the tangent space are explained in detail

in [17]. The total variation norm of the texture was cho-

sen as the regularizer, because compared to alternatives, it

is better suited to preserve a crisp texture with sharp high-

resolution features,

The data term is based on the current state-of-the-art su-

perresolution model [22], with the limitation that we cur-

rently do not take noise in the input images into account

explicitly. The idea is that a real-world camera downsam-

ples the input by integrating over the visible texels inside

each sensor element. This integration process is modeled

with a convolution kernel b, which can be derived from the

properties of the camera [2]. The resulting data term is

Edata(T ) :=

n
∑

i=1

∫

Ŝi

(b ∗ (T ◦ βi) − Ii)
2

dx. (2)



(a) Chart domains dom(τj) in R
2

forming the texture space T.

(b) Corresponding regions Cj on the

surface.

(c) Texture map T = T ◦ τj on tex-

ture space.

(d) Texture T mapped on surface.

Figure 3. Illustration of the charts and parametrization mappings. Charts are color-coded, i.e. different colors correspond to different charts.

Figure 4. Intensity-coded backprojection area element Ji and cor-

responding input image. Some errors in the input geometry are

clearly visible - no good texture can be expected in those regions.

T ◦ βi denotes the visible texture intensity of the high-

resolution input in the image plane. The backprojection

mappings βi : Si → Σ assign the visible point on the sur-

face to each point in the silhouettes Si := πi(Σ) ⊂ R
2,

Fig. 5. Actual integration takes place over the smaller sub-

set Ŝi ⊂ Si where all of the kernel covers only points within

the silhouette.

2.2. EulerLagrange Equation

The next step is to establish necessary conditions for a

minimum. Deriving the Euler-Lagrange equations of the

functional leads to the following theorem, whose proof can

be found in the appendix.

Theorem. A texture which minimizes energy (1) also satis-

fies the partial differential equation

divΣ

( ∇ΣT

‖∇ΣT‖
Σ

)

+

n
∑

i=1

vi

σ
((JiDi) ◦ πi) = 0, (3)

on the surface Σ.

Some new objects appear in the PDE: the difference im-

ages Di stem from the derivative of the data term, and are

defined as

Di := b̄ ∗ (b ∗ (T ◦ βi) − Ii) , (4)

with the mirrored kernel b̄(x) := b(−x). The functions

vi : Σ → {0, 1} indicate whether a surface point is visible

in a source image,

vi(s) :=

{

1 if πi(s) ∈ Ŝi and s = βi ◦ πi(s),

0 otherwise.
(5)

Finally, Ji is the inverse surface area element with respect

to the backprojection,

Ji(x, y) =

∥

∥

∥

∥

∂βi

∂x
× ∂βi

∂y

∥

∥

∥

∥

−1

. (6)

Ji accounts for foreshortening of the surface in the in-

put views, and is small in regions where the backprojec-

tion varies strongly, which is usually the case at silhouette

boundaries or discontinuities of the backprojection due to

self-occlusions, Fig. 4. As a consequence, we have the de-

sirable property that in those regions where texture informa-

tion from the image is unreliable, the input is assigned less

weight. Note that we did not need any heuristic assump-

tions to arrive at this weighting scheme. It is rather a direct

mathematical consequence of the variational formulation.

The main question arising now is how to solve a partial

differential equation defined via derivative operators on the

surface, which we will address in the next section.

3. Conformal Maps and Differential Operators

While it is possible and has some merits to solve sur-

face PDEs based on an implicit representation [4], the goal

here are high-resolution textures which exceed the feasi-

ble resolution of the voxel grids. Thus, a method based on

parametrizing the surface [17, 23] is preferred for superres-

olution. The idea is to define the texture on the surface as a

planar, 2D texture map. In order to achieve this, one needs

a global parametrization of the surface. For the purposes

here, it is defined as a collection of k charts (Cj , τj) with

the following properties:



• The Cj are pairwise disjoint, open subsets of Σ, and

the union of their closures ∪k
j=1

Cj covers Σ.

