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ABSTRACT
We reconstruct geometry for a time-varying scene given by a
number of video sequences. The dynamic geometry is repre-
sented by a 3D hypersurface embedded in space-time. The
intersection of the hypersurface with planes of constant time
then yields the geometry at a single time instant. In this pa-
per, we model the hypersurface with a collection of triangle
meshes, one for each time frame. The photo-consistency
error is measured by an error functional defined as an in-
tegral over the hypersurface. It can be minimized using a
PDE driven surface evolution, which simultaneously opti-
mizes space-time continuity as well. Compared to our pre-
vious implementation based on level sets, triangle meshes
yield more accurate results, while requiring less memory
and computation time. Meshes are also directly compatible
with triangle-based rendering algorithms, so no additional
post-processing is required.

1. INTRODUCTION

Our goal is to reconstruct temporally coherent geometry us-
ing multi-video data from only a handful of cameras dis-
tributed around a scene. The geometry models obtained
that way enable us to render the dynamic scene from ar-
bitrary viewpoints in high quality, using image-based ren-
dering techniques we investigated earlier [1]. In this paper,
however, we focus on the aspect of spatio-temporal recon-
struction, a computer vision problem that is a primary focus
of research interest.

A consistent mathematical model for reconstruction ap-
proaches are weighted minimal surfaces, which minimize
an energy functional given as a surface integral of a scalar
valued error function. The variational formulation of these
kind of problems leads to a surface evolution PDE. Faugeras
and Keriven [2] analyzed how minimal surfaces can be em-
ployed for 3D reconstruction of static scenes from multiple
views. This technique was recently extended to simultane-
ously estimate the radiance of surfaces, and demonstrated to
give good results in practice [3]. Another well-known tech-
nique which utilizes minimal surfaces is Geodesic Active

Contours [4]. While originally designed for segmentation
in 2D, it quickly became clear that it could be generalized
to 3D [5], and also applied to other tasks. It is particularly
attractive for modeling surfaces from point clouds [6].

In [7], we gave a mathematical analysis of weighted
minimal hypersurfaces in arbitrary dimension and for a
general class of weight functions. We derived the Euler-
Lagrange equation yielding a necessary minimality condi-
tion. We employ the mathematical foundations thus estab-
lished in [8] in order to introduce a space-time reconstruc-
tion approach. In this approach, smoothly varying geometry
is recovered as a three-dimensional hypersurface embedded
in space-time. The intersections of this hypersurface with
planes of constant time are two-dimensional surfaces, which
yield the geometry of the scene in a single time instant. Our
approach defines an energy functional for the hypersurface.
The minimum of the functional is the geometry which opti-
mizes photo-consistency as well as temporal smoothness.

In our previous work, we employed level sets in order
to solve the resulting PDE. Although the results are good,
time and memory requirements are extremely high. In this
paper, we will argue that an implementation based on trian-
gle meshes is preferrable. Our main contribution is a way
to evaluate the differential operator for a hypersurface given
by a collection of triangle meshes, which is much more dif-
ficult to achieve than in the level set case. In fact, we have
to resort to local level set representations. We arrive at an
implementation that is both more efficient as well as more
accurate than our previous approach.

In Sect. 2, we will introduce the mathematical founda-
tions of the algorithm and give a rigorous definition of our
method in terms of an energy minimization problem. Sect. 3
demonstrates how the minimization can be performed as a
surface evolution implemented using triangle meshes. Im-
plementation details are discussed in the second part of
Sect. 3, where we describe our parallel scheme which com-
putes the evolution equation. We also propose algorithms
necessary to evaluate the more involved terms of the equa-
tion. Results obtained with real-world video data are pre-
sented in Sect. 4.



2. SPACE-TIME 3D RECONSTRUCTION

In this section, we briefly review the mathematical founda-
tions of our 3D reconstruction algorithm, which were pre-
sented in [8]. We assume that we have a set of fully cal-
ibrated, fixed cameras. The input to our algorithm are the
projection matrices for the set of cameras, as well as a video
stream for each camera. We want to obtain a smooth surface
Σt for each time instant t, representing the geometry of the
scene at that point in time. The surfaces shall be as con-
sistent as possible with the given video data. Furthermore,
as in reality, all resulting surfaces should change smoothly
over time.

