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Abstract—Many problems in computer vision can be formulated as a minimization problem for an energy functional. If this functional is

given as an integral of a scalar-valued weight function over an unknown hypersurface, then the sought-after minimal surface can be

determined as a solution of the functional’s Euler-Lagrange equation. This paper deals with a general class of weight functions that

may depend on surface point coordinates as well as surface orientation. We derive the Euler-Lagrange equation in arbitrary

dimensional space without the need for any surface parameterization, generalizing existing proofs. Our work opens up the possibility of

solving problems involving minimal hypersurfaces in a dimension higher than three, which were previously impossible to solve in

practice. We also introduce two applications of our new framework: We show how to reconstruct temporally coherent geometry from

multiple video streams, and we use the same framework for the volumetric reconstruction of refractive and transparent natural

phenomena, here bodies of flowing water.

Index Terms—Weighted minimal hypersurfaces, tomography, reconstruction, Euler-Lagrange formulation.
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1 INTRODUCTION

Apopular and successful way to treat many problems in
computer vision is to formulate their solution impli-

citly as a hypersurface which minimizes an energy
functional given by a weighted area integral. In this paper,
we want to expose, generalize, and solve the mathematical
problem which lies at the very heart of all of these methods.

Our aim is to find a k-dimensional regular hypersurface

� � IRn which minimizes the energy functional

Að�Þ :¼
Z

�

�ðs;nðsÞÞ dAðsÞ: ð1Þ

We will only investigate the case of codimension one, so

throughout this text, k ¼ n� 1. Such a surface is called a

weighted minimal hypersurface with respect to the weight

function �, which we require to be positive. This function

shall be as general as required in practice, so we allow it to

depend on surface point coordinates s and local surface

normal n. The weight function also has to be defined on the

surrounding space, so the domain of � is V � SSk, where

V � IRn is the region of interest where we are looking for

the minimal surface. In particular, s 2 IRn and nðsÞ 2 SSk. By

dA, we denote the infinitesimal area element of �, i.e., the

functional Að�Þ is an area integral.
In the following, we derive an elegant and short proof of

the necessary minimality condition, stated as:

Theorem 1. A k-dimensional surface � � IRkþ1 which mini-

mizes the functional Að�Þ :¼
R

� � s;nðsÞð Þ dAðsÞ satisfies

the Euler-Lagrange equation

h�s;ni � TrðSÞ�þ div�ð�nÞ ¼ 0; ð2Þ

where S is the shape operator of the surface, also known as the

Weingarten map or second fundamental tensor.

Using standard techniques, a local minimum can be
obtained as a stationary solution to the surface evolution
corresponding to (2). Since this surface evolution can be
implemented and solved in practice, Theorem 1 yields a
generic solution to all problems expressible in the form of
(1). In this work, we set aside the problems of convergence
and local minima. To our best knowledge, the necessary
and sufficient conditions for convergence or uniqueness of a
solution have not yet been found. For some mathematical
background on the existence and uniqueness of solutions to
this kind of equations, the reader is referred to [1]. We have,
however, conducted a convergence analysis for our second
application which uses an elaborate weight function. The
results can be found in Section 5.

Theorem 1 offers two novel contributions:

1. Unification. A very general class of problems is
united into one common mathematical framework.
The kind of minimization problems we are con-
cerned with arises in various different contexts in
computer vision. A few select examples are given in
Section 2. Our theorem yields the correct surface
evolution equations for all of them.

2. Generalization. Theorem 1 is valid in arbitrary
dimension. Previously, it has only been proved for
surface dimensions k ¼ 1 and k ¼ 2. An analysis for
k ¼ 1 without a normal dependency appeared in the
computer vision literature in the work of Caselles
et al. [2], which was extended to surface dimension
k ¼ 2 in [3]. Faugeras and Keriven [4] introduced the
dependency of � on the surface normal, and proved
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the theorem for k ¼ 2 using local coordinates on the
surface.1

While the theorem thus has already been well-known
and employed in computer vision for problems k � 2, the
now freely selectable surface dimension opens up new
possibilities for novel applications. As one example, we
generalize the static 3D reconstruction of a surface
toward space-time coherent reconstruction of an evolving
surface by regarding the surface as a 3D hypersurface in
4D space-time.

In the special case that the weight function � is constant,
the problem of minimizing (1) is reduced to finding a
standard minimal surface, which is defined to locally
minimize area. As we deal with a generalization, it seems
reasonable to adopt the same mathematical tools used in
that context [5]. We give a brief review of this framework
known as the method of the moving frame in Section 3.1. Using
this framework, we prove Theorem 1 in Section 3.2. Due to
space limitation, we have to assume that the reader is
somewhat familiar with the differential geometry of frame
bundles. The transition from the Euler-Lagrange equation
to a level set evolution equation and further on to an explicit
surface representation, is addressed in Section 3.3.

In Sections 4 and 5, we present two practical applications
of our unifying framework. The first example application
concerns spacetime-coherent geometry reconstruction from
multiple views [6]. We outline details of a level set-based
implementation and show how our technique can be used
to reconstruct object surfaces from multiview video footage.
In Section 5, we demonstrate how Theorem 1 enables us to
reconstruct time-varying, transparent, and refractive natur-
al phenomena like flowing water [7]. We give an overview
on related work employing nonlinear computed tomogra-
phy and describe the general reconstruction problem and its
formulation as an energy minimization problem such that it
fits into our framework. We again present important details
on the construction of the energy functional and its
realization using the level set technique. The approach is
validated using both synthetic as well as real-world data.

2 RELATED WORK

Weighted minimal surfaces have a wide range of applica-
tions in computer vision. Many solutions to computer
vision problems can be formulated implicitly as the curve,
surface, or volume that minimizes an integral of type (1). In
the following, we use the term “surface” in a general sense,
in particular, we do not restrict its dimension to two. Thus,
a surface can also denote, e.g., a 1D line or 3D volume.

Among the first variational methods successfully applied
to computer vision problems was the one now widely
known as Geodesic Active Contours [2]. Active contours are a
reformulation of the classical snakes approach [8] and aims to
detect the reasonably smooth contour curve of an object in an
image I by minimizing an energy functional. Caselles et al.
realized that this energy minimization can be reformulated
in terms of a geodesic computation in Riemannian space by
means of Maupertuis’ Principle. While originally designed

for segmentation in 2D, it quickly became clear that it could
be generalized to 3D [3], and could also be applied to other
tasks. It is particularly attractive for modeling surfaces from
point clouds [9], [10].

