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Relocalization with Submaps: Multi-session
Mapping for Planetary Rovers Equipped with Stereo

Cameras
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Armin Wedler2, Rudolph Triebel2 and Stefano Debei1

Abstract—To enable long term exploration of extreme en-
vironments such as planetary surfaces, heterogeneous robotic
teams need the ability to localize themselves on previously built
maps. While the Localization and Mapping problem for single
sessions can be efficiently solved with many state of the art
solutions, place recognition in natural environments still poses
great challenges for the perception system of a robotic agent. In
this paper we propose a relocalization pipeline which exploits
both 3D and visual information from stereo cameras to detect
matches across local point clouds of multiple SLAM sessions.
Our solution is based on a Bag of Binary Words scheme where
binarized SHOT descriptors are enriched with visual cues to
recall in a fast and efficient way previously visited places.
The proposed relocalization scheme is validated on challenging
datasets captured using a planetary rover prototype on Mount
Etna, designated as a Moon analogue environment.

Index Terms—Localization; Space Robotics and Automation;
Mapping

I. INTRODUCTION

THE capability of autonomous robots to recognize previ-
ously visited places is crucial for the success of long-term

missions. In case of GPS denied environments, such as for
planetary scenarios, exploration robots can map and localize
themselves by performing SLAM (Simultaneous Localization
and Mapping). Place recognition enables multiple agents to
join their maps under a common reference frame or to merge
subsequent mapping sessions of a single robot. Images are
widely used for place recognition and loop closure detection
in Visual SLAM [1]. However, in the presence of varying
visual appearance such as in case of strong illumination
and viewpoint changes, traditional approaches for matching
visual information are severely compromised. LiDAR (Light
Detection and Ranging) sensors allow instead to exploit the
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Fig. 1. Top: Relocalization on Mt. Etna (top view, session Etna easy).
Submaps are represented as transparent patches, shaded in blue for the active
relocalization session (“Reloc”) and in grey for the existing map in the data
base (“Db”), and their origins by circular markers. Green lines connect the
origins of matching submaps validated by our relocalization pipeline, which,
compared to the standard RANSAC approach (magenta lines) are outlier-
free. Left: Example view (rectified) of the Etna environment. Right: LRU
(Lightweight Rover Unit) [3] on Mount Etna, Italy.

3D information of an environment for SLAM purposes and
increasing attention is directed towards place recognition and
localization with 3D point clouds [2]. However, stereo cameras
are preferable as space qualifiable instruments thanks to their
mechanical simplicity.

This work builds upon a 6D Stereo SLAM framework
[4] which combines the benefits of using cameras as the
main source of perception and exploiting the invariant nature
of point clouds. The environment is discretized in submaps
whose associated local reference frames are connected in a
graph by visual-inertial odometry constraints. Submap growth
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is bounded on pose uncertainty and loop closures are found
relying on pose priors.

The main contribution presented in this paper is a pipeline
for localizing a robot without priors in previous maps, targeted
at planetary environments. Binarized 3D SHOT descriptors [5],
[6] are enriched with texture information and used to recall
similar places in a Bag of Binary Words approach. As the
first mapping session is completed, binary 3D descriptors are
clustered in a k-d tree to build a vocabulary of words which
will serve in the following sessions to recall similar places.
However, obtaining a general purpose vocabulary is not feasi-
ble since 3D features are generally not scale invariant and very
specific to the observed shapes. We address the vocabulary
incompleteness by modifying the well known DBoW2 library
[7] with a re-weighting scheme.

