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Introspective Classification for Robot Perception
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Abstract—In robotics, the use of a classification framework
which produces scores with inappropriate confidences will ulti-
mately lead to the robot making dangerous decisions. In order
to select a framework which will make the best decisions, we
should pay careful attention to the ways in which it generates
scores. Precision and recall have been widely adopted as canonical
metrics to quantify the performance of learning algorithms,
but for robotics applications involving mission-critical decision
making, good performance in relation to these metrics is insuffi-
cient. We introduce and motivate the importance of a classifier’s
introspective capacity: the ability to associate an appropriate
assessment of confidence with any test case. We propose that
a key ingredient for introspection is a framework’s potential to
increase its uncertainty with the distance between a test datum
its training data.

We compare the introspective capacities of a number of
commonly used classification frameworks in both classification
and detection tasks, and show that better introspection leads
to improved decision-making in the context of tasks such as
autonomous driving or semantic map generation.

I. Introduction

In robotics, the outputs of our classification frameworks are
intended to be used to make decisions. We want the output
of a classifier to help the robot decide whether to stop at a
traffic light, whether to slow down in front of a pedestrian,
or how to populate a semantic map. The processes by which
we go from data to decision must be very carefully examined
not least when our robots’ behaviours can impact the safety
of humans sharing their workspace.

A common way to improve a robot’s interactions is to give
it prior information in the form of a semantic map, informing
the robot about how its environment behaves and how it
can interact with it. In almost all safety-critical applications
these maps are hand-made, because the current state-of-the-
art solutions to automatic mapping are not robust enough to
ensure the high quality of maps required for safe, autonomous
robot operation.

Following classical decision theory, in situations where a
poor choice of action can incur a large cost (e.g. driving
forwards into another vehicle, or incorrectly placing a par-
ticular semantic label in a map), a robot will only choose that
action if its classifier is supremely certain. In practice, we
see that commonly-used classification frameworks can assign
extremely high certainty or confidence to classifications which
turn out to be incorrect. In order to avoid these large costs, it
follows that when our classifiers make mistakes they should
do so only with high uncertainty.

For example, a classification error can occur when the
classifier is presented with a test datum which is unlike
anything it saw during training. This could be as a result
of the training set not containing the true class of this test
datum, or because it is a new viewpoint of an existing class.
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In the context of autonomous driving, the same parked car
can appear very differently given changing weather or time of
day. These new and unusual test data are common in practice
since the training data can never be fully representative of the
continually evolving and complex environments in which our
robots operate. In this situation, we argue that the appropriate
response is for our classifier to respond with high uncertainty.

There is a tendency to choose one particular classification
framework over another based on the standard metrics of
classification: precision and recall. Here we show that these
are insufficient to characterise whether a classifier will provide
appropriate uncertainties. Without these appropriate uncertain-
ties, our robots are doomed to make costly and potentially
catastrophic decisions .

Therefore, rather than using a classifier which makes correct
and incorrect decisions with similarly high confidence, it is
preferable to use a classifier which makes mistakes only with
high uncertainty, and correct classifications with high certainty.
Hence, we seek classifiers with the capacity to adjust the
confidence of a particular classification on the basis of how
‘qualified’ they are given their own prior knowledge, embodied
by their training data. If a classification framework leads to
an overconfident estimate of the class label, then the entire
decision making process may be ineffective. Our work inves-
tigates this introspective capacity in a number of classification
frameworks commonly used in robotics: the Support Vector
Machine (SVM), LogitBoost, the Random Forest, the Gaussian
Process Classifiers (GPC), and the Informative Vector Machine
(IVM). We use the term ‘introspective’ to describe a classifier
that gives appropriate probabilities, thus making true classifi-
cations with confidence and makes mistakes only with high
uncertainty.