In [11], Paragios and Deriche extend the idea of Geodesic
Active Contours to simultaneous tracking of the boundary
curves of moving objects. They integrate a motion tracking
term into the slightly modified energy functional used in
[2]. Theoretically, well analyzed is also the case of employ-
ing minimal surfaces for 3D reconstruction of static objects
from multiple views [4]. It is of particular interest and
closely related to our spacetime-continuous 3D reconstruc-
tion. In their work, Faugeras and Keriven give several
functionals of different complexities in dimension n ¼ 3. It
can be viewed as a space-carving approach generalized
from discrete voxels to a continuous surface model [12].
This technique was recently extended to simultaneously
estimate the radiance of surfaces, and demonstrated to give
good results in practice [13].

All of these minimization problems fit into our unifying
framework [14]. In particular, our theorem applies to all of
them and yields the correct surface evolution equations.

3 EXPLICIT RECONSTRUCTION oF WEIGHTED

MINIMAL HYPERSURFACES

In order to explicitly compute a hypersurface minimizing
(1) in the general case, we first have to extend previous
theoretical work [4] to cover the general case for arbitrary
dimension. The goal of this section is, hence, to derive a
necessary minimality criterion for error functionals of the
form (1), in the form of the error functional’s Euler-
Lagrange equation.

The treatment of the general case requires mathematical
tools from the differential geometry of hypersurfaces [5]. The
mathematical framework for dealing with minimal surface
problems are frame bundles of a variation of the surface. In
the following, we introduce the notion of frame bundles of
surface variations and make use of a few of their differential
geometric properties. Having outlined the necessary math-
ematical tools, we proceed to derive an Euler-Lagrange
equation that constitutes a necessary condition for the
weighted minimal hypersurface sought in (1). This equation
directly leads to a formulation as a surface evolution which
can be implemented using a level set technique.

3.1 Some Background from Differential Geometry

We aim at giving a general proof that surfaces minimizing
(1) can be obtained as a solution of the Euler-Lagrange
equation (2) for the energy functional. Therefore, we make
use of a mathematical tool called the method of the moving
frame. Any minimal surface � of the functional A is a critical
point of the functional, i.e., to first order, the value of the
functional does not change under a small variation of the
surface. This restriction is known as the functional’s Euler-
Lagrange equation. What follows is a, necessarily brief,
overview of the mathematical framework in which this
equation can be derived. For an excellent and thorough
introduction, the reader is referred to [5].

We have to investigate how the functional behaves with
respect to first order variations of the surface. To this end, let

X : �� ð��; �Þ ! IRn
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1. The reader familiar with the earlier papers will notice that our result
differs for the case k ¼ 2 from the previously reported one [4] in that it is
considerably simpler, because terms depending on h�n;ni are missing. The
reason for this is the different domain of �, see Section 3.2 for further
discussion.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 4, 2009 at 07:55 from IEEE Xplore.  Restrictions apply.



be a variation of � with compact support. It then follows
that for each � 2 ð��; �Þ, a regular surface �� 2 IRn is given
by Xð�; �Þ. For each ðs; �Þ 2 �� ð��; �Þ, let

fe1ðs; �Þ; . . . ; enðs; �Þ ¼: nðs; �Þg

be an orthonormal frame for the surface �� at s with en ¼ n

normal to the tangent plane Ts�� . The restrictions !i of the
Maurer-Cartan forms of IRn to this frame are defined by

dX ¼ ei !
i: ð3Þ

Throughout this text, we use the Einstein convention for
sums, which means that we implicitly compute the sum
from 1 to n over all indices appearing twice on the same
side of an equation. Because the frame is adapted to �� in
the above sense, the forms !1 to !k are its usual dual forms
on the surface. The connection 1-forms !ji are defined by

dei ¼ ej !
j
i ð4Þ

and satisfy the structure equations

d!i ¼ �!ji ^ !j d!ji ¼ !ki ^ !
j
k; ð5Þ

which can be deduced by differentiating the definitions.
The connection forms lend this mathematical tool its true
power. They allow us to express derivatives of the frame, in
particular of the normal, in terms of objects which are part of
the frame bundle themselves (Fig. 1). Thus, we can do entirely
without local coordinates: All necessary information about
the embedding of the surface in space is encoded in the
connection forms.

From the Euclidean structure on IRn, it follows that the
connection 1-forms are skew-symmetric, !ji ¼ �!

j
i . The

connection forms !ni can be expressed in the base
f!1; . . . ; !k; d�g, courtesy of Cartan’s Lemma [15]. To see
this, first note that because of definition (3), it follows that

!n ¼ hdX;ni ¼ @X
@�

d� ¼: f d�: ð6Þ

Differentiating this equation yields, together with (5),

df ^ d� þ
Xk
i¼1

!ni ^ !i ¼ 0:

Therefore, by Cartan’s Lemma, there exist functions hij such

that

!n1
..
.

!nk
df

2
6664

3
7775 ¼

h11 . . . h1k f1

..

. . .
. ..

. ..
.

hk1 . . . hkk fk
f1 . . . fk fn

2
6664

3
7775

!1

..

.

!k
d�

2
6664

3
7775: ð7Þ

The top-left part S :¼ ðhijÞ of this matrix is called the shape

operator, and is closely related to the curvature of �� . In the

lower dimensional cases, its entries are commonly known

as follows:

. If k ¼ 1, i.e., �� is a curve in IR2, the sole coefficient h11

equals the scalar-valued curvature usually denoted
by �.

. For k ¼ 2, i.e., if � is a regular surface in IR3, the
entries of S are the coefficients of the second
fundamental form of �� . More precisely,

II ¼ !1 !2
� �

;

S
!1

!2

� �
¼ h11ð!1Þ2 þ 2h12!

1!2 þ h22ð!2Þ2:

Thus, H ¼ 1
kTrðSÞ ¼ 1

k

Pk
i¼1 hii is the mean curva-

ture of the surface.

The fi are just the directional derivatives of f in the

directions of the ei. Using the structure equations (5), we

immediately deduce an important relation for the area form

dA on �� :

dA ¼: !A ¼ !1 ^ . . . ^ !k ¼) d!A ¼ �TrðSÞ !A ^ !n: ð8Þ

We introduce the notation !A to remind the reader of the

fact that the area element dA indeed is a differential form

of degree k. Note that area in our sense does not imply

“two-dimensional.”
Finally, we need a notion of an “integration by parts” for

a surface integral. First, we generalize the usual operators

from vector analysis to vector fields v and functions f on �:

div�ðvÞ :¼
Xk
i¼1

@vi

@ei
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Fig. 1. Illustration of the frame bundle. The sheet represents the image ImðXÞ of the variation X. The surfaces �� , depicted as lines, are distortions

of �0, where � represents the variation parameter, defined in a small interval around zero. As a set, ImðXÞ equals the union of all �� when � is varied

over this interval. A frame of ImðXÞ at ðs; �Þ is given by the tangent vectors e1ðs; �Þ; . . . ; enðs; �Þ.
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with the expansion v ¼ vi ei, and

r�f :¼
Xk
i¼1

@f

@ei
ei ¼

Xk
i¼1

fiei:

Using the definitions and the product rule, we derive a
generalization of an identity well-known from classical
vector analysis,

div�ðvfÞ ¼ hv;r�fi þ div�ðvÞ f; ð9Þ

which will be useful later as one possibility of shifting
partial derivatives from one object to another. A second
possibility is given by Gauss’ Theorem for surfaces, which
in our context readsZ

�

div�ðvÞ dA ¼ �
Z

�

TrðSÞhv;nidA: ð10Þ

Note that v does not have to be tangential to �. Since we
assume that all of our surfaces are closed, the boundary
term usually contributing to the formula has vanished.