As stereo depth uncertainty affects the uniqueness and
descriptiveness of 3D descriptors [8], we enhance binary
SHOT with visual cues by appending a limited size component
inspired by Local Binary Patterns [9] and directly computed
over the monochrome intensity values associated to the points
in the cloud. We will refer to this descriptor as B-Tex-SHOT
in the course of this paper. The uniqueness associated to image
intensities especially around obstacles should balance the
effect of 3D noise without overpowering, which could be dan-
gerous in presence of shadows or changing lighting conditions.
Submap correspondences, selected from BoW (Bag of Words)
vector similarity, are validated by matching the original SHOT
descriptors and by using a voting scheme for the suggested
transformation between the origins of each mapping session.
To summarize, this paper presents the following contributions:

• we propose a relocalization pipeline for stereo vision
systems based on binary 3D descriptors and Bag of
Words.

• we exploit the monochrome intensity of 3D points to
build a short binary descriptor which we demonstrate to
improve recall precision of similar submaps.

• a novel transformation voting scheme is introduced for
removing outliers amongst 3D descriptor matches. We
prove the superiority of the proposed validation scheme
over traditional RANSAC (RANdom SAmple Consensus)
approaches.

• we show the effectiveness of the proposed pipeline
in several experiments including a challenging outdoor
planetary analogue environment. In this experiments, the
proposed system is able to correctly localize the rover in
previous maps with 100% precision after validation.

This paper is organized as follows: in Section II, we give
a brief overview of existing work on place recognition with
a focus on point cloud based methods. In Section III, the
relocalization pipeline is explained in detail and, in Section IV,
we validate the approach with indoor and outdoor experiments.

II. RELATED WORK
Traditional approaches for re-localization using cameras

involve matching sparse visual features with a database [10],
mostly by means of aggregation techniques such as FAB-
MAP2 [11], BoW or VLAD [12]. Many Visual SLAM sys-
tems, such as ORB-SLAM2 [13] or LDSO [14], rely on bag

of binary words [7] in conjunction with the ORB descriptor.
While enabling fast and accurate re-localization, visual simi-
larity based on descriptor matching decreases in presence of
viewpoint differences and changing environment appearances.
To lower the dependency on viewpoint, map densification
through local meshes is used in [15] to increase the number
of candidate keypoint matches selected using the DBoW2
library and BRIEF descriptors. A wider set of candidates
and a careful geometric verification increases the chance of
successful relocalization. Invariance to changing appearance
can be obtained by relocalizing on multiple overlapping maps
built in different weather [16] or lighting conditions [17]. As
mentioned also in [18], this requires to initialize the observer
position.

Exploiting geometry for place recognition helps to over-
come the limitations of pure visual localization [19]. A BoW
scheme is used in [20] to match range images with a database,
which could be applied also to stereo vision systems. However,
while relying on geometry and not visual appearance, depen-
dency on the viewpoint would remain unsolved. Local 3D
feature descriptors are evaluated in [2] to merge LiDAR maps
from a ground vehicle to dense maps from monocular SLAM
captured by an aerial vehicle acknowledging the robustness
of SHOT [5]. Learned 3D descriptors and matching metrics
[21]–[23] show promising results although require powerful
hardware, which limits the implementation on resource con-
strained vehicles. SHOT enriched with LiDAR intensity data
is used in [24] along with a probabilistic selection scheme
for multi-session localization. Instead of local features, the
SegMatch algorithm [25] extracts segments from dense 3D
LiDAR clouds and matches them with a database using an
ensemble of handcrafted global features or, as published later
in [26], from learned descriptors. However, it is not clear how
to segment stereo point clouds from natural environments in
a repeatable way. Other means for multi-agent relocalization
involve matching planar segments from point clouds [27],
which is only feasible in mostly artificial environments, or
from Monte Carlo Localization as in [28] where an UAV aug-
ments the map of an UGV equipped with an RGB-D camera.
This, however, is not feasible for large scale environments due
to computational limitations.