• Each τj : dom(τj) ⊂ R
2 → Cj is a diffeomorphism,

and the domains dom(τj) are pairwise disjoint.

The union T := ∪k
j=1

dom(τj) of the chart domains is

called the texture space. To simplify notation, the single

mappings τj can be combined to form a global mapping

τ : T → Σ. Fig. 3 illustrates the concept. Now, the key

idea for an elegant formulation of the required differential

operators is to demand a last property:

• The parametrization is conformal, i.e. each τj is a con-

formal map. This means that their Jacobian matrix is

everywhere a scalar λ, the conformal factor, times a

rotation matrix.

Utilizing conformality enables us to explain the differential

operators on the surface in terms of differentiation in R
2.

Let λ : T → R be the mapping assigning the conformal

factor to each point in texture space. Then the smoothness

term of the Euler-Lagrange equation (3) can be expressed

by pulling it back onto texture space [17]:

divΣ

( ∇ΣT

‖∇ΣT‖
Σ

)

=
1

λ
div

(√
λ

∇T
‖∇T ‖

)

, (7)

where T := T ◦ τ is the texture map of the surface defined

on the texture space T, see Fig. 3c.

In summary, in order to compute the desired texture map

T , we need to solve the following

Superresolution problem: Find a texture map T :
T → R which satisfies the Euler-Lagrange equation

1

λ
div

(√
λ

∇T
‖∇T ‖

)

+

n
∑

i=1

vi

σ
((JiDi) ◦ φi) = 0 (8)

on the chart domains dom(τj), j = 1, . . . , k. Here,

φi := πi ◦ τ are the mappings from texture space into

the image planes, λ assigns the conformal factor of the

parametrization to each point in T, and vi := vi ◦ τ
indicates visibility of a texel in image i. Di and Ji are

defined according to Eqns. (4) and (6), respectively.

Note that the surface is closed and technically, there

are no boundary conditions. However, because a global

parametrization usually requires several charts, T is made

up of several disjoint domains. Thus, the domain bound-

aries have to be handled correctly. After discretization,

the chart neighbourhood relationships will impose a cer-

tain topology of the computation grid resembling periodic

boundary conditions. The next section will detail the imple-

mentation of the PDE.

φi = πi ◦ τ

T

Σ

τ
βi

πi

Ωi

Figure 5. The various mappings connecting texture space T, the

surface Σ and the image planes Ωi.

4. PDE-based Energy Minimization

Since the implementation of the superresolution model is

very involved, we will give a detailed description of the nec-

essary steps in this section. The first step will be to construct

a conformal atlas. Once the mappings from the surface to

texture space are established, the texture space needs to be

discretized and the topology of the computation grid initial-

ized using the chart neighbourhood relationships. On the

grid, we employ a straightforward gradient descent scheme

to solve the Euler-Lagrange equation, for which it is neces-

sary to compute the total variation and data term. Finally,

we describe the extension of the scheme to color textures

and discuss runtime and memory requirements, as well as

parameter settings.

4.1. Conformal Atlas and Computation Grid

Numerous methods for surface parametrization in gen-

eral are available [9]. However, when one needs a con-

formal parametrization, the options are more limited [12,

18, 25]. Our algorithm to compute a conformal atlas is a

straightforward implementation of [18]. An even coverage

of the model with texels is desireable, so charts are split up

if the ratio of largest to smallest conformal factor is greater

than 3/2. Chart domains are scaled so that the average con-

formal factor equals a common constant. The algorithm

is fully automatic and has the desirable property that chart

boundaries tend to coincide with high-curvature edges on

the surface.

For discretization, the texture space is subdivided into

a grid of texels. The grid needs to admit a flexible topol-

ogy, since only texels in the interior of chart domains are

connected to their direct neighbours. On the boundary of

charts, neighbourhood is established according to the cor-

rect relationships on the surface. To achieve this, we take



dom(τi)

Σ

τi

dom(τj)

τj

?