We now have collected all the necessary tools to derive
the Euler-Lagrange equation (2) from (1). We will do so in
the next section. In Section 3.3, this will lead to an evolution
equation for the level sets of a function on IRn.

3.2 Euler-Lagrange Equation

We are now in a position to use the moving frame method
to derive the Euler-Lagrange equation of the functional A.
The derivation can be followed just by abstract manipula-
tion of symbols, without the need to understand all of the
reasons which lead to the governing rules presented in the
preceding section.

The desired equation characterizes critical points of A. It
is given by the derivation of the functional with respect to �
at � ¼ 0. We assume that � ¼ �ðs;nÞ is a function of the
surface point s and its normal nðsÞ. Since � maps from
IRn � SSk, �nðs;nÞ is tangent to the unit sphere of IRn at n, so
that the important relation h�nðs;nÞ;ni ¼ 0 holds. Note
that, in the well-known earlier work by Faugeras and
Keriven [4], which treated the special case k ¼ 2, the
domain of � was IRn � IRn. By restricting ourselves to
normal direction, one gains substantial simplification: The
final result becomes a lot more transparent because it is
expressed in terms of only intrinsic quantities.

Let us now turn to the computation of the Euler-Lagrange
equation. As a common convenient notation, we introduce
v * ! :¼ iv! for the inner derivative of a differential form !
with respect to v. Using the Lie-derivative

Lv! ¼ v * d!þ dðv * !Þ ð11Þ

of a differential form ! in the direction of v, we obtain

d

d�
k�¼0 A��¼

ðaÞ
Z

�

L @
@�

� !Að Þ ¼ðbÞ
Z

�

@

@�
* d � !Að Þ

¼ðcÞ
Z

�

@

@�
* d� ^ !A þ � d!Að Þ

¼ðdÞ
Z

�

@

@�
*
�
h�seii!i ^ !A þ �n dn ^ !A � TrðSÞ� !A ^ !n

�
¼ðeÞ
Z

�

h
h�sn� TrðSÞ�ð Þ f !A þ

@

@�
* �n dn ^ !Að Þ

i
:

ð12Þ

The five equalities above are justified by the following
arguments:

1. A generalization of the “Differentiation under the
integral”-rule in classic calculus [5].

2. Cartan’s rule (11) for expressing the Lie derivative

and using the fact that !1ðnÞ ¼ . . . ¼ !kðnÞ ¼ 0.

Note that @
@� is parallel to n, so this equation also

holds for @
@� .

3. Product rule for differential forms, note that � is a
0-form.

4. Expansion of

d� ¼ �s dX þ �n dn ¼ h�seii!iþ �n dn:

Here, we inserted the definition (3) of the restrictions
!i. The last term under the integral is due to (8).

5. Linearity of the inner derivative, and again

!1ðnÞ ¼ . . . ¼ !kðnÞ ¼ 0:

From (6), it follows that !nð @@�Þ ¼ fd�ð @@�Þ ¼ f .

We now turn our attention to the second term of the last
integral. Inserting definition (4) of the connection 1-forms,
and afterward using the expansion of the connection forms
(7) due to Cartan’s Lemma, we get

@

@�
* �n dn ^ !Að Þ ¼ @

@�
* h�neji !jn ^ !A
� �

¼ @

@�
* �h�n;r�fi d� ^ !Að Þ ¼ �h�n;r�fi !A

¼ div�ð�nÞ f !A � div� �n fð Þ !A:

ð13Þ

In the last equality, we have shifted derivatives using the
product rule (9).We can finally compute the integral over
the right term using Gauss’ Theorem (10):Z

�

� div� �n fð Þ dA ¼
Z

�

TrðSÞh�n;ni f dA ¼ 0:

It vanishes due to h�n;ni ¼ 0. By merging (12) and (13), we
arrive at

d

d�

����
�¼0

Að�� Þ ¼
Z

�

�
h�s;ni � TrðSÞ�þ div�ð�nÞ

�
f dA:

Since for a critical point this expression has to be zero for
any variation and hence for any f , we have arrived at the
Euler-Lagrange equation of the functional

h�s;ni � TrðSÞ�þ div�ð�nÞ ¼ 0; ð14Þ

proving our Theorem 1 (2).

3.3 Level Set Equation

Level sets represent an efficient way to implement a surface
evolution [16], [17] and are by now a well-established
technique that has found a wide range of applications [18].
We will briefly review the transition from (14) to a surface
evolution equation. In the following, let

� :¼ h�s;ni � TrðSÞ�þ div�ð�nÞ:

A surface �̂ which is a solution to the Euler-Lagrange
equation � ¼ 0 is also a stationary solution to a surface
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evolution equation, where � describes a force in the normal
direction:

@

@�
�� ¼ �n: ð15Þ

If we start with an initial surface �0 and let the surface
evolve using this equation, it will eventually converge to a
local minimum of A. Instead of implementing a surface
evolution directly, we can make use of the level set idea. We
express the surfaces �� for each parameter value � � 0 as
the zero level sets of a regular function

u : IRn � IR�0 ! IR; uð�; �Þ�1f0g ¼ �� ;

i:e:; uðs; �Þ ¼ 0 , s 2 �� :
ð16Þ

We require uð�; �Þ to be positive inside the volume enclosed
by �� and negative on the outside. An immediate
consequence is this:

Lemma 1. Let r be the gradient operator for the spatial
coordinates of u. Then, we can compute the outer normal and
the trace of the shape operator for �� using

n ¼ � rujruj and TrðSÞ ¼ div
ru
jruj

	 

:

Proof. The relationship for the normal is obvious. By
definition, the shape operator is given by S :¼ �Dn and
maps the tangential space T�� into itself. It indeed
follows that

TrðSÞ ¼ Tr �Dnð Þ ¼ div �nð Þ ¼ div
ru
jruj

	 

:

Note that we consider the normal to be defined on all
level sets of u. tu

Taking the derivative of (16) with respect to � and
inserting (15), we derive the evolution equation for u,

@

@�
u ¼ � ru; @

@�
��

� �
¼ �hru;ni � ¼ � jruj: ð17Þ

Using the identities

div � � rujruj

	 

¼ �h�sni þ � div

ru
jruj

	 

and

TrðSÞ ¼ div
ru
jruj

	 


for the curvature of the level sets of u and the definition of
�, we arrive at the final reformulation of (15) in terms of a
level set evolution:

@

@�
u ¼ �div � � rujruj

	 

þ div� �nð Þ

� �
jruj: ð18Þ

Note that all necessary derivatives of � can be computed
numerically. It is therefore not necessary to compute an
explicit expression for them manually, which would be very
cumbersome for more difficult functionals. Instead, in an
existing implementation of the evolution essentially any
functional �ðs;nÞ can be plugged in. In particular, we will
use the level set formulation introduced beforehand for

spacetime-coherent geometry reconstruction as well as for
the reconstruction of time-varying, refractive, and trans-
parent natural phenomena like flowing water by defining a
suitable functional �ðs;nÞ.

