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Abstract

We introduce the novel continuous regularizer total
curvature (TC) for images u : Ω → R. It is defined
as the Menger-Melnikov curvature of the Radon mea-
sure |Du|, which can be understood as a measure the-
oretic formulation of curvature mathematically related
to mean curvature. The functional is not convex, there-
fore we define a convex relaxation which yields a close
approximation. Similar to the total variation, the re-
laxation can be written as the support functional of a
convex set, which means that there are stable and effi-
cient minimization algorithms available when it is used
as a regularizer in image processing problems. Our cur-
rent implementation can handle general inverse prob-
lems, inpainting and segmentation. We demonstrate in
experiments and comparisons how the regularizer per-
forms in practice.

1. Introduction

Image processing problems are usually ill-posed due
to inherent ambiguity, clutter and real-world noise.
Therefore algorithms typically require some form of
regularization or prior information to disambiguate
the input data. While psychophysical studies on con-
tour completion suggest that curvature plays a cen-
tral role in human perception [12], length regularity
is currently the dominant paradigm for denoising, de-
blurring, segmentation and geometric reconstruction.
This is largely due to the fact that length regularity
is mathematically well understood, and can be formu-
lated with convex regularizers like the total variation
for which a variety of fast and stable minimization al-
gorithms exists.

Curvature, on the other hand, is a non-convex func-
tional, and there is currently no known way to glob-
ally minimize it. The classical continuous mean cur-
vature functional is non-convex and contains second-
order derivatives, and thus its minimization is highly
challenging. To date, most continuous approaches
therefore employ local optimization methods only.

Figure 1: Total curvature regularity is ideal for seg-
mentation of elongated structures. Image resolution
256× 256, smoothness parameter λ = 0.002.

Contribution.
In this paper, we introduce the concept of total cur-

vature of a function, which is based on the Menger-
Melnikov curvature of a measure. In contrast to the
classical mean curvature functional, is is defined for dis-
continuous functions in the whole Hilbert space L2(Ω),
and requires only first-order derivatives. Geometrically
for characteristic (binary) functions, the total curva-
ture gives a measure of the curvature of the jump set.

We introduce a one-parameter familiy of convex reg-
ularizers for total curvature, which has total variation
as a limit case and is a very good approximation to
total curvature for characteristic functions if the pa-
rameter is chosen to fit the discretization. We give
the complete mathematical analysis necessary for min-
imization of total curvature regularized functionals. To
this end we formulate the regularizers as support func-
tionals of convex sets of dual vector fields – analogous
to respective definitions of the total variation. As a
consequence, we are able to employ well-known efficient
and stable numerical schemes to solve image processing
problems with total curvature regularity.

We provide detailed descriptions of the implementa-
tion and show a variety of experimental comparisons of
total curvature with other continuous and discrete reg-
ularizers. These experiments demonstrate that total
curvature is a suitable regularizer for a variety of im-
age processing application such as image segmentation
and inpainting.
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Relation to previous work.

The proposed continuous approach to curvature reg-
ularity is most similar to the continuous length reg-
ularity approaches which have been analyzed exten-
sively in previous work on region-based segmenta-
tion [6, 16, 18, 10]. In these works researchers mini-
mize energies based on region integrals with the reg-
ularizer penalty proportional to the length of the re-
gion boundaries. Recent formulations are based on to-
tal variation [17, 21], allowing globally optimal solu-
tions of the binary paritioning problem via relaxation
and subsequent thresholding [17]. Total variation is
also commonplace in more general image processing
problems [8]. Due to its convexity and lower semi-
continuity it lends itself to powerful minimization al-
gorithms, which have been researched extensively in
the last years [3, 4, 7, 8]. Since the proposed regular-
izer total curvature has similar mathematical proper-
ties, we can easily substitute it in the above methods
and algorithms.

Continuous approaches to curvature regularity pre-
dominantly employ local evolution methods [9, 11, 18,
25], thereby being confined to sub-optimal local solu-
tions. A notable exception is the approach [14] to in-
painting, where the L1-norm of the curvature is mini-
mized globally using dynamic programming, provided
there is no data term. Our approach differs from these
works in that the original non-convex problem is re-
laxed to a closely related convex one, which can be
solved in a globally optimal way. Discrete contour-
based approaches to curvature regularity have been
formulated using shortest path approaches [1] or ra-
tio cycle formulations [23] on a graph representing the
product space of image pixels and tangent angles [20].