We carefully examine how these classification frameworks
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use distance between training and test data to moderate the
confidence in a classification. Intuitively, a test datum which is
far away in feature space from the training data is more likely
to be misclassified than one which lies in the middle of a dense
cluster from one class, and thus the classification should be
made with greater uncertainty. Most classification frameworks
make use of a model, such that instead of calculating a distance
from the test datum to all the training data, they calculate
a distance between the test datum and the model (which
can be further affected by the use of a kernel, effectively
warping the feature space). Therefore, the choices of model
and measure of distance greatly affect the uncertainty with
which classifications are made. Some frameworks consider
one single discriminant to separate the classes, while others
average over a variety of possible discriminants. The results
we present indicate that the latter tends to be characteristic of
classifiers with a better sense of introspection, as a result of
their ability to predict the variance from the responses of the
individual discriminants for a test datum.

The key contributions of this work are:

• The concept of a classifier’s introspective quality, regard-
ing how it expresses the relevance of its prior information
when making detections,

• A comparison of how commonly-used classification
frameworks generate probabilities, and insights regarding
whether they are likely to display introspective qualities
from a theoretic standpoint,

• Results to show the introspective behaviour of those clas-
sification frameworks when applied to tasks commonly
tackled in robotics, such as classification and detection,
and

• The further application of those classifiers to decision-
making problems, and results which indicate that intro-
spective classification leads to better decision-making.
This motivates the opinion that considering the intro-
spective quality of classification frameworks is critical in
robotics.

• All of the above are evaluated using publicly-available
data sets which are relevant to mobile robotics.

Some of this work has appeared in Grimmett et al. [2013].
Here we present a more detailed treatment of the concepts and
substantial evaluation on two additional publicly available data
sets, along with the important implications of introspection in
terms of decision making.

We start by offering a theoretical insight into why some
classification frameworks may exhibit greater introspective
qualities than others. We do so by examining the methods
by which commonly used algorithms generate probabilities
(Section III), and specifically detailing the key methods for
the classifiers we are comparing (Section IV). Then we
demonstrate the various behaviours of those classifiers in
several scenarios related to autonomous driving. We consider
the similar but nuanced cases of classification (estimating
the likelihood that an image contains one particular class of
object over another, Section V-C) and detection (estimating
the likelihood that an image contains one privileged class of
object over a background class comprising all other classes,

Section V-D). Finally, we demonstrate the behaviour of the
classifiers in terms of decision making (in Section V-E). As
we vary the relative costs of false positive and false negative
errors,

II. RelatedWorks

For a number of years now robots have routinely con-
sumed higher-order abstractions from raw sensor data. Suc-
cessful applications are as diverse as the detection of ground
traversability (e.g. Thrun et al. [2006]), the detection of lanes
for autonomous driving (e.g. Huang and Teller [2010]), the
consideration of classifier output to guide trajectory planning
and exploration (see, for example, Meger et al. [2008], Velez
et al. [2011]) or the active disambiguation of human-robot
dialogue [Tellex et al., 2012]. These works commonly exploit
classification output on a model-trust basis; systems are op-
timised with respect to precision and recall, and egregious
misclassifications (including vastly over-confident marginal
distributions obtained from some classification frameworks)
are accepted as par for the course. However, the suitability
of the classification framework employed with respect to its
introspective capacity has not previously been considered in
robotics. Thus, we consider motivating, defining, and inves-
tigating introspection in a robotics context to be the primary
contribution of our work.