4 APPLICATION I: SPACETIME-COHERENT

GEOMETRY RECONSTRUCTION

After proving that the Euler-Lagrange equation (2), (14) is a
necessary condition for the weighted minimal surface
defined by (1), we present two novel applications of the
variational reconstruction method in the remainder of the
paper. In this section, we make use of our results to
reconstruct time-varying geometry from a handful of
synchronized video sequences in a global, spacetime-
coherent fashion. To do so, we introduce a fourth dimen-
sion to represent the flow of time in the video sequence. Our
goal is to reconstruct a smooth three-dimensional hypersur-
face embedded in space-time. The intersections of this
hypersurface with planes of constant time are two-dimen-
sional surfaces, which represent the geometry of the scene
in a single time instant. Our approach defines an energy
functional for the hypersurface. The minimum of the
functional is the geometry which optimizes photo-consis-
tency as well as temporal smoothness.

4.1 Space-Time 3D Reconstruction

We assume that we have a set of fully calibrated, fixed
cameras. The input to our algorithm are the projection
matrices for the set of cameras, as well as a video stream for
each camera. We want to obtain a smooth surface �t for
each time instant t, representing the geometry of the scene
at that point in time. The surfaces shall be as consistent as
possible with the given video data. Furthermore, as in
reality, all resulting surfaces are to vary continuously and
smoothly over time (see Fig. 2).

To achieve these desirable properties, we do not consider
each frame of the sequences individually. Instead, we
regard all two-dimensional surfaces �t to be subsets of one
smooth three-dimensional hypersurface H embedded in
four-dimensional space-time. From this viewpoint, the
reconstructed surfaces

�t ¼ H \ ðIR3; tÞ � IR3

are the intersections of H with planes of constant time.
Because we reconstruct only one single hypersurface for all
frames, the temporal smoothness is intrinsic to our method.

However, we have to take care of photo-consistency of
the reconstructed geometry with the given image se-
quences. We set up an energy functional

AðHÞ :¼
Z
H

� dA

which is defined as an integral of the scalar valued weight
function � over the whole hypersurface. � ¼ �ðs;nÞ
measures the photo-consistency error density, and may
depend on the surface point s and the normal n at this
point. The larger the values of �, the higher the photo-
consistency error, so the surface which matches the given
input data best is a minimum of this energy functional. The
Euler-Lagrange equation for the functional is given by
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Theorem 1, and we demonstrated in Section 3.3 how the
Euler-Lagrange equation can be solved in practice using a
surface evolution equation implemented via the level set
method. In the remainder of this section, we present
suitable choices for the error measure �.

4.2 Continuous Space-Time Carving

First, however, we need some additional notation for color
and visibility of points in space-time. Let t denote a time
instant. Then, a time-dependent image I ti is associated
with each camera i. The camera projects the scene onto
the image plane via a fixed projection �i : IR3 ! IR2. We
can then compute the color cti of every point ðs; tÞ on the
hypersurface as

ctiðsÞ ¼ I ti � �iðsÞ:

Here, the image I ti is regarded as a mapping assigning color
values to points in the image plane.

In the presence of the surface �t, let �tiðsÞ denote whether
or not s is visible in camera i at time t. �tiðsÞ is defined to be
one if s is visible, and zero otherwise.

The most basic error measure can now be defined as

�Sðs; tÞ :¼ 1

Vs;t

Xl
i;j¼1

�tiðsÞ�tjðsÞkctiðsÞ � ctjðsÞk;

l denoting the number of cameras.
The number Vs;t of pairs of cameras able to see the point s

at time t is used to normalize the function.
If the error function �S is used as the functional, the

resulting algorithm is similar to a space carving scheme in
each single time step. In that method, as introduced by
Kutulakos and Seitz [12], voxels in a discrete voxel grid are
carved away if �S lies above a certain threshold value when
averaged over the voxel. In our scheme, the discrete voxels
are replaced by a continuous surface. In the surface
evolution introduced later, this surface will move inward
until photo-consistency is achieved. This process is analo-
gous to the carving process [12]. The same functional for
regular surfaces in IR3 was introduced by Faugeras and
Keriven [4] for static scene reconstruction. As an additional
constraint, we enforce temporal coherence in the form of

temporal smoothness of the resulting hypersurface, which
makes our method ideal for video sequences.

4.3 Normal Optimization

Since Theorem 1 also allows for error functions depending
on the surface normal, we are able to optimize the surface
normals as well. In their work, Faugeras and Keriven [4]
already presented this idea for a static scene. We give a
slightly modified version of the error function and work in
space-time to enforce temporal smoothness.

In order to set up an appropriate error function, we have
to analyze how well a small surface patch at position s with
a given normal n fits the input images at time t. To this end,
we assign to each hypersurface point s a small patch uts;n
within the plane orthogonal to n. How exactly this patch is
chosen does not matter. However, the choice should be
consistent over time and space and satisfy a few conditions
which will become evident soon. In our implementation, we
always choose rectangular patches rotated into the target
plane by a well-defined rotation.

We will now define a measure how well the patch uts;n is
in accordance with the images at time t. For that purpose,
we employ the normalized cross-correlation of correspond-
ing pixels in the images, a well-established matching
criterion in computer vision. Mathematically, the resulting
functional for a point x ¼ ðs; tÞ 2 IR4 with normal direction
n is defined as follows:

�Gðx;nÞ :¼ � 1

Vs;t

Xl
i;j¼1

�tiðsÞ�tjðsÞ �
�ti;jðs;nÞ
Aðuts;nÞ

with the zero-mean cross-correlation

and the mean color value of the projected patch in the
images computed according to

Ix;ni :¼ 1

Aðuts;nÞ

Z
cti dA:

Some things have to be clarified. First of all, the
correlation measure �ti;j for a pair of cameras is normalized
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Fig. 2. A surface evolving over time defines a hypersurface H, the space-time geometry of the scene.