III. RELOCALIZATION ON POINT CLOUDS

Fig. 2 gives an overview of the proposed relocalization
pipeline. During the first mapping session, each submap
pushed to the SLAM system is processed by binarizing
already computed SHOT descriptors and appending texture
information (more details in Section III-A). At the end of this
session, descriptors are stored in a database and a vocabulary
is generated by clustering descriptors in a k-d tree using
the DBoW2 [2] library. During a second mapping session,
descriptors computed over each submap are converted into
BoW vectors accounting for the fact that a vocabulary built
over a single session is very likely to be incomplete (Section
III-B). Candidate submap matches between the two sessions
selected from BoW similarity are then validated by matching
the original SHOT descriptors and clustering the suggested
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Fig. 2. Relocalization pipeline architecture. (a) In a first mapping session B-Tex-Shot descriptors are created, i.e. SHOT features are extracted from submaps
and binarized, and compact (binary) texture descriptors appended. At the session end, a vocabulary of B-Tex-SHOT is generated and the binary descriptors are
stored as part of a database. (b) During a second session, each submap is processed as in (a) by computing B-Tex-SHOT descriptors. Using the vocabulary,
binary descriptors in each submap are transformed into BoW vectors which are compared with the database to find the most similar ones. A candidate selection
strategy (Section III-B) identifies a minimal set of submap matches from BoW similarity. Candidate submap pairs are validated by matching the original
SHOT descriptors and grouping them using a Hough3D approach. Each Hough3D group votes for a transformation between the origins of the two mapping
sessions and relocalization is triggered if the two highest voted transformations satisfy (6).

transformations in order to determine the most likely align-
ment between the maps (Section III-C).

A. Binary Descriptors

As the full SLAM pipeline running onboard the LRU
(Lightweight Rover Unit) [3] depends on SHOT descriptors,
we leverage the binarization scheme described in [6] to obtain
a set of lightweight and computationally efficient version of
the SHOT descriptors referred to as B-SHOT. The size of this
new descriptor is 352 as the original SHOT but can be matched
using the Hamming distance with much less effort than the
original float vector. To increase the descriptive power, we
design, inspired by [29], a short additional descriptor of the
intensity information associated with the point clouds. With
a size of just 44, this binary descriptor acts as a visual cue,
increasing the precision of the full descriptor without risking
to undermine the invariance given by 3D information. We first
recall the BOARD frames [30] used to compute the original
SHOT descriptors. Points which lay inside the support region
are projected onto the x-y plane defined by the reference frame
axes (where z is the normal direction). A grid of 9 × 9 cells
is centered on the local origin as shown in Fig. 3, and the
intensities of points which lay in the same cells are averaged.

Fig. 3. Left: Pattern for the binary texture descriptor superimposed over the
cell grid and example texture patch in grayscale. Cell size depends on the
support region radius: lcell =

√
2Rsr/9. Right: dB-Tex-only match test on a

submap from the RMC laboratory applying various degrees of rotation and a
Gaussian noise to the intensity of σ = 0.01Imax

A reference value Iref is defined as the average intensity of
the central 3× 3 cells and binary values of the descriptor are
defined by comparing the intensities Ic(i) of all designated
cells (44 out of 9× 9 = 81) with Iref:

dB-Tex(i) =

{
1 if Ic(i) > Iref + t

0 otherwise
(1)

where t is a small threshold to account for noise (set to
1 in our experiments) and i = 1, 2, . . . , 44. dB-Tex tolerates
small orientation errors around the normal axis as it considers
average intensities in the cells and tolerates displacements
of keypoints as it uses the average intensity of the central
pattern as reference. Fig. 3 shows the pattern used to generate
dB-Tex as well as the result of a matching test performed
on an LRU submap, demonstrating good accuracy even in
absence of 3D information. For the latter, dB-Tex descriptors
were generated with Gaussian noise added to the point in-
tensities. The final descriptor, of size 396, is obtained as
dB-Tex-SHOT = dB-SHOT ∪ dB-Tex.

