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ABSTRACT

Many limitations of diffusion MRI are due to the instabil-
ity of the model fitting procedure. Major shortcomings of
the model-based approach are a partial information loss due
to model simplicity, long scan time requirements due to fit-
ting instability, and the lack of knowledge about how the pa-
rameters of a given model would respond to previously un-
seen microstructural changes, possibly failing to detect cer-
tain previously unseen pathologies. Here we show that dif-
fusion MRI pathology detection is feasible without any mod-
els and without any prior knowledge of specific pathological
changes whatsoever. Instead, raw q-space measurements are
used directly without a model, only healthy population data
is used for reference, and any deviations in a patient dataset
from the healthy reference database are detected using nov-
elty detection methods. This is done in each voxel indepen-
dently, i.e. without spatial bias.

Index Terms— Model-free diffusion MRI, novelty detec-
tion

1. INTRODUCTION

Microstructural diffusion MRI consists of sampling the diffu-
sion space (q-space) extensively, fitting a model to the mea-
surements, and interpreting the estimated model parameters.
Herein, by the term “model” we mean any handcrafted sim-
plifications, i.e. physical models, mathematical signal repre-
sentations, handcrafted calculations. Popular models include
diffusion tensor imaging, diffusion kurtosis imaging, andneu-
rite orientation dispersion and density imaging.

1.1. Current limitations of diffusion MRI

Many limitations of diffusion MRI are due to the instability
of the model fitting procedure. Model fitting is ill-posed, par-
ticularly it cannot cope well with the data noise.

On one hand, this requires models to be simple enough for
the fitting to work stably. It has been shown that the number
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of free parameters should be about 4 or 5 rather than 10 or
11 such that model complexity is appropriate for data from
clinical MRI scans [1]. Besides, the models are handcrafted,
which means that the reduction of degrees of freedom (e.g.
from dozens of q-space measurements to about 4 or 5 model
parameters) discards information in a suboptimal way [2].

On the other hand, model fitting requires high numbers of
q-space samples to avoid instabilities. This causes long scan
durations and high costs, and makes advanced protocols inap-
plicable if time is an issue, i.e. in case of urgency or for pa-
tients who are uncooperative, uncomfortable or unwell. The
number of q-space samples required for fitting is dispropor-
tionate – approaches to estimate model parameters without
fitting achieve twelve-fold shorter scan durations [3, 4, 2].

Besides, all model-based approaches require studying the
relationship between model parameters and microstructural
tissue changesspecificallyfor each given disease and diffu-
sion model. In other words, it is not known how the parame-
ters of a given model would respond to previously unseen mi-
crostructural changes, and whether unstudied changes would
go undetected.

1.2. Model-based approaches without fitting

1.2.1. Analytical solutions

Analytical solutions of model measure estimation [3, 4] re-
quire considerably shorter scan duration and processing dura-
tion compared to model fitting. They are limited to specific
model measures and acquisition schemes.

1.2.2. Approximation

Simulations of simplified tissue models with extensive sets
of diffusion weightings [5, 6] indicate that standard model
fitting procedures can be replaced by approximation meth-
ods. Moreover, the feasibility of model measure estimation
in a clinical setting without model fitting has been recently
demonstrated, allowinga drastic reduction of scan duration
by a factor of twelve[2].



1.3. Model-free approach

The possibility to estimate tissue properties of interest (such
as tissue type and pathology) directly from raw q-space data
without using any models has been recently presented [2].
This data processing isoptimalin the sense that it performs a
state-of-the-art data transformation (deep learning [7])which
minimizes the output error for a training set. Its drawback is
the requirement for labeled training data. This drawback is
addressed in the present work.

1.4. Proposed approach

As a complement to the previously proposed model-free
method [2] which is trained on labeled data, we herein pro-
pose a model-free method that does not require abnormal data
for training. In the herein proposed model-free novelty-based
approach, only healthy population data (or any otherwise
“uninteresting” data) is used for reference. Any deviations
in a patient dataset from the healthy reference database are
detected using novelty detection [8] methods. This is done in
each voxel independently, i.e. without spatial bias.

1.5. Additional remarks

The distinction between the aforementioned families of meth-
ods is in some cases smooth and open to interpretation. For
instance, simple models such as the apparent diffusion coef-
ficient can be considered closed-form solutions; least squares
fitting can be implemented either by numerical procedures or
in closed form (by precomputing the inverse of the system
matrix), whereas maximum-likelihood-basedfitting is usually
iterative.