Figure 6. Boundary texel neighbour connections on the computa-

tion grid are established by searching in normal direction on the

surface.

the outer normals of boundary texels in texture space and

transform them up onto the surface. Then, we search for the

closest texel of the neighboring chart in this direction, and

assign that one as a neighbour, Fig. 6. The discretization of

differential operators in boundary texels is then perfomed

similar to periodic boundary conditions in the 2D case.

4.2. Gradient Descent

The descent direction for the gradient descent is given by

the Euler-Lagrange equation (8). Because of the complexity

of the data term, its appropriate implementation is crucial

for the methods overall efficiency.

Data Term. The visibility indicator vi and the map-

ping φi which maps texture to image space can easily be

pre-computed for each texel. In order to pre-compute Ji

for each camera, we need to obtain the backprojection map-

ping βi. An efficient way to do this is by rendering the

surface into each camera via OpenGL and then reading the

Z-buffer to get the exact location for the backprojection of

each pixel. Ji is then obtained numerically via Eq. (6) using

central differences.

The remaining terms to evaluate in each iteration are now

the difference images

Di = b̄ ∗ (b ∗ (T ◦ βi) − Ii) . (9)

Note that T ◦βi is simply a rendering of the surface in the ith
image using the current texture map and a pinhole camera

model, which can efficiently be performed with OpenGL.

A high-resolution rendering is required, which is then con-

volved with b and subsampled to the resolution of the input

images, following the imaging model of the camera. After

that, the difference to Ii is computed and the result con-

volved again with b̄. All those operations can be imple-

mented on the GPU for significiant speedup.

Total Variation Term. Compared to the data term, the

regularization term does not take much computation time to

evaluate. However, care must be taken with the discretiza-

tion of the operators. The scheme from [26] offers improved

rotation invariance, with the diffusion tensor D set to the

(isotropic) regularized TV flow,

D =

√
λ

max(ǫ, ‖∇T ‖)

[

1 0
0 1

]

, (10)

where ǫ > 0 is a small regularization parameter. Note that

adjusting the diffusion tensor allows to compare the TV

flow to alternative regularizers like coherence-enhancing

diffusion. In practice, however, when optimal parameters

were used, only little difference can be observed in the re-

sulting texture maps.

4.3. Extension to Color Textures

Probably the most elegant way to extend our model to

color textures is to use the multidimensional total variation

norm [5] in the energy functional. If T : Σ → R
m is a

texture with m channels, then its TV norm is defined as

TV(T) :=

√

√

√

√

m
∑

i=1

TV(Ti). (11)

The Euler-Lagrange equations for this norm are [5]

TV(Ti)

TV(T)
· 1

λ
div

(√
λ

∇T
‖∇T ‖

)

= 0, (12)

which must be satisfied for each texture component. The

data term from (8) is simply added to the regularization term

for each color channel separately in order to get the final

Euler-Lagrange equations for our model. Note that the total

variation of each channel can be computed in texture space

as well by transforming the integral:

TV(Ti) =

∫

Σ

‖∇ΣTi‖Σ
ds =

∫

T

∥

∥Dτ−1(∇ΣTi ◦ τ)
∥

∥ λ dx

=

∫

T

√
λ ‖∇Ti‖ dx.

(13)

A conformal map scales tangent vectors uniformly, so

lengths scale with the square root of the area element, i.e.

the conformal factor.

5. Experiments

After a description of the basic setup of all experiments,

the merits of our approach are demonstrated on several syn-

thetic datasets before turning to a real challenge: a multi-

view dataset of a bird with approximate geometry estimated

by a 3D reconstruction algorithm.