B. Candidate Selection from Bags of Binary Words

The set of binary descriptors belonging to each submap
is converted into BoW vectors by traversing the vocabulary
provided from the first mapping session. However, as the
vocabulary does not provide a full representation of the fea-
tures that can be observed in the scene, many new descriptors
can provide wrong contributions to the BoW vector because
the Hamming distance between each of them and the closest
vocabulary node at leaf level might be high. To overcome
this, we establish a re-weighting scheme which dampens the
contribution to the idf (inverse document frequency) in case
of low similarity between descriptors and closest leaves: let
w∗
i ∈ [0, 1] be a coefficient which depends on the Hamming

distance H between the vocabulary leaf ci (cluster centers
at the lowest level) and binary descriptor di. We design a
simple function which does not influence close descriptor-leaf
pairs (i.e. H lower than a value Ht) and penalizes higher
distances (i.e. H > Ht). Amongst all possible solutions to this
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Fig. 4. Visualization of the re-weighting factor from (2), varying the free
parameters λ (left, with Ht = 20) and Ht (right, with λ = 1).

problem, we choose a formulation which empirically delivers
satisfactory results:

w∗
i =

{
α

1+λH(ci,di)
+ β if H > Ht

1 otherwise.
(2)

Fig. 4 visualizes w∗
i as a function of λ and Ht. In our

experiments λ is set to 1. This coefficient w∗
i is multiplied

with the traditional (as default in DBoW2) inverse document
frequency (idf ) and term frequency (tf ) associated with di
to obtain the final contribution w̄i to the BoW vector v =
{〈id0, w̄0〉, ..., 〈idi, w̄i〉}. idi is an index of leaf ci and w̄i is
defined as

w̄i = w∗
i · idf · tf . (3)

α and β from (2) are determined from the constraints
w∗(396) = 0 and w∗(Ht) = 1. Bag of words vectors
from the second sessions vqi are compared with the database
ones vdbj using the L1 score s(vqi ,v

db
j ) proposed in [7]. The

absolute value of this score is, however, dependent on how the
vocabulary that generated v has been built. It is not possible
then to compare s with any fixed threshold to determine if
two submaps are similar or not. Furthermore, we expect that
in each mapping session subsequent submaps do not overlap
often. For this reason, approaches typical of visual SLAM
[13] where new images are compared with a window of old
keyframes to search for consistent temporal similarity are not
applicable in our case. We observe instead the highest and
lowest values of the scores computed so far and wait for a
minimum number nmin of received submap pairs before any
decision on candidate selections is made. Then, a relative
threshold trel is applied to discriminate tentative matches.
Submaps i and j are considered as matching if

s(vqi ,v
db
j ) > trel · (smax − smin) + smin (4)

where smax and smin are updated each time a new submap is
used to evaluate the BoW score against the database.

C. Match Validation from Tf Clustering

Submap matches proposed by the previous step are validated
to eliminate false positives, which is done by evaluating
multiple transformation hypotheses to find a safe consensus.
The point clouds aggregated by the stereo camera mounted
on the LRU pan-tilt head suffer from noise proportionally to
the square of depth. When matching SHOT descriptors across
two submaps, the number of false matches can easily surpass
the number of correct matches. As we show later in Fig.

7, traditional feature matching followed by RANSAC outlier
rejection is likely to fail in such challenging conditions.

We first group all the pairwise SHOT correspondences using
the Hough3D voting technique described in [31] and adapted
from the PCL implementation to return 4D transformations
instead of full 6D. As submaps are in fact always guaranteed
to be gravity aligned [4], the transformation between submaps
can be described by 3D translation vector (x, y, z) and yaw
rotation angle φ. This step returns coherent groups of keypoint
matches resembling model to model (such as individual rocks)
correspondences that are robust to clutter and occlusions, and
discards uncorrelated wrong keypoint matches. This behavior
is important for point clouds built from aggregated stereo
observations as partial views and submap boundaries easily
result in holes and truncated models. Each matching group of
keypoints after Hough3D suggests a transformation between
submap i of the query session and submap j of the database
in the form of {x, y, z, φ} which, as each submap is rigid,
should, if correct, be equal to Ti

j (see Fig. 5). As many
groups after Hough3D might be returned even in absence
of correct keypoint matches, RANSAC methods would likely
select the resulting correspondences as inliers for a wrong
rototranslation model. For this reason we choose to cluster
the 4D transformations determined by the Hough3D groups
to find a wide consensus across multiple submaps.