A recent discrete region-based segmentation and in-
painting method [24] is based on the concepts of cell
complexes and surface continuation constraints. Their
method is somewhat related to ours, since they also
perform a relaxation of a binary non-convex problem
to a convex one. Subsequent thresholding yields a so-
lution within a known bound of the global optimum,
typically below 0.1% in their experiments. However,
discrete graph-based approaches often suffer from met-
rication errors [13], which make the results depend on
the underlying grid. The continuous framework we
present completely avoids these type of artifacts, as
we will see in later comparisons.

2. Total Curvature

The Menger-Melnikov curvature [15] of degree p > 0
introduces the concept of the curvature of a measure.
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Figure 2: The Menger curvature weight is given by re-
ciprocal of radius of circle through three points. When
computing total curvature for the characteristic func-
tion of a set A, only triples (x, y, z) of points on the
boundary of A contribute to the integral.

For a measure µ on a set Ω ⊂ Rn, it is defined as

cp(µ) :=

∫
Ω×Ω×Ω

c(x, y, z)2p dµ(x) dµ(y) dµ(z), (1)

where c(x, y, z) = r(x, y, z)−1, and r(x, y, z) is the ra-
dius of the (unique) circle passing through x, y, z, see
figure 2. In the case that the points are collinear,
define c(x, y, z) = 0. Also, to avoid the issue of un-
bounded c, we set by common convention c(x, y, z) to
zero if x, y, z are closer together than a certain ε. Since
after the eventual discretization this concern does not
exist anymore, this detail is ignored in the following
to not overly complicate the notation. Note that the
definition makes sense in arbitrary dimension, since
three points in n-dimensional space always lie in a two-
dimensional plane. Also, only first-order derivatives
are involved in the definition.

There are close ties of the Menger-Melnikov cur-
vature to the mean curvature, which is not surpris-
ing since the mean curvature at each point of a curve
in the plane is geometrically the inverse of the ra-
dius of an osculating (“kissing”) circle. Straight lines
have zero curvature, while one can show [19] that if
µ is the one-dimensional Haussdorff measure on a cir-
cle Sr with radius r, then c2(µ) = 1/r, in particu-
lar c2(1Sr

) = 1/r. Figure 3 illustrates the similarity of
the Menger-Melnikov curvature of degree p to the pth
power of the mean curvature.

We now define the novel concept of total curvature
of a function u ∈ L2(Ω) as the Menger-Melnikov cur-
vature of the Radon measure |Du|.

Definition 2.1. Let u ∈ L2(Ω). Then its total curva-
ture TCp(u) of degree p is defined as

TCp(u) := cp(|Du|). (2)
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Figure 3: Comparison ot total curvature of order p and the pth power of mean curvature for the boundary of the
shape A ⊂ Ω on the left. Brighter shades of red mean higher curvature. We see that in each point of the boundary
curve, both measures of curvature behave very similar. Note that the total curvature of order p in a point x is
computed by keeping x fixed and integrating over y and z in (1), using µ = |D1A|. For illustration purposes, the
boundary was dilated and values scaled to the same range.

The geometric insight is that for a characteris-
tic function of a sufficiently regular (i.e. piecewise
smooth boundary) set A ⊂ Ω, the measure |Du| is
the (n− 1)-dimensional Haussdorff measure restricted
to its boundary. Thus, in the integral in (1) only the
points x, y, z ∈ ∂A contribute to the curvature, i.e.
the total curvature of a characteristic function 1A is a
measure of curvature for the boundary ∂A, see figure 2.
This is analogous to the total variation, which equals
the length of this boundary, TV(1A) = H1(∂A). In
the following, we supress the dependency of the total
curvature functional TC on p to not clutter notation.
In experiments, we always use p = 1 if not otherwise
noted.

3. Relaxation

Unfortunately, the functional TC is not convex
on L2(Ω) and very hard to minimize if used as a
regularizer. We therefore propose a one-parameter
familiy TCα of functionals which are natural relax-
ations of the total curvature and have in a sense both
the total variation as well as the total curvature as limit
cases. They have a number of desireable properties
while preserving important characteristics of TC(u).
In this section, we only give the (primal) definition for
differentiable u, which we extend to L2(Ω) via duality
in section 4.

Definition 3.1. Let α > 0 and u ∈ C1(Ω). Then the
relaxation TCα(u) for the total curvature of u is defined
as

TCα(u) :=

∫
Ω×Ω×Ω

c(x, y, z)2p max(0, ...

... |∇u(x)|2 + |∇u(y)|2 + |∇u(z)|2 − α) d(x, y, z).