512 × 512 341 × 341 256 × 256
Initialization Result Initialization Result Initialization Result Ground truth

6.35 4.56 8.01 6.07 8.08 6.23

25.08 17.81 25.84 22.48 25.33 22.56

5.08 3.33 7.45 5.63 7.62 5.66

4.17 2.94 4.76 3.04 5.03 3.23

Table 1. Superresolution results from full resolution input images are visually almost indistinguishable from ground truth. Furthermore,

superresolution reconstructions from downscaled images are on average of better quality than the texel-wise initialization from four times

the input image resolution. Mean squared error ǫ for a color range of [0, 255] is shown below the image close-ups.

5.1. General Setup

A tough choice for our algorithm is the convolution ker-

nel b modelling the cameras. Following the advice in [2], a

Gauss kernel with standard deviation equal to half the pixel

diameter leads to good simulation of the real-world situa-

tion.

The remaining free parameter σ influences the smooth-

ness of the result. As we aim at correct textures, it should

be as low as possible. However, since deconvolution prob-

lems are notoriously ill-posed, it is useful to start the mini-

mization process with a somewhat larger σ and larger time-

steps to speed up convergence and get a good approximation

quickly [27]. Thus, we perform 100 iterations with σ = 1.0,

followed by another 100 iterations with σ = 0.1. The time

step is fixed and set to 0.02. Throughout all experiments the

same parameters were used. At the given resolutions, the

algorithm takes about 3 hours until convergence, running

on a 2.8 GHz Core 2 Duo processor with CUDA enhance-

ments running on a GeForce GTX. Main memory required

is around 4 GByte.

5.2. Synthetic Data

In order to evaluate the algorithm numerically and to

make meaningful comparisons of texture estimation errors,

we first run it on synthetic test scenes. For complete knowl-

edge of all mappings and easy comparison with ground

truth we chose a torus as a test object, with a single texture

wrapped around it using the standard parametrization. Im-

ages of the torus were raytraced from 48 camera locations,

distributed evenly around it on six different height levels.

Image resolution is 512×512 pixels, while the original and

reconstructed texture is of size 1024 × 1024 texels.

For initialization, each texel is set to the weighted aver-

age color of its projections in all views where it is visible.

Weights are given by the inverse backprojection area ele-

ment, Eq. (6). As can be seen in Table 1, this common

pointwise approach to texture estimation leads to slightly

blurry results in which many of the original details are lost.

Naturally, the results will be even worse if the geometry is

less exact than in this ideal example.

To investigate how the result depends on input image res-

olution, the superresolution algorithm is applied to down-

sampled as well as the original images. In each case, the

mean squared error ǫ between reconstructed and original



(a) Texel-wise weighted average (b) Superresolution result (c) Input image

Figure 7. Results from a real-world multiview dataset. The 3D model is rendered with the texture from texel-wise initialization (a) and the

texture resulting from the proposed superresolution algorithm (b). Our result has more visible details than an input image taken from the

same viewpoint (c). The bottom row shows some close-ups, see also Fig. 2 for a higher zoom factor, and Fig. 3 for a different viewpoint

and the complete texture atlas.

texture map was recorded. Error values and close-ups of

the resulting texture maps are shown in Table 1.

If the input images are scaled down by a factor of 1.5,

our method still produces textures which are as good as the

texel-wise initialization in the high-resolution case. This

clearly demonstrates the viability of the superresolution ap-

proach.

5.3. Realworld Images

Finally, we perform some experiments on real-world

datasets. From 36 images of a bird at resolution 768× 584,

Fig. 1, a 3D reconstruction was obtained using an imple-

mentation of the algorithm in [14]. After creating a confor-

mal atlas, a texture map was computed using the proposed

superresolution algorithm, with the same texel-wise initial-

ization as for the synthetic data sets.

The data is challenging for a texture reconstruction

method, since the geometry is imperfect, and weighted av-

eraging of color information over cameras leads to a blurry

initialization. Notably, however, the optimized texture es-

timated via superresolution exhibits even more details than

an individual original input image, Fig. 7. This is some-

thing no previous method for texture generation could hope

for. The only visible artifacts result from clearly incorrect

3D geometry, while no seams due to visibility boundaries

can be observed.