The concept of introspection as introduced here is closely
related to considerations in active learning, where uncertainty
estimates and model selection steps are often employed to
guide data selection and gathering for an incremental learning
algorithm. Kapoor et al. [2010], for example, present an active
learning framework for object categorisation using a GPC
where classifications with large uncertainty (as judged by
posterior variance) lead to a query for a ground-truth label and
are subsequently used to improve classification performance.
Joshi et al. [2009] address multi-class image classification
using SVMs and propose criteria based on entropy and best-
versus-second-best measures (see Section III-B) for disam-
biguating uncertain classifications. Holub et al. [2008] propose
an information-theoretic criterion that maximises expected
information gain with respect to the entire pool of unlabelled
data available. Hospedales et al. [2013] discuss optimising
rare class discovery and classification using a combination of
generative and discriminative classifiers. In the related field of
reinforcement learning, the authors of Li et al. [2008] present a
general framework which determines whether enough labelled
data have been provided to constrain certain problems. If the
learners space of solutions is insufficiently constrained such
that its output cannot be guaranteed to be within ϵ of the true
solution with probability 1−δ, it asks for more labelled data.
This accuracy guarantee is same for both false positive and
false negative errors, and thus the framework is not appropriate
for situations in which costs associated with those errors are
imbalanced. In the context of autonomous systems, the costs
are commonly imbalanced.

Our treatment of introspection is further informed by an
ongoing discussion in the machine learning community re-
garding how best to account for variance in the space of
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feasible classifier models when training on, essentially, an
incomplete set of data. For example, Tong and Koller [2002]
present an incremental algorithm for text classification using
SVMs and the notion of a version space, the set of consistent
hyperplanes separating the data in a feature space induced
by the kernel function. Zhang et al. [2012] introduce a max-
margin classifier achieving better generalisation to unseen test
data given a limited training corpus. Here, distinctiveness of
training instances is assessed using the local classification
uncertainty. A global classifier then incorporates these uncer-
tainties as margin constraints, yielding a classifier that places
less confusing instances farther away from the global decision
boundary. We share the intuition that accounting for variance
in version space when selecting a model leads to an increased
introspective capacity. As a secondary contribution, therefore,
our results serve to further corroborate this intuition.

The semantic mapping of a robot’s workspace has become
a popular line of research in recent years. A rich body of work
now exists in which semantic labels are generated based on a
variety of sensor modalities and classification frameworks (see,
for example, Anguelov et al. [2005], Martı́nez-Mozos et al.
[2007], Posner et al. [2009], Douillard et al. [2008], Pronobis
and Jensfelt [2012], Sengupta et al. [2012], Paul et al. [2012]).
We consider introspection to be paramount to reducing the
human effort required to automatically generate semantic maps
which we can then use for autonomous operation.

Niculescu-Mizil and Caruana [2005] recognise that the
question of whether the probabilities produced by various
classification frameworks are appropriate is important, a sen-
timent we clearly share. They conclude that poorly-calibrated
frameworks (in a probabilistic sense) can be effectively cor-
rected using an additional learned calibration using either
Platt’s method or isotonic regression. They find Random
Forests to perform well pre-calibration (although they did
exhibit a tendency to be under confident, consistently with our
findings), and that SVMs perform well after post-calibration.
They associate the need for further calibration specifically to
the classifiers using max-margin optimisation, rather than the
treatment of distances in feature space and the distribution of
models over version space, as we do. They also do not explore
the effects of making decisions using these probabilities.

Berczi et al. [To appear 2015] have confirmed the intro-
spective power of GPCs over SVMs, employing them to avoid
areas of terrain for which the height may be misclassified.

III. Introspection, Uncertainty, and DecisionMaking

In this section we first describe a crucial property we expect
classification frameworks to require in order to be introspec-
tive: marginalisation over possible models (Section III-A).
Then we describe some measures of uncertainty, motivating
the use of normalised entropy as the most appropriate measure
(Section III-B). We finish by describing a manner in which
to obtain decisions from probabilistic classification results,
and motivate the practice of choosing outcome costs directly
rather than adjusting thresholds to modify a robot’s behaviour
(Section III-C).

A. Introspective Capacity

Introspection concerns not the final class decision but rather
the confidence with which this decision is made. The concept
is motivated by the desire to take appropriate action when a
classifier indicates high uncertainty. Our approach to introspec-
tion is grounded in the fact that the often cited assumption of
independent and identically distributed (iid) training and test
data is routinely violated in robotics; in the limit of continuous
operation in the real world, one-shot classifier training is rarely
performed on a complete (or even fully representative) set of
data.