(3)

The relaxation TCα is convex on C1(Ω), since con-
catenation with max(0, ·) preserves convexity. We ex-
ploit this in sections 4 and 5 in order to construct min-
imization algorithms for image processing problems.

Before we turn to that, we will discuss how TCα is
related to the curvature functional TC and the total
variation.

Interpretation of the relaxation.
The relationship to the original total curvature func-

tional for characteristic functions is the motivating fac-
tor in the definition of the relaxation (3). To under-
stand it, we take a look at an indicator function 1A
in the discrete setting, when the gradient operator is
given by standard forward differences. In this case, the
value of |∇1A|2 can be either 0, 1 or

√
2. Thus, if we

set α = 2
√

2, then this means that for indicator func-
tions, the relaxation (3) is a sensible approximation to
the exact curvature in the sense that in both cases, the
integral gives a contribution if and only if each of x, y, z
is on the boundary of the set A:

|∇1A(x)|2 + |∇1A(y)|2 + |∇1A(z)|2 > α

⇔|∇1A(x)|2 6= 0 ∧ |∇1A(y)|2 6= 0 ∧ |∇1A(z)|2 6= 0.
(4)

For this reason, the case α = 2
√

2 is the most relevant
for us, and we use it throughout the experiments.

In the case α = 0, the relaxation is equal to a
weighted total variation with weight

g(w) =

∫
Ω2

c2p(w, y, z) d(y, z) + c2p(x,w, z) d(x, z) + ...

...+ c2p(x, y, w) d(x, y),
(5)

which reduces to a constant weight for Ω = Rn. Thus,
cases of 0 < α < 2

√
2 lead to a regularization which is

qualitatively somewhere between curvature and length
regularity.

Experimental validation.
In order to verify how this theoretical interpretation

works out in practice, we have experimentally com-
pared the integrands for the exact total curvature, the
relaxation for α = 2

√
2 and α =

√
2, as well as the to-

tal variation for reference. We computed the integrand
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Figure 4: Correlation coefficients for pointwise inte-
grands of different regularizers. We clearly see that
TC2

√
2 is a very good approximation for TC. Data

sets were computed from binary images obtained from
a large image database.

X original Xblurred and noisy TCα deblurring

Figure 5: Deblurring with total curvature regulariza-
tion. The blur kernel is Gaussian with a standard de-
viation of five pixels. Image resolution is 320 × 480,
deblurring was done for each color channel separately.

pointwise for each pixel in one hundred 256 × 256 bi-
nary images created by thresholding random images
from the internet. Figure 4 shows the correlation co-
efficients for the resulting columns of data. We can
see that indeed as expected, the relaxation TC2

√
2 is

a very close approximation of the exact total curva-
ture TC (up to a constant linear transformation, which
is unimportant if it is used as a regularizer), while the
relaxation TC0 is most closely correlated to TV.

4. Convex Analysis

We write 〈·, ·〉V for the inner product on a vector
space V, and omit mentioning V if it can be easily
deduced from context. Usually, it will denote inner
products on L2 Hilbert spaces. The following theorem
computes the dual formulation of TCα in terms of a
support functional of a convex set, which is a founda-
tion for efficient minimization algorithms.

Theorem 4.1. Let u ∈ C1(Ω). Then

TCα(u) = sup
(p,q)∈C

{
〈u,K∗p〉L2(Ω) − 〈α, q〉L2(Ω3)

}
,

(6)
with the convex set

C :=
{

(px, py, pz, q) ∈ C1
c (Ω3,Rn × Rn × Rn × R) :

|pi|2 ≤ q and 0 ≤ q ≤ c2p(pointwise)
}

(7)

and the linear operator

K∗(px, py, pz) := −
∫

Ω2

div(px(·, y, z)) d(y, z)

−
∫

Ω2

div(py(x, ·, z)) d(x, z)

−
∫

Ω2

div(pz(x, y, ·)) d(x, y).

(8)

Proof. See additional material.

Note that K∗ is the adjoint of the operator K given by

Ku(x, y, z) =
[
∇u(x) ∇u(y) ∇u(z)

]T
. (9)

As an immediate corollary, the above theorem extends
definition 3.1 to all of L2(Ω) by establishing TCα as
the support functional of the convex set [K∗, 1]C, the
notation meaning that the first component of the ele-
ments in C is transformed by K∗, while the second is
unchanged.