As illustrated in Fig. 5, the pose of submap i from the query
session is Tq

i relative to the reference frame Oq , while the pose
of database submap j is Tdb

j with respect to cordinate system
Omap of the global map. By suggesting a transformation
Ti
j(k) to align the two submaps, Hough3D keypoint cluster k

defines also a transformation between the reference frame of
the query session and the global map:

Tdb
q (k) = Tdb

j ·T
j
i (k) · (Tq

i )
−1 (5)

with Tj
i (k) = (Ti

j(k))−1. All transformations Tdb
q (k) are

clustered using an incremental k-means scheme (see Alg. 1).
A transformation belongs to a cluster only if the 4 coordinates
are closer than a pre-defined threshold. After assigning a
transformation to its cluster, the center is updated as the mean
of all contained elements. Under the hypothesis that wrong
matches vote for random transformations, if any correct match
is present, the votes for that particular transformation should be
recognizable. Let nl be the total number of keypoint matches

Fig. 5. Highlighted keypoints belong to a Hough3D cluster defining the
transformation between the submaps of different sessions (Tij ) in a local
coordinate frame. Via the transformations or poses of the submaps in the
respective session reference frame, they also provide an estimate of the
transformation between the different session origins (Odb and Oq).
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(a) PR curve in RMC in out (b) PR curve in RMC corridor (c) Map of in RMC in out (d) Map of RMC corridor

Fig. 6. Precision-recall (PR) curves and maps for the two indoor experiments. (a,b) PR curves comparing the effect of embedding texture information with
plain 3D binarized SHOT (B-Tex-SHOT versus B-SHOT). The curves are generated by varying trel of (4) from 0 to 1. Markers denote the precision-recall
values at trel = 0.7. A red dashed line denotes the precision-recall curve of a random classifier, whose precision is computed as the fraction of overlapping
submaps over the number of all possible pairs. (c,d) Top views of the maps. The invidual maps of the two sessions are highlighted in gray and blue. Filled
circle indicate positions of submap origins.

Algorithm 1: Incremental Tf Clustering
Input :

• {Tdb
q (k)}: 4D transform hypotheses for all clusters

• nk: number of keypoints voting for {Tdb
q (k)}

• txyz, tφ, rt: spatial, yaw and ratio thresholds
Output:

• Tmax: consensus transformation for relocalization
C = {}: init clusters
foreach submap pair ∈ candidate pairs do

foreach cluster k ∈ submap pair do
search C for cluster l that is closest to cluster k;
if |Tdb

q (k)−Tdb
q (l)| < txyz & tφ then

add Tdb
q (k) to cluster l;

add nk to nl;
update Tdb

q (l);
else

add new cluster with Tdb
q (k)

rank clusters for number of votes nl;
if 1− n2nd/nmax > rt then

return Tmax

voting for Tdb
q (l). Being nmax and n2nd the number of votes for

highest and second highest voted clusters, the transformation
corresponding to nmax is selected as winner if

1− n2nd/nmax > rt (6)

where the ratio rt is defined as 0.5 in our experiments.

IV. EXPERIMENTS

We tested our relocalization system in both laboratory
and outdoor scenarios. First, experiments are performed in
the robotics laboratory and hallways of the DLR Robotics
and Mechatronics Center to characterize the performances of
the relocalizer in selecting valid candidate matches. The full
pipeline is then evaluated both in the laboratory dataset and
on outdoor sequences captured on Mount Etna, a designated
planetary analogue environment as part of the ROBEX mission
[32].