6. Conclusion

We proposed the first approach to superresolution tex-

ture reconstruction from multi-view images which solves a

superresolution model on curved surfaces. The image for-

mation model leads to an energy with the desired texture

map as the minimizer, whose Euler-Lagrange equation is a

PDE on the surface. Using a conformal atlas for the known

surface geometry, the equation can be solved via total vari-

ation deblurring on planar 2D texture space. The method

produces high-fidelity texture maps, which approach the

point-wise reconstruction quality from much higher reso-

lution input. The visible texture detail can surpass the de-

tail of individual input images. A current limitation is that

no additional image registration is performed, so geometry

and camera calibration needs to be accurate. In a followup

work [11], we therefore focus on a generalized model for

joint texture and geometry reconstruction.

References

[1] C. Allne, J.-P. Pons, and R. Keriven. Seamless image-based

texture atlases using multi-band blending. In 19th Interna-

tional Conference on Pattern Recognition, 2008.

[2] S. Baker and T. Kanade. Limits on super-resolution and how

to break them. PAMI, 24(9):1167–1183, 2002.

[3] F. Bernardini, I. Martin, and H. Rushmeier. High-quality

texture reconstruction from multiple scans. IEEE Transac-

tions on Visualization and Computer Graphics, 7(4):318–

332, 2001.

[4] M. Bertalmio, G. Sapiro, L. T. Cheng, and S. Osher. Vari-

ational problems and PDEs on implicit surfaces. In Pro-

ceedings of the IEEE Workshop on Variational and Level Set

Methods (VLSM’01), pages 186–193, 2001.

[5] P. Blomgren and T. F. Chan. Color TV: Total variation meth-

ods for restoration of vector-valued images. IEEE Trans. Im-

age Processing, 7:304–309, 1998.



[6] D. Capel and A. Zisserman. Super-resolution from multiple

views using learnt image models. In Proc. CVPR, volume 2,

pages 627–634, 2001.

[7] P. Cheeseman, B. Kanefsky, R. Kraft, and J. Stutz. Super-

resolved surface reconstruction from multiple images. Tech-

nical Report FIA9412, NASA Ames Research Center, 1994.

[8] M. Eisemann, B. D. Decker, M. Magnor, P. Bekaert,

E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent. Float-

ing Textures. Computer Graphics Forum (Proc. Eurograph-

ics EG’08), 27(2):409–418, 2008.

[9] M. S. Floater and K. Hormann. Surface parameterization:

a tutorial and survey. In Advances in Multiresolution for

Geometric Modelling, Mathematics and Visualization, pages

157–168. Springer, 2006.

[10] R. Fransens, C. Strecha, and L. van Gool. Optical flow based

super-resolution: A probabilistic approach. Computer Vision

and Image Understanding, 106(1):106–115, 2007.

[11] B. Goldluecke and D. Cremers. A superresolution frame-

work for high-accuracy multiview reconstruction. In Pattern

Recognition (Proc. DAGM), 2009. accepted.

[12] X. Gu and S.-T. Yau. Global conformal surface parameteri-

zation. In Proceedings of the 2003 Eurographics/ACM SIG-

GRAPH symposium on Geometry processing, volume 43,

pages 127–137, 2003.

[13] R. Koch, M. Pollefeys, and L. V. Gool. Multi viewpoint

stereo from uncalibrated video sequences. In Proc. ECCV,

volume 1406 of Lecture Notes In Computer Science, pages

55–63, 1998.

[14] K. Kolev and D. Cremers. Integration of multiview stereo

and silhouettes via convex functionals on convex domains.

In Proc. ECCV, volume 5302 of Lecture Notes In Computer

Science, pages 752–765, 2008.

[15] V. Lempitsky and D. Ivanov. Seamless mosaicing of image-

based texture maps. In Proc. CVPR, volume 1, pages 1–6,

2007.