Authorized licensed use limited to: IEEE Xplore. Downloaded on May 4, 2009 at 07:55 from IEEE Xplore.  Restrictions apply.



using the area Aðuts;nÞ of the patch. Second, it is now clear
that we have to choose uts;n sufficiently large so that it is
projected onto several pixels. On the other hand, it should
not be too large; otherwise, only parts of it are visible in the
images. As a compromise, we choose its diameter to be
equal to the cell diameter of the underlying computation
grid, as defined in Section 4.4. Third, the integration of �G

in the energy functional involves the normals of H in
4D space, while n is supposed to lie in IR3. For that reason,
we project normals of H into the tangent space of �t in
order to get n.

When this functional is minimized, two constraints are
optimized simultaneously. Each surface �t together with its
normals is selected to best match the images at that time
instant. Furthermore, a smooth change of the surface �t

over time is encouraged because of the curvature term in
the Euler-Lagrange equation (2). The error functional can be
minimized using a surface evolution implemented via a
level set scheme, as derived in Section 3.3. In the next
section, we discuss the implementation details involved
when the evolution equation is to be solved numerically.

4.4 Parallel Implementation

In order to implement the level set evolution equation (18),
the volume surrounding the hypersurface H has to be
discretized. We use a regular four-dimensional grid of
evenly distributed cells with variable spatial resolution of
usually 643 or 1283 cells. The temporal resolution is
naturally equal to the number of frames in the input video
sequences. One easily calculates that there is a massive
amount of data and computation time involved if the video
footage is of any reasonable length. In fact, it is currently not
yet possible to store the full data for each grid cell together
with all images of a multiview video sequence within the
main memory of a standard PC. A parallel implementation
distributing the workload and data over several computers
is therefore mandatory.

On that account, we choose the narrow band level set
method [18] to implement the evolution equation because it
is straightforward to parallelize. We start with an initial
surface H0 and the values uxyzt0 of the corresponding level
set function u0 in the centers of the grid cells. A suitable
initial surface for our case will be defined at the end of this
section. Using the abbreviation

�ðuÞ :¼ � div � � rujruj

	 

þ div� �nð Þ

� �
;

(18) simply reads

@

@�
u ¼ �ðuÞ jruj:

In the discretization, the values of the level set function

are updated iteratively using the upwind scheme. At

iteration step iþ 1, the new values uxyztiþ1 are obtained from

the values uxyzti of the previous iteration step by a discrete

version of (18) using an explicit time step:

uxyztiþ1 ¼ u
xyzt
i þ�ðuxyzti Þ jruij ���: ð20Þ

Here, �ðuxyzti Þ is the value of the discretized version of the
differential operator � acting on ui, evaluated in the cell
ðx; y; z; tÞ. Central differences on the four-dimensional grid
are used to compute the derivatives involved in (20). The

norm of the discretized gradient jruij is calculated

according to the upwind scheme [18]. To ensure stability,

the step size �� must be chosen such that the level sets of ui
cannot cross more than one cell at a time, i.e., satisfy the

CFL-condition

�� � max
ðx;y;z;tÞ2�

diam cellðx; y; z; tÞ
j�ðuxyzti Þ � ruj

 !
; ð21Þ

where � denotes the computational grid. The differential

operator must be evaluated for each grid cell near the zero

level set, so the computations necessary for each cell

depend only on the local neighborhood. Therefore, the

computation of individual cells can easily be distributed

over several processes. In our implementation, each process

is responsible for the computation of one single slice of the

grid of constant time ti. This slice corresponds to the

geometry of the ith frame of the video sequence. Fig. 3

shows in more detail how the value �ðuxyzti Þ is numerically

evaluated from the values of ui in the grid cells. According

to this figure, we need the values of grid cells up to two cells

apart from ðx; y; z; tÞ in order to evaluate the operator. As a

consequence, each process Pi also has to access the slices of

four other processes Pi	1; Pi	2. These have to be commu-

nicated over the network. In addition, each process needs to

store the image data of its own video frame and the two

adjacent frames according to Fig. 3.
To summarize, one full iteration consists of the following

four steps:
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Fig. 3. Evaluation of the differential operator: In the first step, the values

of ui in the light gray cells are used to compute the level set normal

n 2 IR4 in the gray cells using central differences. Having computed n,

we can also compute � for the gray cells. Note that for the purpose of

the above 2D illustration, the three spatial dimensions are represented

as one. For the second step, we compute the values for the central dark

gray cell, also using finite differences. The discrete formula for divð�nÞ
at position p ¼ ðx; y; z; tÞ is

P4
i¼1

�pþei n
pþei
i
��p�ei n

p�ei
i

2 . We can also compute

the curvature TrðSÞ directly by omitting � in the above formula. The

difficult part is to compute div� �nð Þ for the dark gray cell. It is equal to

the trace of �ns restricted to the tangent plane � orthogonal to the

normal at p. So, we first compute �n for the gray cells using finite

differences, taking the known normal n of the cell as the center point.

With these values, we can set up the 4� 4 matrix U :¼ �ns for the dark

gray cell. Choose an arbitrary orthonormal base ft0; t1; t2g of the

plane �. The entries for the 3� 3 matrix V of the mapping �nsj� can

then be computed as vij ¼ tTi Utj; 1 � i; j � 3.
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. Each process transmits its own slice Si to the
adjacent processes and receives the other necessary
slices from its four neighbors according to Fig. 4.

. Afterward, each process computes �ðuxyzti Þ for all
cells in its slice near the zero level set of ui, using the
scheme presented in Fig. 3.

. The maximum value of the operator for each process
is transmitted to a special server process. From these
maxima, the server calculates the optimal step size
�� allowed by (21).

. The server broadcasts the step size to all processes,
which afterward compute the evolution on their slice
using (20).

After each iteration, the server process may poll the
current geometry from any of the other processes in order
to give the user feedback about the current state of the
iteration. The iteration stops when the flow field is zero, or
may be stopped by the user manually. In our final
implementation, it is also possible to assign several
processes to a single slice. In that case, they share the
computation of the cells near the zero level set equally
between each other, assuming that all processes run on
similar machines.

We still have to define a suitable initial surfaceH0 to start
the iterative routine. For this purpose, we employ the visual
hull [19], which is, by definition, always a superset of the
correct scene geometry. By evolving H0 along the negative
normal direction, we can be sure to converge toward a
minimum. In order to compute a level set representation,
we have to choose appropriate values of u0 for each grid

cell. To this end, we fix a grid cell c and select a number of
evenly distributed sample points x0; . . . ; xk inside it. These
points are projected into each source image, and we
compute the percentage p 2 ½0; 1
 of the projections falling
into the silhouettes of the object to be reconstructed. Finally,
the cell c of the initial level set function u0 is assigned the
value 2p� 1. Since we only have to compute an approx-
imate starting surface, this straightforward method gives
sufficiently good results in practice. In particular, the
projection of the zero level set of u0 into the source images
very closely resembles the silhouettes of the object if k is
sufficiently high.