Let a classifier map an input x ∈ !d to one of a set of
classes C = {C1, . . . ,Cc} via an associated label y ∈ {1, . . . ,c},
where c is the number of classes. Prior to training, domain
specific knowledge is often used to constrain the family of
classification models employed (for example in the form of
a kernel or a type of base classifier). Classifier training then
involves learning a set of (hyper-) parameters given a training
dataset {X,Y}, where X = {x1, . . . ,xN} denotes the set of N

feature vectors and Y denotes the set of corresponding class
labels. The training data implicitly give rise to a probability
distribution over the set of all possible models (or hypotheses)
within the chosen family, M, such that

{X,Y}→ p(m | X,Y) , m ∈M. (1)

With a slight abuse of notation, m here denotes any member of
the family of possible models, M. In the following we make
this relationship explicit by conditioning on both a model (or
family of models) as well as on a test datum x∗. Typically,
training leads to the selection of a single model, m̃ from M
such that a prediction y∗ for a new, unseen feature vector x∗
is obtained by approximating

p(y∗ | X,Y,x∗) ≈ p(y∗ | m̃,x∗) , m̃ ∈M. (2)

This is illustrated in Figure 2a. Common examples of this
type of classification framework include SVMs and Boosting
classifiers, where an optimisation is performed to select the
best model given the training data (see Section IV). The
iid assumption here is inherent since it is assumed that m̃

remains the best model for all predictions of unseen data.
Breaking this assumption therefore often renders the chosen
model suboptimal.

An alternative to the single model approach are classifi-
cation frameworks which take into account the entire set of
possible models in the specified family conditioned on the
training data, such that

p(y∗ | X,Y,x∗) ≈ p(y∗ | M,x∗). (3)

This case is illustrated in Figure 2b. Here the shading indicates
the distribution p(m | X,Y) with darker shades indicating
increased probability. To aid intuition, predictions of four
randomly selected members of M are also illustrated. Final
predictions are made by taking into account opinions from all
members of M, often via the computation of an expectation
such as for a GPC (see Section IV). Crucially, when consid-
ering an expectation over all of M, the increased variance in
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feasible (and therefore likely) models at a distance from the
training data leads to a moderation of the class predictions.

Between the two extremes lies the Random Forest, which
chooses a number of differing samples fromM, and averaging
over the responses from these.

We believe that this marginalisation over plausible models in
version space is a key component of an introspective classifier.

B. Characterising Uncertainty

In order to characterise the introspective capacity of a clas-
sification framework, a well-tempered measure of the inherent
uncertainty in the classification output is required. For this
purpose, we use an information-theoretic quantity known as
normalised entropy, HN , defined as

HN = −

c
∑

i=1

p(y =Ci | x) logc

[

p(y =Ci | x)
]

. (4)

This is equivalent to the Shannon entropy measure normalised
by its maximum, which is the entropy of the c-dimensional
uniform distribution, log(c). The result is a measure ranging
between 0 and 1 where a higher value indicates greater

uncertainty in the classifier’s belief, as shown by the blue curve
in Figure 3.

An alternative uncertainty measure proposed in the ac-
tive learning literature is the best-versus-second-best (BvSB)
heuristic [Joshi et al., 2009] which equals 1 minus the
difference between the largest and the second largest class
likelihood estimates, as shown by the red curve in Figure
3. This measure attempts to characterise the reliability of
the maximum likelihood estimate rather than encoding the
shape of the full distribution over class labels. The BvSB
and normalised entropy measures are closely related in the
binary-classification setting, which is that of this paper. We
use normalised entropy throughout the remainder of this work
for two reasons: firstly, it is formed from an information-
theoretic point of view, compared to BvSB which is an ad-
hoc heuristic; secondly, in multi-class settings it considers
the entire distribution over classes, rather than BvSB which
only takes into account only the two classes with the highest
probability.