[16] H. Lensch, W. Heidrich, and H. P. Seidel. A silhouette-based

algorithm for texture registration and stitching. Graphical

Models, 63(4):245–262, 2001.

[17] L. M. Lui, Y. Wang, and T. F. Chan. Solving PDEs on

manifold using global conformal parameterization. In Proc.

VLSM, pages 309–319, 2005.

[18] B. Lvy, S. Petitjean, N. Ray, and J. Maillot. Least squares

conformal maps for automatic texture atlas generation.

ACM Transactions on graphics (SIGGRAPH), 21(3):362–

371, 2003.

[19] K. Nakamura, H. Saito, and S. Ozawa. Generation of 3d

model with super resolved texture from image sequence. In

Proc. IEEE International Conference on Systems, Man, and

Cybernetics, pages 1406–1411, 2000.

[20] T. Schoenemann and D. Cremers. High resolution motion

layer decomposition using dual-space graph cuts. In Proc.

CVPR, pages 1–7, 2008.

[21] S. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski.

A comparison and evaluation of multi-view stereo recon-

struction algorithms. In Proc. CVPR, pages 519–528, 2006.

[22] F. Sroubek, G. Cristobal, and J. Flusser. A unified ap-

proach to superresolution and multichannel blind deconvolu-

tion. IEEE Transactions on Image Processing, 16(9):2322–

2332, 2007.

[23] J. Stam. Flows on surfaces of arbitrary topology. ACM Trans-

actions on Graphics (SIGGRAPH), 22(3):724–731, 2003.

[24] C. Theobalt, N. Ahmed, H. Lensch, M. Magnor, and H. P.

Seidel. Seeing people in different light-joint shape, motion,

and reflectance capture. IEEE Transactions on Visualization

and Computer Graphics, 13(4):663–674, 2007.

[25] Y. Wang, X. Gu, K. Hayashi, T. F. Chan, P. Thompson, and

S.-T. Yau. Surface parameterization using Riemann surface

structure. In Proceedings of ICCV, volume 2, pages 1061–

1066, 2005.

[26] J. Weickert and H. Scharr. A scheme for coherence-

enhancing diffusion filtering with optimized rotation invari-

ance. Journal of Visual Communication and Image Repre-

sentation, 13(1–2):103–118, 2002.

[27] M. Welk, D. Theis, T. Brox, and J. Weickert. PDE-based

deconvolution with forward-backward diffusivities and dif-

fusion tensors. volume 3459 of Lecture Notes in Computer

Science, pages 585–597. Springer, 2005.

Appendix: Proof of Theorem

This section deals with the derivation of the Euler-

Lagrange equation for the energy functional. For this, let δT
be a variation of the texture. In [17], the directional deriva-

tive of the regularization term in direction δT was found to

be

d

dT
Etv(T )

∣

∣

∣

∣

δT

=

∫

Σ

divΣ

( ∇ΣT

‖∇ΣT‖
Σ

)

· δT ds. (14)

A precise definition of differential operators appearing be-

low the integral is beyond the scope of this work, the reader

is referred to the above reference.

The data term can first be treated in image space with

respect to the projected variation δT ◦ βi. Following the

arguments of the 2D case [27], one obtains

d

dT
Edata(T )

∣

∣

∣

∣

δT

=

n
∑

i=1

∫

Ŝi

Di · (δT ◦ βi) dx, (15)

For the derivation of the final Euler-Langrange equation,

however, it is a problem that the integration in the data

term takes place over different domains. Fortunately, by

means of the visibility indicator functions vi : Σ → {0, 1}
from (5) and backprojection area elements Ji from (6), the

expressions in (15) can be transformed to surface integrals:

d

dT
Edata(T )

∣

∣

∣

∣

δT

=

n
∑

i=1

∫

Σ

vi ((JiDi) ◦ πi) · δT ds, (16)

At a local minimum, the directional derivative vanishes

for every displacement δT . Putting (14) and (16) together

yields the desired Euler-Lagrange equation. ¤