4.5 Results

In order to test our algorithm, we apply it to real-world
320� 240 RGB video sequences of a ballet dancer. All input
images are foreground-segmented using a thresholding
technique, Fig. 5a. As initial surface, we compute a
volumetric representation of the visual hull to get a starting
volume for the PDE evolution, Fig. 5b.

For our test runs, we choose a 20 frame long part of the
sequence with the depicted frame in the middle. As
becomes apparent in Fig. 6, this frame is particularly
difficult to reconstruct, because we do not have a camera
capturing the scene from above. For that reason, most of the
area in-between the arms of the dancer is not carved away
in the initial visual hull surface.

When we run a standard space-carving algorithm for
this single frame alone, the situation improves only slightly.
The shirt of the dancer does not contain much texture
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Fig. 4. Data transmission of process Pi before an iteration. Each process stores five slices of constant time and is responsible for the computation of

the center slice. Pi computed its slice in the last iteration and now transmits it over the network. On the other hand, it receives the other slices from its

neighbors for the next iteration. In the figure, slices of the same color contain the same information after the communication.

Fig. 5. A volumetric reconstruction of the visual hull serves as initial surface to start the PDE evolution. The final result upon convergence including

normal optimization is the weighted minimal surface. (a) Foreground-segmented input images for one time frame. (b) Visual hull initialization.

(c) Convergence result.
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information, so only parts of the critical region is carved
away. Only when we employ the weighted minimal
hypersurface formulation, which takes temporal coherence
between the geometry of the frames into account, do we get
satisfactory results, Fig. 6c.

Our program runs on a Sun Fire 15K with 75 Ultra-
SPARC III+ processors at 900 MHz, featuring 176 GBytes of
main memory. It can be observed that the normal
optimization, Section 4.3, requires a lot of computation
time when compared to the version of Section 4.2 of our
algorithm. For that reason, we first let the geometry evolve
toward a surface which is very close to the optimal result, as
assessed by the operator of the program. We then switch on
the normal optimization in order to improve the reconstruc-
tion of small surface details. On average, we need around
100 iterations on the initial evolution and 20 more of the
normal optimization until the surface has converged to the
final result.

In order to speed up the surface evolution, a further term
is included in (20), as suggested in [4]. We subtract a
multiple �TrðSÞ of the curvature, where � is a small user-
defined constant factor. This forces the resulting hypersur-
face to be smoother, so larger step sizes �� can be
considered to evolve the PDE.

5 APPLICATION II: NONLINEAR COMPUTED

TOMOGRAPHY

We now turn to another application of our framework, i.e.,
the reconstruction of free-flowing bodies of water from
multiview video sequences. This work fits into a line of
research, different from the traditional diffuse surface
reconstruction, recently emerging in the field of computer
vision.

Image-based modeling of natural phenomena suitable for
free-viewpoint video is performed using sparse view tomo-
graphic methods [20], [21] or surface-based methods [22].

Only limited work has been done which directly
addresses image-based reconstruction of water. In [23],
[24], a time-varying water surface is obtained by analyzing
the distortion of a known texture beneath the water surface
using optical flow and shape from shading techniques.

Morris and Kutulakos [24] handle unknown refractive
indices of the liquid. Schultz [25] studies the reconstruction
of specular surfaces using multiple cameras. He reports
good results on synthetic test data, a simulated water
surface under known synthetic illumination. However,
these methods can only determine a height field for a
rectangular surface area, while our approach is capable of
reconstructing fully three-dimensional bodies of water.

Another line of research is refractive index tomography,
e.g., [26], [27]. These methods usually need expensive
apparatuses and do not lend themselves to image-based
modeling. The goal of these methods is also quite different
from ours: Whereas refractive index tomography attempts to
reconstruct a field of varying refractive indices, we reconstruct
the surface of a volume with constant refractive index.

Kutulakos and Steger [28] present a theoretical analysis
of specular and refractive light transport. They found that it
is impossible to obtain a unique solution for light paths that
involve more than two refractions or reflections. However,
their work does not take spatial continuity of the surface
into account. Surface continuity is intrinsic to our method;
therefore, we have natural regularization built into our
reconstruction algorithm.

The work so far concentrates on nonrefracting media.
The problem arises in the context of free-viewpoint video,
where we are concerned with the automatic acquisition of
dynamic models for computer graphics purposes. The
surface structure of water cannot be determined with
traditional methods due to refraction effects. We alleviate
this problem by using the effect of chemoluminescence.
Two chemicals are mixed, causing a reaction that emits light
uniformly in all directions. This allows us to directly
measure the thickness of the water volume as a column
length of a line passing through the water. With this
information, we define a weight function � that measures
photo-consistency between the acquired video frames and
an intensity computed using the image formation model
and the current surface approximation.

In the following, we first state the reconstruction problem
we want to deal with. Again, we will make use of the
framework introduced in Section 3. Details on our imple-
mentation are given in Section 5.2, followed by a presentation
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Fig. 6. Comparison of different reconstruction schemes at a grid resolution of 1283. (a) The visual hull, as seen from above. Since we do not have a

camera capturing the scene from above, most voxels in the area between the arms remain occupied. (b) The result obtained from static space

carving. The difficult geometry between the arms is slightly improved. (c) When our algorithm using temporal information is employed, the

reconstruction becomes almost optimal.
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of our results obtained on both synthetic 2D data as well as
recorded data of flowing water in Section 5.3.

5.1 Reconstruction Problem

Our goal is to reconstruct the surface area of a possibly
moving body of water, using recordings from only a
handful of fully calibrated cameras distributed around the
scene. In order to be able to work with a well-defined image
formation model, special care has to be taken when
acquiring the water video data. We employ a chemical
reaction that emits light over an extended period of time.
Two chemicals are mixed, and the resulting chemical
reaction causes light to be emitted uniformly in all
directions. Glowsticks are a commercial application and
their chemical composition is optimized for brightness and
longevity of the chemical reaction. Thus, they are ideally
suited for our task. A minor drawback is a higher viscosity
of the fluid in comparison to water. Example input images
of our input video sequences are shown in Fig. 7.

In the following section, we discuss the image formation
model underlying the reconstruction approach. It shows
how to generate synthetic views given a certain recon-
structed surface �, which can be compared to recorded real-
world data in order to define a photo-consistency error
measure. The “best” surface is determined by employing
the framework of Section 3. The numerical solution of the
fixed point iteration, (18), is similar to the previous
application. After the theoretical discussion in this section,
we proceed with the details of the implementation in
Section 5.2.