C. Decision Making

Autonomous robots typically have at their disposal a set of
actions, each of which is appropriate to particular situations.
The difficulty lies in choosing which action to perform when
there is uncertainty about the state of the world. Follow-
ing standard decision theory [LaValle, 2006], we calculate
the expected loss of performing a particular action when
we have a set of likelihoods for each state of the world
(p(C1), p(C2), . . . , p(C|C|)), defined as:

L(a) =

|C|
∑

i=1

L(a,Ci)p(Ci), (5)

where L(a,Ci) is the cost or loss associated with each potential
outcome. We then choose to perform the action a which
minimises this expected loss.

For our decision-making experiments, we later consider a
simple scenario in which there are two states the world can be
in: either there is an object in the way (C2, e.g. a pedestrian,
car, or traffic light), or there is not (C1). There are also two
available actions a ∈ {stop,go}. We wish our robot to stop

if there is an object in its path, or go if the way is clear.
The losses will vary from application to application, but in
the case of autonomous driving it is sensible to associate a
very high cost to performing the go action when there is in
fact an object in the way (C2), resulting in a collision, and
a lesser cost to performing the action stop when the path is
clear (C1), resulting in an unnecessary delay. While inefficient,
this false positive error is more desirable than running a red
light or colliding with another vehicle. Interestingly, in the
case of driver assistance systems (e.g. automatic emergency
braking) the costs are reversed: the loss associated with a
false positive (an un-necessary emergency stop) is very large,
and a false negative (a missed opportunity to perform an
emergency stop) is a less undesirable outcome. In Figure
4a we show the expected losses of the two actions when
there is equal cost associated with each type of error. We
can see that the intersection between the two lines occurs at
p(C1)= p(C2)= 0.5. As we increase the cost of a false negative
(performing the go action when there is a person, C2), the
range of detection probabilities p(C2) which result in a go

action reduces, as seen in Figure 4b. Since an introspective
classifier is uncertain when it makes mistakes, the errors will
be close to p(C2)= 0.5 as the teal distribution in Figure 4c, and
so those errors will largely be subsumed by the stop action.
A less introspective classifier will make more mistakes near
the extremes of the class marginal spectrum (purple in Figure
4c) and so more of those errors will occur in the go region,
resulting in a greater prevalence of very expensive errors.

Thus ideally, as we make the cost of a false negative much
greater than that of a false positive, our classifiers become
more and more cautious, employing safer actions and incurring
less overall cost. Crucially, this relies upon the assumption
that most of a classifier’s mistakes lie in the middle of the
probability spectrum.

Another way to characterise the desirable introspective
property is to consider the proportion of the errors contained in
some window around p(C2) = 0.5, represented by the orange
box in Figure 4d. As we increase the half-length of the
box from 0 to 0.5, we would like the proportion of errors
to increase quickly, and then stabilise as we encompass the
regions of high confidence, represented by the teal curve in
Figure 4e. A less introspective classifier would have errors
near p(C2)= 0 or p(C2)= 1, and so the contained errors would
resemble the purple curve in Figure 4e. We will present curves
resembling these for each classifier from real data in Section
V-E.

Often, the temptation is to tune the costs to steer the robot
towards the ‘desired’ behaviour. Instead, we ought to focus
on whether the costs are correct (because it is usually easier
to quantify these than a probability threshold) and allow the
decision theory to choose the behaviour which is true to
the spirit of the cost function. This is only possible if the
probabilities and uncertainties supplied by the classification
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Fig. 2: An illustration of the two types of classification frameworks considered: (a) during training a single model is selected
to classify an unknown datum x∗ some way removed from the training data; (b) training leads to a distribution over models
which is considered entirely to arrive at the final prediction. This illustration is for the family of linear models (indicated
by solid (a) and dashed (b) lines). Each predictor is further annotated with its individual prediction. The overall predictive
distribution is shown in the bottom right of each subplot. The shading in part (b) indicates the probability weights associated
with individual models. Darker regions contain more weight. Note that the overall predictive distribution in (a) stems from
the single model used and is, in this case, inappropriately confident. In part (b), however, the overall predictive distribution is
moderated by computing the expectation over all models. This gives rise to a much more appropriate uncertainty estimate —
the introspective quality we seek. (Best viewed in colour.)
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measures of uncertainty in the binary classification case.

frameworks are sensible.