2. METHODS

To circumvent numerous drawbacks of the previous ap-
proaches as discussed in Section 1, we propose a method
that requires neither models nor labeled training data.

2.1. Model-free novelty-based diffusion MRI

In model-free novelty-based diffusion MRI, the q-space mea-
surements are used directly without a model, and abnormal-
ities are detected by means of novelty detection. For this
purpose, a database of “uninteresting” q-space data is con-
structed, and deviations from this data-driven notion of “nor-
mality” are detected by novelty detection methods [8]. A
natural choice for “normal” data are healthy data (as used
herein). For other options, see Section 4.

In our framework, one data sample is one voxel, and itsn
features are the q-space measurements and other image con-
trasts collected into a feature vector.

We use Matlab (The MathWorks, Natick, MA, USA)
and a novelty detection toolbox [9, 8]. The “normal” data

is affinely scaled to the interval[0; 1] along each dimension
individually, and the test data is scaled using the same trans-
formation (i.e. not exactly to the same interval, but into the
same data representation). We use a simple novelty detection
method that calculates the Euclidean distance of each tested
data point inn-dimensional feature space to its nearest neigh-
bor from the “normal” dataset. The less usual the tested data
point is, the higher is its distance to any of the normal data
points, and thus the higher is its novelty score, measured in
arbitrary units. The novelty scorer(x) for a tested data point
x is thus

r(x) = min
y∈Y

d(x, y), (1)

whereY is the “normal” set and

d(x, y) = ‖x− y‖2 =

√

√

√

√

n
∑

i=1

(xi − yi)
2 (2)

is the Euclidean distance betweenx and a “normal” sampley.
This is one of the most straightforward novelty detec-

tion methods. However, using q-space signalsx, y directly
without diffusion models and using novelty detection (i.e.do-
ing without any prior knowledge of pathology) are novel ap-
proaches which allow to circumvent numerous drawbacks of
previous approaches, as detailed in Section 1.

The bottleneck of the algorithm is the computation of the
pairwise distance matrix between the tested samples and the
“normal” database. To balance between computation duration
and memory use, we used vectorization and recursive splitting
of the data into smaller chunks.

Experiments with other novelty detection methods were
performed for comparison. Thek-nearest-neighbors (k-NN)
approach [10] calculates the novelty score as

r(x) =
1

k

∑

y∈Nk(x)

d(x, y), (3)

whereNk(x) is the set of thek nearest neighbors of the tested
pointx among the “normal” setY :

Nk(x) ⊂ Y, |Nk(x)| = k, (4)

∀y ∈ Nk(x) ∀ỹ ∈ (Y \Nk(x)) : d(x, y) ≤ d(x, ỹ). (5)

For k = 1, Eq. (3) corresponds to the nearest-neighbor ap-
proach, Eq. (1).

We also tried novelty detection based on kernel density
estimation [11] (KDE), i.e.r(x) =

∑

y∈Y K(x, y), with var-
ious kernelsK(·, ·) and radii, and the one-class SVM [12]
with various parameter sets.

2.2. Data

The in vivo protocols were approved by our institutional
review board and prior informed consent was obtained.
Five multiple sclerosis patients were scanned on a 3T GE



MR750 MR scanner (GE Healthcare, Waukesha, WI, USA)
equipped with a 32-channel head coil using echo-planar imag-
ing and a diffusion spectrum [13] uniform random sampling
pattern with 167 q-space samples,bmax = 3000 s/mm2,
TE = 80.3ms, TR = 5.4 s, FOV = 24 cm× 24 cm× 12 cm,
isotropic voxel size2.5mm, ASSET factor2. FLAIR-, T1-
and T2-weighted images were acquired for validation of
diffusion-based lesion segmentation. The data underwent
FSL topup distortion correction [14].

2.3. Validation

State-of-the-art automatic segmentation [15] (based on non-
diffusion images with spatial priors) into healthy white mat-
ter (WM), grey matter (GM), cerebrospinal fluid (CSF) and
multiple sclerosis lesions (Fig. 1a) was used in comparisonto
our proof-of-concept model-free novelty-based segmentation
(based on diffusion images without spatial priors).

The healthy reference database is constructed from the
healthy voxels (as determined by automatic non-diffusion
segmentation) of four patients, and tested on the fifth patient.
The healthy database thus contains about300 000 healthy
samples (voxels) and the test dataset contains about90 000
healthy and diseased samples. Using healthy volunteers as
the healthy database yielded very similar results (not shown).