5.1.1 Image Formation Model

We use a chemoluminescent chemical reaction to make the
water self-emissive. When the chemicals are evenly dis-
solved the reaction takes place in a uniform manner. This
allows us to assume a constant emissivity throughout the
volume. Thus, the accumulated light intensity along a ray
traced through the water can be computed by multiplying
its total length within the volume with a constant emittance
�. We perform a photometrical calibration on the cameras,
such that they exhibit a linear response to the incoming
light intensity, scaling light intensity to image intensity by a
factor of 	.

Now, let p be a point in the image plane of camera C, and
C be the camera’s center of projection. We want to compute
the theoretical pixel intensity I�ðpÞ in the presence of a
surface �, enclosing a volume O� of water prepared as
above. Let RðC; pÞ be the ray traced from C in the direction

of p through the surface �, taking into account correct
refraction. We ignore scattering and extinction effects in the
water volume. Then,

I�ðpÞ ¼ 	
Z
RðC;pÞ\O�

� ds ¼ �	
Z
RðC;pÞ\O�

ds:

The last integral just measures the length the ray
traverses through O�. In order to avoid having to determine
the constant factor �	 experimentally by acquiring and
measuring a calibration scene, we implement an autocali-
bration scheme. All image intensities are divided by the
average intensity of the pixels in the image within the
silhouette, and all ray-traced intensities by the average
intensity of the rays corresponding to these pixels. The
resulting quotients are independent of the quantity �	.

Now that we are able to compute synthetic views given a
surface �, we have to determine how well a reconstructed
surface fits a given set of input views. If we are able to
quantify the error, it can be used to define an energy
functional mapping surfaces to real numbers, whose
minimum yields an optimal reconstruction result.

5.1.2 Energy Minimization Formulation

We have to observe photo-consistency of a reconstructed
surface � given the set of source images. We set up an
energy functional of the form introduced in (1) with a scalar
valued weight function � measuring the photo-consistency
error density. It may depend on the surface point s and the
surface normal n. Because refraction occurs frequently, the
dependency of the error measure on the normal is a vital
part of our method, in contrast to many other previous
applications of weighted minimal surfaces in computer
vision.

The question remains how to correctly choose the error
measure. Ideally, we would want it to be the difference of
the measured intensity in every camera with the theoretical
intensity, which would look like

�naiveðs;nÞ :¼
Xn
i¼1

I�;iðsÞ � Ii � �iðsÞ
� �2

;

where I�;iðsÞ is the ray-traced image intensity assuming
surface �, Ii is the ith camera image, and �i the ith camera’s
projection mapping.

While the general idea is good and exactly what we
implement, it faces several problems in this initial form, the
worst being that we have to be able to evaluate the error
function away from the surface in order to perform the
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Fig. 7. Four of eight camera views from our test video sequence. The images were taken at the same point in time.
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surface evolution. The exact technical definition is pre-
sented in the next section. As in Section 4, Theorem 1 yields
the Euler-Lagrange equation of the functional, which leads
again to the surface evolution equation and level set
implementation introduced in Section 3.3.

5.2 Implementation

In the following, we go into the details on how to
implement our reconstruction scheme, specifying the
construction of the error function. For a stable evolution,
we have to make sure that the surface does not shrink inside
the image silhouettes. To this end, we introduce a silhouette
constraint. We finally describe some nuts and bolts of the
implementation of the PDE as a narrow band level set
method.

5.2.1 Construction of the Error Function

Of particular difficulty is the evaluation of the error
function �ðs;nÞ for a given point s and corresponding
normal n. The problem is that this term has to be evaluated
away from the current surface � in order to numerically
compute the derivatives in (18), i.e., for points that do not lie
directly on the surface, and with a normal which may be
different from the current surface normal. In fact, the
question is what local error would arise if the surface was
distorted such that it lies in s with normal n. For this reason,
ray tracing in order to evaluate the error function has to be
performed for a distorted surface �0. The computation of
�ðs;nÞ is thus performed in three steps.

In the first step, we construct the distorted surface �0

through which rays are traced. We have to change � locally
in a reasonably smooth manner such that the new surface
passes through s. At this moment, we do not yet care about
the normal. Assume for now that s lies outside the
volume O� enclosed by �. The desired result can then be
achieved by uniting O� with a sphere B centered in the
point v closest to s on �, with radius ks� vk. Vice versa, if s
lies inside O�, we can achieve the result by subtracting B

from O�, Fig. 8.

The second step is to define the set of cameras C ¼
fC1; . . . ; Ckg which contribute to the error measure. Ideally,

since the medium is transparent, we would like to consider

all cameras we have available. Unfortunately, this requires

finding for each camera the ray passing from the camera

center to s, possibly refracted multiple times on the way.

This computation definitely is too time-consuming. Instead,

we only consider those cameras which have a reasonable

unobscured view of v with regard to the original surface.

More precisely, each camera Ci belonging to C must meet

the following two criteria:

. the straight line from v to the center of projection Ci
must not intersect �, and

. the ray starting from v in the refracted direction
�ðv� Ci;nÞmust travel inside O� in the beginning. �
is computed using Snell’s law, using the index of
refraction of water for inside the volume, and of
vacuum for outside.

In the third step, we finally compute the photo-
consistency error 
i for each contributing camera Ci and
average those to get the total error �. Each individual error
is computed as follows: Let I i � �iðsÞ be the intensity of the
projection of s in image I i, and riðs;nÞ be the accumulated
intensity along a ray traced from s into the refracted
direction �ðs� Ci;nÞ. Then,


iðs;nÞ :¼ I i � �iðsÞ � riðs;nÞð Þ2:

This corresponds to comparing the image intensity to the
ray-traced intensity of a ray cast from the camera to s,
refracted by a surface located in s with normal n. Thus, the
desired normal n is also correctly taken into account.

Unfortunately, the resulting weight function � is not
locally dependent on s and n because the distortion of �
changes � globally. The silhouette constraint introduced in
the next subsection counters this shortcoming and experi-
ments on synthetic test data suggest the feasibility of the
reconstruction approach, see Fig. 9 for a qualitative analysis.

5.2.2 Silhouette Constraints

An additional constraint on the photo-consistency of the
reconstruction result is that the projection of the reconstruc-
tion in each camera image must match the silhouette of the
object to be reconstructed [12]. This constraint yields both a
stopping term in our evolution equation, as well as an initial
surface for the evolution in form of the visual hull [29]. We
prohibit the projections from ever shrinking inside any of the
silhouettes. A stopping term is therefore added to the surface
evolution, which grows very large if a point on the projected
boundary of the surface lies inside a silhouette. When
computing the visibility of a point v, we can extract from
the set of unobscured views C the set of cameras B � C in
which v lies on or very close to the boundary of the projection.
The two criteria for camera Ci in C to lie in B as well is that

. the angle between viewing direction di from v to the
center of projection Ci and the surface normal nðvÞ
must be close to 90 degrees and

. the straight line from v in the direction di away from
the camera must not intersect the surface.