IV. Classification Frameworks

We now present a brief overview of the specific classifica-
tion frameworks considered in this work: SVMs, LogitBoost,
the Random Forest, GPCs, and the IVM. The implementations
of these are all off-the-shelf, using popular libraries detailed
in each subsection. The goal is not to find the most accurate
classifier, but rather to examine the consistency of the con-
fidences with which certain decisions are made. We believe
that this consistency in choosing the appropriate decision
given the potential losses is an often ignored and paramount
characteristic of classification frameworks, and that in the
context of safety-critical tasks it could be worth accepting a
decrease in accuracy if it results in an increased introspective

consistency. In the following descriptions of the frameworks
we focus on properties pertinent to introspection, specifically
how the use of distance between data affects the classifi-
cation confidence, and what type of models they use. For
simplicity but without loss of generality, this work considers
predominantly binary classification such that C = {C1,C2}. For
consistency we adhere to notation commonly found in the
literature where a discriminant function is often denoted as
f (·). We note that this is equivalent to a particular model m

as described in the previous section.

A. Support Vector Classification

SVM classification is well established in robotics so that
we provide here only an overview. For a detailed account
the reader is referred to, for example, Burges [1998]. SVMs
are based on a linear discriminant framework which aims to
maximise the margin between two classes. The model param-
eters are found by solving a convex optimisation problem,
thereby guaranteeing the final classifier to be the best feasible
discriminant given the training data. Once training is complete,
predictions on future observations are made based on the
signed distance of the observed feature vector from the optimal
hyperplane, defined by the weight vector w and bias w0, such
that

f (x∗) = w⊤φ(x∗)+w0 =

N
∑

i=1

αiyik(xi,x∗)+w0, (6)

where N is the size of the training set, αi refers to a
Lagrange multiplier associated with datum i, w0 denotes a bias
parameter, φ refers to the feature map, and k(xi,x j) denotes
the kernel function.
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Fig. 4: (a) We have set equal cost to a false positive (take the stop action when there is, in fact, no person: C1) and the false
negative (take the go action when there is a person: C2). The expected losses from the two actions meet at p(C1) = p(C2) = 0.5,
and choose the action which minimises the expected loss.
(b) We have made the cost of a false negative three times the cost of a false positive, which reduces the probability region
for which we choose the go action. By increasing the cost of accidentally hitting a pedestrian, we are trying to create a more
cautious system, which will take the stop action more of the time.
(c) A more introspective classifier (teal) will make most of its mistakes with high uncertainty, when p(C2) is near 0.5. Less
introspective classifiers (purple) will make mistakes with low uncertainty.
(d) As we grow the orange box outward from the centre, we can calculate how many errors are contained for a particular
distribution in (c).
(e) We show the result of plotting the number of errors contained as we grow the orange box for the two idealised classifiers
in (c). The teal (more introspective) classifier catches more errors when the box is small than for the purple (less introspective)
classifier. It also reaches steady-state because there are very few errors around p(C2) = 0 and p(C2) = 1, when the classifier is
confident.

The parameters αi and w0 characterising the discriminant
function are obtained by an optimisation procedure, and αi is
then non-zero only for support vectors xi. The SVM algorithm
selects a particular weight vector (as defined by the support

vectors), which gives rise to a maximum margin separator.

The kernel function amounts to a scalar product between
two data, which have been transformed from d-dimensional
feature space into some higher dimensional space. The nature
of this mapping between spaces is inherent in the choice of
kernel and need not be specified explicitly (the kernel trick).
The regularisation and kernel parameters are learnt using
ten-fold cross-validation. We discuss our choices of kernel
functions in Section IV-F.