2.1. Mathematical Foundations

To achieve these desirable properties, we do not consider
each frame of the sequences individually. Instead, we
regard all two-dimensional surfaces Σt to be subsets of
one smooth three-dimensional hypersurface H embedded in
four-dimensional space-time. From this viewpoint, the re-
constructed surfaces

Σt = H ∩
(

R
3, t

)

⊂ R
3

are the intersections of H with planes of constant time. Be-
cause we reconstruct only one single surface for all frames,
the temporal smoothness is intrinsic to our method.

However, we have to take care of photo-consistency of
the reconstructed geometry with the given image sequences.
We set up an energy functional

A (H) :=

∫

H
Φ dA. (1)

defined as an integral of the scalar valued weight function
Φ over the whole hypersurface. Φ = Φ(s,n) measures the
photo-consistency error density, and may depend on the sur-
face point s and the normal n at this point. The larger the
values of Φ, the higher the photo-consistency error, so the
surface which matches the given input data best is a mini-
mum of this energy functional. In [?], we employed a math-
ematical tool known as the method of the moving frame in
order to prove the following theorem which is valid in arbi-
trary dimension.

Theorem. A k-dimensional surface H ⊂ R
k+1 which

minimizes the functional A (H) :=
∫

Σ
Φ(s,n(s)) dA(s)

satisfies the Euler-Lagrange equation

0 = Ψ := 〈Φs,n〉 − Tr (S) Φ + divH(Φn), (2)

where S is the shape operator of the surface, also known as
the Weingarten map or second fundamental tensor. In the
remainder of this section, we present a suitable choice for
the error measure Φ.

2.2. Continuous Space-time Carving

We need some additional notation for color and visibility of
points in space-time first. Let t denote a time instant, then
a time-dependent image It

k is associated to each camera k.
The camera projects the scene onto the image plane via a
fixed projection πk : R

3 → R
2. We can then compute the

color ct
k of every point (s, t) on the hypersurface:

ct
k(s) = It

k ◦ πk(s).

Here, the image It
k is regarded as a mapping assigning color

values to points in the image plane.
In the presence of the surface Σt, let νt

k(s) denote
whether or not s is visible in camera k at time t. νt

k(s)
is defined to be one if s is visible, and zero otherwise.

An error measure can now be defined as

ΦS(s, t) :=
1

Vs,t

l
∑

i,j=1

νt
i (s)ν

t
j(s) ·

∥

∥ct
i(s) − ct

j(s)
∥

∥ .

The number Vs,t of pairs of cameras able to see the point s

at time t is used to normalize the function.
The same functional for regular surfaces in R

3 was in-
troduced by Faugeras and Keriven [2] for static scene recon-
struction. As an additional constraint, we enforce temporal
coherence in the form of temporal smoothness of the result-
ing hypersurface, which makes our method ideal for video
sequences. The error functional can be minimized using a
surface evolution implemented on a triangle mesh, as de-
rived in the next section.

3. TRIANGLE MESH EVOLUTION

In order to find the minimum of the energy functional, we
have to find a solution to the Euler-Lagrange equation (2)
according to our theorem. An efficient way to do this is to
rewrite it as a surface evolution [9]. Because of the large
amount of computations and memory required, a parallel
implementation is necessary.

3.1. Evolution Equation

A surface H which is a solution to the Euler-Lagrange equa-
tion Ψ = 0 is likewise a stationary solution to a surface
evolution equation, where Ψ describes a force in the normal
direction:

∂

∂τ
Hτ = Ψn. (3)

If we start with an initial surface H0 and let the surface
evolve using this equation, it will eventually converge to
a local minimum of A. This surface evolution can be im-
plemented using the well-established level set method [10].



Fig. 1. On a grid aligned with the normal, a local level set
function is initialized as the signed distance transform to
the mesh in the adjacent time steps in order to compute the
hypersurface curvature.

In this paper, however, we will discuss how it can be imple-
mented using a triangle mesh representation of the geometry
in each time step, and compare it with the original approach.

The main difficulty is to compute the curvature related
terms for a hypersurface which is represented by per-frame
triangle meshes with no inherent interconnectivity informa-
tion. For this, we construct local level set representations of
the hypersurface. In the mesh vertex where the differential
operator is to be evaluated, we place a 53-grid aligned with
the normal vector. The size of the grid is chosen such that
it covers the next two adjacent triangles. Using the grid, we
can compute div(Φ ∇u

‖∇u‖ ) using finite differences, where u

is the signed distance function to the local surface region.
This corresponds to evaluating 〈Φs,n〉 − Tr (S) Φ, see [8].
Since the error metric does not depend on the normal, the
last term of Ψ is zero.