Corollary 4.2. Equation (6) extends definition 3.1 to
all of L2(Ω). For all u ∈ L2(Ω),

TCα(u) = σ[K∗,1]C(u,−α), (10)

where σ denotes the support functional. Thus, TCα is a
closed (or lower semi-continuous) functional on L2(Ω)
in addition to being convex.

When total curvature is used as a regularizer in com-
puter vision and image processing, then of special in-
terest are problems of the form

min
u∈L2(Ω)

{TCα(u) +G(u)} , (11)

where G is a cost function on L2(Ω). In the next sec-
tion, several archetypical image processing problems
are given as examples. It is therefore a very interesting
property of total curvature regularity that we are able
to guarantee the existence of solutions to such problems
if G has certain properties.

Theorem 4.3. Let G be either

i. convex, closed and coervice, or

ii. weakly lower semi-continuous and coercive.

Then problem (11) has a minimizer with bounded total
curvature.

Proof. Property (i) implies (ii), see Theorem 3.3.3
in [2]. We have already shown that TCα is closed on
L2(Ω). Thus, in both cases the full functional is weakly
lower semi-continuous and coercive. Since L2(Ω) is a
reflexive space, this implies the existence of a mini-
mizer according to the Weierstraß minimization theo-
rem, 3.2.5 in [2]. Obviously, the minimizer must have
bounded total curvature.
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Figure 6: Proximations of the relaxation of total curvature and total variation. The weights λ of both regularizers
are unrelated. We can see that TCα also allows discontinous solutions and has similar edge-preserving proper-
ties than TV. However, at very high smoothing values, TCα performs significiantly different. in particular, it
shows a saturation in regularization: the max function in the integrand has the effect of ignoring low-frequency
discontinuities.

A particulary important example for problem (11)
is the TCα-L2 problem (the analogous problem for the
total variation is the celebrated Rudin-Osher-Fatemi
(ROF) model [22]), which is to solve for given f ∈
L2(Ω) and λ > 0

min
u∈L2(Ω)

{
TCα(u) +

1

2λ
‖u− f‖22

}
. (12)

While it can also serve as a model for denoising, it is of
large general interest because its minimizer is equal to
the proximation of λTCα, which can be interpreted as
a subgradient descent step for TCα with step size λ [3].
For this reason, it is at the heart of several algorithms
designed to solve more general problems, in particular
the fast iterative shrinkage and thresholding (FISTA)
which we employ in our work [4]. Theorem 4.3 assures
that the proximation for TCα is well-defined, since the
norm is obviously coercive on L2(Ω).

5. Image processing with TCα regularity

In this section, we describe typical choices for the
data term G in image processing applications, and de-
tail algorithms how to solve the resulting problem with
total curvature regularity.

Denoising.
The estimate for the original function u which max-

imizes the posterior probability under the assumtion
that we observe an image f distorted with pointwise

Gaussian noise of standard deviation λ is the minimizer
of the proximation problem (12). We solve this prob-
lem with the Bermùdez-Moreno algorithm [5], which
was recently reintroduced for image processing prob-
lems in [3], and earlier rediscovered in [7] as a solver for
the ROF model with total variation regularization [22].
Specialized to problem (12), the algorithm is given in
figure 10. It has a guaranteed convergence for a step
size σ < 2/(λ ‖K∗‖2). In figure 6, we demonstrate the
behaviour of the proximation when the smoothing pa-
rameter is varied, and compare total curvature to total
variation.

Inverse problems.

The general inverse problem is to find

min
u∈L2(Ω)

{
TCα(u) +

1

2λ
‖Au− f‖22

}
, (13)

where A is an operator on L2(Ω). It can be inter-
preted as a maximum a-posteriori estimate for the
model Au = f , where the observation f is distorted by
Gaussian noise with standard deviation λ. We solve
it with the FISTA algorithm [4], which is suitable for
general problems of the form (11) in the case of a data
term G with L-Lipschitz continuous gradient. FISTA
alternates a gradient descent in G with a subgradient
descent in TCα, which is given by the proximation. In
both cases, the possible step size is 1/L. An acceler-
ation step guarantees a convergence rate of O(1/N2),



Figure 7: Segmentation with manually marked seed re-
gions. Elongated structures are well preserved despite
a relatively large amount of regularization, λ = 0.005.
Image resolution is 512× 384.

where N is the number of iterations. The resulting al-
gorithm for total curvature regularity is detailed in fig-
ure 10, where we use the Bermùdez-Moreno algorithm
for the subgradient descent in TCα. In the general
inverse problem, L = ‖A∗A‖ /λ. A special case is de-
blurring, where Au = b ∗u with a convolution kernel b,
and ‖A‖ = ‖A∗‖ = ‖b‖1. An example for deblurring
with curvature regularity can be found in figure 5. Note
that in deblurring, the amount of regularization is usu-
ally very low, so that the choice of regularizer does not
make a very noticeable impact on the result.