A. Candidate Selection Accuracy

A laboratory dataset is used to evaluate the performances
of the submap candidate selection step (Section III-B) and
consists of two sessions denominated RMC corridor and
RMC in out. The rover explores a laboratory environment,
where several big rocks are placed to imitate the appearance
of natural scenes, then travels in the hallways or outside the
lab, where 3D features are lacking, as it is mostly flat. Both
sessions contain a significant number of overlapping submaps
which should be detected by the relocalization pipeline. For
these datasets, 3D keypoints are extracted over a voxel grid
of 5 cm size by segmenting obstacle point clouds from depth
images [4], [33].

As a vicon ground truth reference is only partially available,
for each dataset the two sessions are manually aligned in
order to average the effects of minor drifts in the pose
estimates. To generate ground truth submap correspondences,
we perform a nearest-neighbor search within the point clouds
of all possible submap pairs. We define the grade of overlap
between submaps si and sj as

o(si, sj) = 2npairs/(ni + nj) (7)

where npairs is the number of unique point pairs with distance
below 0.5 meter and ni and nj are the total number of points
contained in si and sj . We consider ground truth submap
matches those for which the grade of overlap is higher than
0.1. We measure the quality of candidate selection using the
precision-recall metric:

Precision = Tp/(Tp + Fp), Recall = Tp/(Tp + Fn) (8)

where Tp and Fp are the number of true and false matches
and Fn is the number of missed matches, i.e. the number of
overlapping submaps which were not detected by the pipeline.
Fig. 6(a) and 6(b) show the precision-recall curves for the two
indoor data sets for multiple values of Ht (see section III-B).
Each curve is generated by varying the relative threshold
trel from 0 to 1 and computing precision and recall. The
curves highlight the effect of appending texture information
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(a) PR curves for RMC in out (b) PR curves for RMC corridor

Fig. 7. Performance Comparison with Baseline. B-CSHOT refers to the candidate selection scheme using C-SHOT descriptors binarized following the
approach in [6] adapted to a longer descriptor. The B-Tex-SHOT, B-CSHOT and B-SHOT curves are selected as the highest for various values of Ht (see
Fig. 6). “Rans” refers to brute-force matching of descriptors rejecting outliers in a RANSAC scheme. RANSAC curves are generated by varying the SHOT
and C-SHOT matching threshold from 0 to 1 (min and max L2 distance between descriptors) and a threshold on the Hamming distance for B-Tex-SHOT
from 0 to 396. In the RANSAC case, the results are definitive as matches are already validated by selecting a consensus model.

to the original B-SHOT descriptor, showing a significant per-
formance improvement for Ht = 80 and Ht = 100 especially
at high trel levels. The fact that many curves in Fig. 6 start at
zero precision, such as for Ht = 20 and Ht = 150 suggest
that the proposed re-weighting scheme is necessary to build
appropriate BoW vectors. Associating distant descriptor-leaves
can lead to high BoW similarity for non-overlapping submap
pairs, hence the zero precision at highest trel levels. While in
the RMC in out dataset all submaps tend to include significant
3D information, in the RMC corridor dataset many submaps
(as visible in Fig. 6(c)) contain only points from partial views
of straight walls, which do not deliver useful information for
relocalization reducing the recall score. In Fig. 7 we compare
the performances of our system with alternative solutions. First
we binarize C-SHOT [34] descriptors adapting the approach
in [6] (resulting in a 1344 bits descriptor) replacing our B-
Tex-SHOT for the candidate selection stage. As the curves
highlight, none of the two consistently outperform the other,
therefore our descriptor in conjunction with binary SHOT
allows to save computational time without penalizing recall
performances. Secondly, we match SHOT, C-SHOT and B-
Tex-SHOT in a brute force way across all submap pairs and re-
ject bad correspondences using a RANSAC scheme. This also
replaces the match validation stage by selecting the appropriate
transformation between submaps, therefore the outcomes are
to be considered as definitive. Positives are submap pairs for
which RANSAC returns a model (implemented using PCL
class pcl::CorrespondenceRejectorSampleConsensus,
P=0.99). Our pipeline outperforms the baseline RANSAC
approach even before match validation. As it is also found in
[8], noise in point clouds from dense stereo compromises the
effectiveness of descriptor matching. Our approach, however,
provides a robust solution to this problem by focusing the
attention on a selected set of submaps and searching for a
wide consensus of transformation hypotheses.