Each mesh vertex is then evolved in the normal direction
according to a simple forward-difference scheme, where the
time step is chosen so that a maximum velocity is not ex-
ceeded.

3.2. Implementation

For each frame the surface geometry is represented by a
mesh. The initial mesh to start the evolution is given by
the image based visual hull, computed as the intersection of
the backprojected silhouette cones of the objects to be re-
constructed. One easily calculates that there is a massive
amount of data and computation time involved if the se-
quence is of any reasonable length. In fact, it is currently
not yet possible to store the complete data together with
all images of all video sequences within the main mem-
ory of a standard PC. A parallel implementation distributing
the workload and data over several computers is therefore
mandatory.

In our implementation, each process is responsible for
the evolution of one mesh at constant time ti. The differen-
tial operator must be evaluated for each vertex of the mesh.
According to the previous section, we need the surface ge-
ometry from up to two frames apart from the current frame
in order to evaluate the second order terms. Thus, this ge-
ometry has to be communicated over the network. In addi-
tion, each process needs to store the image data of its own
video frame and the two adjacent frames. After each itera-
tion, the server process may poll the current geometry from
any of the other processes in order to give the user feedback
about the current state of the iteration. The iteration stops
when the flow field is sufficiently close to zero.

Because the initial mesh topology may be different from
the final result, we have to merge or split parts of the mesh
as required. This process is quite complicated, and not pre-
sented in detail here. Instead, the reader is referred to [11].

4. RESULTS AND DISCUSSION

In order to test our algorithm, we run it on real-world 320×
240 RGB video sequences of a ballet dancer, recorded at 15
frames per second. All input images are segmented into
foreground and background using the thresholding tech-
nique described in [12]. Consequently, we can compute the
visual hull to get a starting volume for the PDE evolution.
For our test runs, we choose a 50 frame long part of the se-
quence with the depicted frame in the middle. Our program
ran on a Sun Fire 15K with 75 UltraSPARC III+ processors
at 900 MHz, featuring 176 GBytes of main memory. In av-
erage, we need around one hundred iterations of the surface
evolution until the hypersurface has converged to the final
result. We achieve very good photo-consistency, as can be
observed when the model is rendered with projective textur-
ing from a novel viewpoint, Fig. 2. Each iteration requires
3 minutes with an average number of 8500 mesh vertices.

In comparison to the level set implementation ??, the
mesh based surface evolution requires much less evalua-
tions of the error function, which is comparatively difficult
to compute. Memory requirements are also greatly reduced,
because the level set method requires storing a lot of tem-
porary data for each cell in order to be efficient. The adap-
tive mesh geometry requires less data transfer between pro-
cesses than the fixed level set grid, which also leads to an
additional speedup. Another advantage is that the error met-
ric is guaranteed to be evaluated exactly on a point of the
surface, so the precise location of the local minimum can
be obtained with more accuracy. In fact, with a fixed grid,
it can theoretically happen that the minimum is missed, re-
sulting in an incorrect reconstruction.

A problem of meshes is, of course, that topology
changes are difficult to implement. However, we found that
they do not require much computational overhead.



(a) Initial Mesh (Visual Hull) (b) Final Mesh after 90 iterations

Fig. 2. Initial and final mesh for a single frame, projectively textured as well as with color-coded curvature (Red: positive,
Blue: negative, Green: close to zero). Photo-consistency has improved a lot in the final result.

5. SUMMARY AND CONCLUSIONS

Our method takes into account all frames of a multi-video
sequence simultaneously. The idea is to optimize photo-
consistency with all given data as well as temporal smooth-
ness globally. The algorithm is formulated as a weighted
minimal surface problem posed for a 3D hypersurface in
space-time. Intersecting this hypersurface with planes of
constant time gives the 2D surface geometry in each sin-
gle time instant. The energy functional defining the min-
imization problem enforces photo-consistency, while tem-
poral smoothness is intrinsic to our method. The improved
implementation that we have presented in this paper com-
putes the surface evolution using a direct mesh representa-
tion of the geometry instead of a level set. In comparison to
our previous work, it is faster and more memory-efficient.
We also obtain more accurate reconstruction results that can
be directly visualized using standard graphics hardware.
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