Inpainting.
A simple inpainting model is

min
u∈L2(Ω)

{
TCα(u) +

∫
Ω

1Ω\M
ρ

2
‖u− f‖22

}
. (14)

where ρ > 0 is constant and M ⊂ Ω is a mask denoting
a damaged region in the image which is to be inpainted.
If ρ is chosen large, the regularizer only reconstructs
the damaged regions and leaves the rest of the image
mostly unchanged. Since the data term has a Lipschitz
continuous gradient with L = ρ, we can also solve it
with the FISTA scheme, see figure 10. Inpainting with
total curvature regularity and a comparison to total
variation regularization can be found in figure 9. As
reported before in [24], we see that curvature regularity
is particularly well suited to inpainting and the result
is visually significiantly better.

Segmentation.
For segmentation with curvature regularity, we want

to solve the binary problem

min
u∈L2(Ω,{0,1})

{
TCα(u) +

∫
Ω

audx

}
. (15)

The weight function a ∈ L2(Ω) is a cost function which
denotes how expensive it is to assign a pixel to region 1.
Note that it is negative if there is a preference for this
assignment. A typical choice is a = log(Pb)/ log(Pf )
if Pf , Pb are the probabilities for a pixel to belong to

Input Data term

TCα, λ = 0.005 TCα, λ = 0.01

[24], λ = 0.125 [24], λ = 0.5

Figure 8: Comparison of segmentation results with
Mumford-Shah data term on the cameraman image,
with foreground intensity 1 and background intensity
0, respectively. Below are results taken from Schoene-
mann et al. [24] (with other average intensity levels).
Discretization artifacts caused by metrication errors
are clearly visible, which our continuous results do not
suffer from.

foreground or background, respectively. The data term
has again Lipschitz continuous derivative with L > 0
arbitrary, so we employ the FISTA scheme to solve
the model, with the binary function space relaxed
to L2(Ω, [0, 1]), see figure 10.

In figures 1 and 7 we can see results with some parts
of the image manually marked to build a histogram
of the foreground and background color distribution.
Elongated structures are segmented well although a
relatively high amount of regularization was necessary.
In figure 8 we compare segmentation results with dif-
ferent amounts of regularity to the results of Schoene-
mann et al. [24]. We could not reproduce their model



damaged input TV inpainting curvature inpainting

TV curvature TV curvature TV curvature

Figure 9: Uncaging a bird: the mesh of the cage has been marked as a damaged regions and inpainted, with
total variation regularity in the center and total curvature regularity on the right, respectively. The bottom row
has closeups of the results for better comparison. While both regularizers are obviously only suitable for cartoon
inpainting and are very similar at first glance, total curvature yields a visually more pleasing result, leaving less
artifacts from the regular cage structure.

parameters which is why the segmentations look quite
different, however one can clearly see metrication er-
rors in their results which our continuous method does
not suffer from. Note that the results for TCα are not
thresholded, which shows that with a linear data term
one gets almost binary solutions, so we are very close
to the global optimum of the binary energy (15).

Implementation notes.
If we implement the full operator K∗ in (8), then

total curvature becomes extremely costly to minimize
since computation time scales with the cube of the
number of pixels. Instead, we note that the curvature
weight c2p decreases quickly if x, y, z are further apart,
since the radius of the circle must be at least half as
large as the smallest distance. For this reason, we re-
strict the domains of y and z to a window of N×N pix-
els around x to make the minimization feasible. Typi-
cally, N = 5 in our experiments. Note that the memory
and computation time requirements are roughly N4

times as high as for TV minimization. Since a cor-
rect and efficient implementation of the scheme is quite
complex, we will offer sample CUDA code on our web-
page 1 after publication of the paper. Computation
time for the examples in the paper was between 40
minutes and 3 hours on an nVidia Fermi class GPU.