Then, the boundary stopping term is defined as

BðsÞ :¼
X
Ci2B

exp ��ð�i � �iÞðvÞð Þ � 1½ 
;
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Fig. 8. Evaluation of the partial error function 
i for a single camera. The
length difference between rays traced through the distorted surface �0

and the undistorted surface � is just ks� vk. Note that n is not
necessarily the exact surface normal, it may vary close to it in order to
evaluate the derivative of � with respect to the normal.
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where v is again the point closest to s on �, and � > 0 a

user-defined weight, which should be set reasonably high.

We use � ¼ 10 throughout all of our tests, where the images

are defined to lie in ½0; 1
2, and the signed distance is

normalized accordingly.

5.2.3 PDE Discretization

Similar to Section 4.4, the volume surrounding the surface �

has to be discretized. We use a regular three-dimensional

grid of evenly distributed cells with variable spatial

resolution of usually 643 or 1283 cells. The surface is

evolved according to the narrow band level set method [18],

starting the evolution with the visual hull surface �0 and

the values uxyz0 of the corresponding level set function u0 in

the centers of the grid cells. Details on how the evolution

equation is implemented were already presented in

Section 4.4. However, there are two optimization terms

which are added to the values in the cells after each update

step (20).
The first one is the boundary term Bðx; y; zÞ. The second

term is designed to speed up convergence and avoid local

minima. It accelerates the shrinking process in regions

where the error is excessively high. We add to uxyziþ1 the value

�1Bðx; y; zÞ � �2L�ð�Þð�ðx; y; zÞ �m�Þ;

where L�ð�Þ is the stable Leclerc M-estimator for the
standard deviation of the error values of all cells, and m�

the mean value of the error. �1; �2 > 0 are two user-defined
weights. Good choices and their influence on convergence
behavior are discussed in the next section.

5.3 Results

5.3.1 Synthetic 2D Experiments

In order to verify that our surface evolution is capable of

producing correct results despite the complex problem we

want to solve, we first test it on synthetic 2D data. For this

purpose, we ray-trace several views of two different test

volumes using the image formation model presented. The

first volume is designed to test how well the algorithm can

recover concavities, while the second volume is not

connected and has a mixture of straight and round edges.

Both test volumes and resulting 1D views are shown in

Fig. 10.
We run our algorithm with different numbers of input

views in order to test the dependence of convergence on
this critical parameter. Convergence becomes stable if eight
or more cameras are available, with 12 views required in the
more complex second test case. We also note that there is a
quick saturation of reconstruction quality with respect to
the number of cameras because the visual hull does not
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Fig. 9. The best results we achieved using 24 input views, together with several in-between stages of the iteration. (a) Convergence toward the first

test volume, after 0, 100, 200, and 300 iterations. (b) Convergence toward the second test volume, after 0, 15, 30, and 45 iterations.

Fig. 10. Synthetic 2D test geometries of Fig. 9 and ray-traced 1D projections (stacked).
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improve further if more than 16 cameras are used, in
accordance with earlier results [30]. In addition, the quality
of the reconstruction levels out at around 24 cameras for
both test volumes. Our experiments show that more
cameras do not yield a better result, which indicates that
a good placement of the cameras is at least as important as
their sheer number.

In all cases, the algorithm runs with the same parameter
values of �1 ¼ 0:1 and �2 ¼ 100. These values give stable
behavior against parameter changes using 24 cameras to
estimate the first test volume. As a rule of thumb, there is a
certain threshold value for the speedup term above which it
accelerates the evolution above a stable limit, causing the
surface to shrink inside the silhouettes. Too low a choice of
�1 has no ill effects on stability, but slows down conver-
gence. �2 can safely be chosen somewhere between 10 and
100 without much effect, but may cause the surface to be
stuck at an undesirable spot if set too high. Table 1 shows
the reconstruction error, i.e., the difference between the
ground truth area (Fig. 9) and the area enclosed by the
reconstructed surface, after 200 iterations for the first test
volume and different choices of �1 and �2.

5.3.2 Real-World Water Videos

For the real-world tests, we use a multivideo recording
setup consisting of eight CCD-cameras with a resolution of
1; 004� 1; 004 pixels. The cameras record at 45 frames per
second. The cameras are geometrically and photometrically
calibrated. We acquire our test sequences in the dark, the

chemiluminescent water being the only source of light. This
allows for simple background subtraction. We record a dark
sequence and measure the noise distribution of the cameras’
CCD chips. Pixels within a range of two standard
deviations of the mean noise value are classified as
background. We perform a clean-up of the foreground
masks using morphological operations. The reconstruction
is performed on an equidistant, uniform grid of 1283 voxels.
An example of a reconstructed water surface is shown in
Fig. 11.

6 SUMMARY AND FUTURE WORK

We have derived the Euler-Lagrange equations for
weighted minimal hypersurfaces in arbitrary dimensions.
We allowed for weight functions general enough to cover
many variational problems frequently encountered in
computer vision research. Compared to existing proofs
which are restricted to dimensions two or three, our
approach is valid in arbitrary dimension. We believe that
the presented results pave the way for new applications that
rely on higher dimensional representations.

As one application exploiting arbitrary dimensionality,

we showed in the second part how to reconstruct temporally

coherent geometry from multiple video streams using a level

set technique. The idea is to optimize photo-consistency with

all given data as well as to enforce temporal smoothness.

Our method is formulated as a weighted minimal surface

problem posed for a 3D hypersurface in space-time. The

energy functional defining the minimization problem en-

forces photo-consistency, while temporal smoothness is

intrinsic to our method. Significant improvements compared

to space carving approaches which lack temporal coherence

can be observed. As future work along this line of research,

we plan to include global optimization of surface reflectance

properties into the same unifying framework.

As a second application of our theoretical framework, we

have presented a method for the reconstruction of flowing

water surfaces. A novel recording methodology and a

corresponding image formation model allow us to define a

photo-consistency constraint on the reconstructed surface

taking refraction into account. We again utilize weighted

minimal surfaces to refine the visual hull of the water using
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TABLE 1
Error in the Reconstruction of the Volume Shown in Fig. 9a after

200 Iterations, Depending on Different Choices of �1 and �2

An entry of “U” indicates instability and “S” indicates a stopped evolution.

Fig. 11. (a) Reconstructed water surface for a fixed time instant, see Fig. 7. (b) Reconstructed flow of another water volume rendered in a virtual

environment.
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constraints based on thickness measurements of the real

surface. Real-world experiments demonstrate the suitability

of our method for the reconstruction of water. Next, we

intend to develop a hierarchical representation of the

underlying computational grid to achieve higher resolution

reconstruction which allows to resolve finer details.
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