B. Relocalization Experiments

Here we evaluate the capability of our algorithm to re-
localize the LRU rover over subsequent mapping sessions
on the previously introduced laboratory dataset and on a
dataset captured in a planetary analogue environment (Table I),
where the repetitiveness of visual features (see Fig. 1) and
the lack of conspicuous 3D objects pose a big challenge for

place recognition. In the first sequence of the Etna datasets,
Etna easy, the LRU rover drives autonomously along given
waypoints exploring an area which is partly covered in small
sized rocks. The maps of two short sessions, covered without
a pause in between, overlap in a few areas containing rocks.

As the LRU frequently uses the pan-tilt camera head for
obstacle avoidance, the resulting submap point clouds cover a
relatively wide area, maximizing the chance of gathering use-
ful information. In the second sequence, Etna hard, the LRU
rover performs autonomous exploration experiments [35], us-
ing frequently the pan-tilt head to estimate traversability. Two
subsequent sessions, performed with a two hours pause in
between, partially overlap in terms of submap positions and
origins. However, useful 3D information is present in only
a very limited part of the second map. The parts where
submaps overlap most are mainly observing flat areas lacking
unique features, both 3D and visual. In fact, for comparing the
relocalization performances of our algorithm, we processed all
4 sequences involved in the two Etna datasets with the visual
SLAM system ORB-SLAM2 [13]. However, the visual front-
end failed to track frequently.

As in this scenario the distinction between obstacles and
travellable ground is more subtle, we extract keypoints from
high curvature regions, where curvature is computed from the
eigenvalues of the scatter matrix as σ = λmin/

∑3
i=1 λi. Key-

points are obtained at positions where σ > 0.02. For recalling
candidate submaps, in all datasets a Hamming threshold Ht

of 100 was used and the relative BoW score threshold was
set to trel = 0.7 as suggested by the precision-recall tests
in Fig. 6. The full submap point clouds were downsampled
to 3 cm voxels before processing in order to reduce the
computational effort. SHOT descriptors are matched during
validation employing k-d trees. Fig. 1 shows the two sessions
after alignment in the Etna easy sequence, highlighting the

TABLE I
TEST DATASETS

Etna easy Etna hard RMC in out RMC corridor
Db Q Db Q Db Q Db Q

submaps 6 10 12 28 14 15 27 22
area [m2] 285 440 272 330 318 263 482 413
time [min] 7.5 17.4 21.6 38.5 8.9 8.9 12 12.2
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(a) Normalized Tf cluster score and ratio metric (Etna easy) (b) Normalized Tf cluster score and ratio metric (Etna hard) (c) Tf clusters in Etna hard

Fig. 8. Results of the Tf voting scheme for the Etna easy and Etna hard mapping sessions. (a,b) Normalized Tf cluster score Pl = nl(
∑
i ni)

−1 and ratio
r = 1−n2nd/nmax during subsequent validations. A marker (*) denotes the moment at which relocalization is triggered. (c) 3D visualization of the Tf cluster
centers (only {x, y, z}). Marker size is proportional to the number of votes.