6. Conclusion

We have introduced the novel regularizer total cur-
vature and demonstrated its feasability for image pro-

1http://cvpr.in.tum.de

cessing applications. It is a measure of curvature based
on the Menger-Melnikov curvature of a measure, and
closely related to the mean curvature in that it be-
haves like the mean curvature integral over the bound-
ary for the characteristic function of a set. We intro-
duced a convex approximation which allows for effi-
cient and stable minimization algorithms which com-
pute the global minimizer of general inverse and in-
painting problems with approximative curvature regu-
larity. For segmentation, a relaxation yields solutions
which are almost binary, i.e. very near the global op-
timum.
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1. Proof of theorem 4.1

Recall that the relaxation for the total curvature of u is for α > 0 and u ∈ C1(Ω) defined as

TCα(u) :=

∫
Ω×Ω×Ω

c(x, y, z)2p max(0, |∇u(x)|2 + |∇u(y)|2 + |∇u(z)|2 − α) d(x, y, z). (1)

The function max(0, ·) is convex and can be written as a support functional,

max(0, v) = sup
w∈[0,1]

{vw} . (2)

Using a standard density argument, we can thus rewrite (1) as

TCα(u) =

∫
Ω×Ω×Ω

c(x, y, z)2p max(0, |∇u(x)|2 + |∇u(y)|2 + |∇u(z)|2 − α) d(x, y, z)

= sup
q̃∈C1c (Ω3,[0,1])

∫
Ω×Ω×Ω

c(x, y, z)2p q̃(x, y, z) (|∇u(x)|2 + |∇u(y)|2 + |∇u(z)|2 − α) d(x, y, z)

= sup
q∈C1c (Ω3,R),0≤q≤c2p

∫
Ω×Ω×Ω

q(x, y, z) (|∇u(x)|2 + |∇u(y)|2 + |∇u(z)|2 − α) d(x, y, z).

(3)

We are closer to what we would like to have, but still have to deal with the norms. For this, we write the norm
also as a support functional,

|v|2 = sup
|w|2≤1

〈v,w〉 .

We plug this into (3), and at first only look at the first term of the integral below the supremum:∫
Ω×Ω×Ω

q(x, y, z) |∇u(x)|2 d(x, y, z)

= sup
p̃x∈C1c (Ω3,Rn),|p̃x|2≤1

∫
Ω×Ω×Ω

q(x, y, z)p̃x(x, y, z)∇u(x) d(x, y, z).
(4)

We now use Gauss’ integral theorem with respect to the integration variable x, rearrange and do a variable
substitution:

sup
p̃x∈C1c (Ω3,Rn),|p̃x|2≤1

∫
Ω×Ω

[∫
Ω

q(x, y, z)p̃x(x, y, z)∇u(x) dx

]
d(y, z)

= sup
p̃x∈C1c (Ω3,Rn),|p̃x|2≤1

∫
Ω×Ω

[∫
Ω

div(q(·, y, z)p̃x(·, y, z))(x)u(x) dx

]
d(y, z)

= sup
px∈C1c (Ω3,Rn),|px|2≤q

∫
Ω

u(x)

[∫
Ω×Ω

div(px(·, y, z)) d(y, z)

]
(x) dx

(5)

1



This is by definition of K∗ nothing else than

sup
px∈C1c (Ω3,Rn),|px|2≤q

∫
Ω

u(x)K∗px(x) dx = 〈u,K∗px〉L2(Ω) . (6)

Adapting the derivation slightly for the other terms of the sum, we arrive at the claim of the theorem.

2. Proof of corollary 4.2

The corollary is immediate, we just clarify notation and definitions. Recall that theorem 4.1 established that
for u ∈ C1(Ω),

TCα(u) = sup
(p,q)∈C

{
〈u,K∗p〉L2(Ω) − 〈α, q〉L2(Ω3)

}
, (7)

with the convex set
C :=

{
(px, py, pz, q) ∈ C1

c (Ω3,Rn × Rn × Rn × R) :

|pi|2 ≤ q and 0 ≤ q ≤ c2p(pointwise)
} (8)

and the linear operator

K∗(px, py, pz) := −
∫

Ω2

div(px(·, y, z)) d(y, z)

−
∫

Ω2

div(py(x, ·, z)) d(x, z)

−
∫

Ω2

div(pz(x, y, ·)) d(x, y).

(9)

We immediately see that

TCα(u) = sup
(p,q)∈C

{
〈u,K∗p〉L2(Ω) − 〈α, q〉L2(Ω3)

}
,

= sup
(p̃,q)∈[K∗,1]C

{
〈u, p̃〉L2(Ω) − 〈α, q〉L2(Ω3)

}
,

= sup
(p̃,q)∈[K∗,1]C

{
〈[u, α], [p̃, q]〉L2(Ω)×L2(Ω3)

} (10)

This is by definition the support functional σ of the convex set [K∗, 1]C evaluated at [u, α].