3. RESULTS

Model-free novelty detection of q-space data applied to a mul-
tiple sclerosis patient dataset is shown in Fig. 1b. Gold stan-
dard multiple sclerosis lesion segmentation based on FLAIR-,
T1- andT2-weighted images and spatial priors is shown for
comparison in Fig. 1a.

The concordance between the gold standard lesion seg-
mentation and the novelty score obtained by our method is
quantified in terms of the receiver operating characteristic in
Fig. 2. The area under the curve (AUC) is0.82. Computation
time was about two minutes on a laptop computer.

The AUC was minimally higher fork-NN, with a maxi-
mal value of0.83 attained atk = 40. The AUC was slightly
higher for one-class SVM (experiments only with a small sub-
set of data due to long computation time; not shown) at the
cost of longer computation and the need for parameter tun-
ing. KDE-based novelty detection did not detect lesions well;
instead, it yielded very different values for healthy WM, GM
and CSF instead of a uniformly low novelty score.

4. DISCUSSION AND CONCLUSIONS

We demonstrated the feasibility of a diffusion MRI processing
method that is sensitive to microstructural changes without
using models and without prior knowledge about the impact
of the changes on the signal. This alleviates the drawbacks of
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Fig. 1. Feasibility of model-free novelty-based diffusion
MRI. (a) Standard segmentation of tissue types WM/GM/CSF
(shown in white/grey/blue) and multiple sclerosis lesions
(shown in red). (b) Abnormality score obtained from dif-
fusion MRI data without any models and without any prior
knowledge of disease.

model fitting and provides the potential for automatic detec-
tion of understudied abnormalities.

Results ofk-NN are stable across different choices ofk.
For k = 1 (i.e. nearest neighbor) results are good and fast
to compute (taking the minimum rather than sorting). KDE-
based methods are less appropriate because the density of the
points in feature space is highly heterogeneous. As extreme
examples, CSF voxels are abundant and all very similar (high
density in feature space), whereas each voxel in the corpus
callosum is almost unique (low density in feature space).

Disparity of the results compared to FLAIR-based seg-
mentation can be partly attributed to an unequal impact on the
FLAIR signal vs. the q-space signal of various subtle disease-
related effects.

The setting is a model-free framework [2], i.e. using the
raw q-space data directly without any models. This avoids
the problems of an unstable model fitting procedure which on
one hand requires long scan durations [2], and on the other
hand requires model simplicity [1] and thus causes informa-
tion loss [2].

Moreover,the model-free approach otherwise would re-
quire supervised training with the lesion class, so that the
proposed novelty-based approach is its ideal complement. It
can be applied in situations where complete knowledge of all
disease effects on diffusion properties cannot be obtained.

Additional imaging contrasts can be combined with raw
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Fig. 2. Receiver operating charac-
teristic for novelty-based results of
Fig. 1. The area under the curve is
0.82.



q-space data to gain additional information, as previously
shown [2]. Spatial variations of “normality” could also be
considered. Future work will focus on treating q-space data
as additional channels in multiparametric imaging, merging
different resolutions and nonlocal information, and applying
the supervised model-free [2] and novelty-based model-free
methods to various conditions.

Besides healthy data, other studies might include com-
mon, well-detectable diseases into the “uninsteresting” data-
base, such that rare or previously unknown disease effects on
q-space signal are detected as deviations from the “known”.
Also a process of elimination can be implemented by testing
against several databases containing different conditions.

The danger of biasing the healthy database by asymp-
tomatic patients can be reduced by using anomaly detection
(as opposed to novelty detection) to detect self-inconsistencies
(outliers) within the database itself.

Many current diffusion MRI models have a limited com-
plexity in order to allow a stable fit [1] (limited number of free
parameters). In contrast, we show that fitting is not required.
Thus, models can be more complex (more accurately describe
the tissue microstructure) to guide the understanding of mi-
crostructure effects on q-space signal, the design of q-space
sampling schemes sensitive to disease, and the simulation-
based training [5, 6] of fitting-free methods.

To summarize: If a condition affects the q-space signal
in a measurable way, the proposed method will mark it as
a deviation from normal data. This happens regardless of
any model-based simplifications or any prior knowledge of
the disease effect on the q-space signal.
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