submap discretization, and compares the outcomes of our
pipeline (green lines) to CSHOT+RANSAC (magenta lines).
While our validation stage selects only true matches, RANSAC
results contain outliers. Fig. 8(a) shows the normalized Tf
cluster scores and ratios in the same session over subsequent
evaluations of candidate submap matches. The winning cluster
is detected in the second candidate pair and maintains a high
ratio score throughout the entire run, triggering relocalization
at nmin = 3 pairs received. Fig. 9 shows the aligned maps
from the Etna hard dataset as well as the matching submaps
(Fig. 9(d) and 9(f)) The visible overlap between point clouds
demonstrates the relocalization accuracy, which as Fig. 8(b)
shows, was triggered during the second to last evaluated
match, where the winning Tf cluster appeared. The same figure
shows also that in the first candidate submap match, wrong
clusters can be selected as winners using the ratio metric
because not enough voting keypoint matches are present. For
this reason, relocalization is triggered only after evaluating at
least three candidate matches (nmin = 3).

The pipeline is run also on the RMC in out and
RMC corridor sequences using the same parameters as for
the Etna dataset triggering correctly the relocalization respec-

tively with ratio scores rt 0.81 and 0.52. The aligned maps
are visible in Fig. 9(b) and 9(c). Fig. 9(d) to 9(f) show
details of the matched submaps aligned using the winning
transformations, visually testifying the relocalization quality.
To provide a coarse value for the alignment precision, we
compute point-to-point distances between matched submaps
for all test sequences, which span from 5 cm to 7 cm which is
comparable with the cloud resolution. Timings for each part
of the pipeline are reported in Table II listing the average time
required for computing keypoints, SHOT, B-Tex-SHOT, then
generating and scoring BoW vectors and finally performing
match validation. Timings in Table II were measured on
a desktop Intel Xeon E5-1620 v3 @3.5GHz whose single-
thread performances are quite similar to the Intel i7-3740QM
running at 2.7 GHz onboard the LRU. Being n the number of
keypoints, computing descriptors and generating BoW vectors
(n independent searches in the k-d tree) are operations of
O(n) time complexity. The high standard deviations in Table
II are due to the varying number of keypoints detected in
each submap. The time required for keypoint selection depends
on the submap size and the time required for computing
BoW scores depends on the number of database submaps.

(a) Full map from Etna hard (b) Full map from RMC in out (c) Full map from RMC corridor

(d) Submap match in Etna hard (e) Details from RMC in out and RMC corridor (f) Submap match in RMC corridor

Fig. 9. (a-c) Aligned maps after relocalization. (d-f) Detail views of matching submaps and aligned maps testifying relocalization accuracy from visual
inspection. Green lines connect the origins of matching submaps.
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TABLE II
TIMINGS PER SUBMAP (MEAN µ AND STD σ) ON Etna hard

Key- B-Tex-SHOT BoW BoW Match
Points SHOT B-Tex gen. scores Valid.

µ [s] 0.09 1.01 0.49 0.04 0.01 9.08
σ [s] 0.02 0.59 2.26 0.21 0.01 10.40

Both computation of SHOT and the full binary descriptor
takes significantly longer. We reckon that in particular the
latter, where most time is spent at generating the texture part,
can be accelerated by better optimization at code-level. The
bottleneck of the system can be found in the match validation
stage, where matching full SHOT descriptors is particularly
expensive. As this task is performed on a dedicated thread
and called each time a new submap is published by the system
(roughly every 10-20 seconds depending on the robot motion),
the computational overhead for the validation stage is not
compromising the efficiency of the full SLAM system.

V. CONCLUSION AND FUTURE WORK

We presented a 3D submap based relocalization pipeline
for mobile robots using binary descriptors in a modified bags
of binary words scheme. The pipeline copes with extreme
outlier ratios thanks to a match validation scheme based on
transformation clustering. Laboratory and outdoor tests on
a designated planetary analogous environment demonstrate
the effectiveness of our approach. Future developments will
involve capturing new datasets on Etna during a planned test
campaign for the ARCHES program [36] in different times
of the day with changing lighting conditions. Furthermore,
we will investigate how to reduce the current bottlenecks
using robust binary descriptors for match validation and more
efficient descriptor clustering strategies such as HBST [37].
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