In its original form, the SVM classifier output is an uncal-
ibrated real value. A common means of obtaining a proba-
bilistic interpretation is by using Platt’s method [Platt, 1999].
This algorithm was later improved by Lin et al. [2007], which

is implemented in the library we use for all SVM training,
calibration, and testing, LIBSVM [Chang and Lin, 2011].
Here, using a hold-out set not used for classifier training, a
parametric sigmoid model is fit directly to the class posterior
p(y∗ =C2 | f (x∗)), such that

p(y∗ =C2 | f (x∗)) =
1

1+ exp(A f (x∗)+B)
. (7)

The sigmoid parameters A and B are determined using New-
ton’s method with backtracking line search.Note that class
likelihoods are derived here using only a single estimate
of the discriminative boundary obtained from the classifier
training procedure. No other feasible solutions are considered.
Hence, the predictive variance of the discriminant f (x) is
not taken into account while determining probabilistic output
[Rasmussen and Williams, 2006]. Although there is no guar-
antee that the method converges, in general it works very well
and finds the global optimum owing to the convexity of the
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objective function.

B. LogitBoosting Classifiers

Boosting is a widely used classification framework which
involves training an ensemble of weak learners in sequence.
The error function used to train a particular weak learner
depends on the performance of the previous models [Bishop,
2006]. Each weak learner h(x) is trained using a weighted form
of the dataset in which the weights depend on the performance
of the previous classifiers. Predictions from a boosted classifier
are obtained using a weighted combination of the individual
weak learner outputs such that

sign( f (x∗)) = sign

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

M
∑

i=1

wihi(x∗)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

where M is the number of weak learners used.
LogitBoost [Friedman et al., 1998] is a popular choice

for a boosting-based classifier as it natively outputs class
probability estimates following a calibration via a sigmoid.
Weak learners are often chosen to be decision trees and
training is conducted by fitting additive logistic regression
models by stage-wise optimisation (using Newton steps) of the
Bernoulli log-likelihood. The algorithm works in the logistic
framework and yields a predictor function f (x) learnt from
iterative hypothesis training. Cross-validation is used to set
parameters like the learning rate, tree depth, and the number
of boosting rounds. The class-conditional probabilities are
obtained from the predictor function via

p(y∗ =C1 | x∗) =
exp( f (x∗))

exp( f (x∗))+ exp(− f (x∗))
, (9)

which is the same sigmoid used in the SVM in Section IV-A
with parameters A = −2 and B = 0. The procedure possesses
asymptotic optimality as a maximum likelihood predictor
[Friedman et al., 1998, Hastie and Tibshirani, 1990]. However,
the method of converting the output of the predictor function
to class-conditional probabilities is not fully probabilistic and
does not account for variance in the underlying predictor
function. In our experiments we use 500 learners for training.
Throughout this work we use the MATLAB implementation
of LogitBoost for classifier training and testing.

Because the LogitBoost classifier ultimately settles on a
single decision boundary across the input space, we expect
that it will suffer from the same introspective issues as the
SVM.

C. Gaussian Process Classification

Binary classification using a Gaussian Process (GP)
[Williams and Barber, 1998, Rasmussen and Williams, 2006]
is formulated by first introducing a latent function f (x) and
then applying a sigmoid function Φ (similar to the sigmoid
described in Section IV-A, except that the the predictive
variance of the GP is used as well as the predictive mean)
to obtain the prediction p(y∗ = C1 | x∗) = Φ( f (x∗)). A GP
prior is placed on the latent function f (x) ∼ GP(µ(x),k(x,x′))
characterised by a mean function µ(x) and a covariance (or
kernel) function k(x,x′). GPC training establishes values for

the hyper-parameters specifying the kernel function k by
maximising the log marginal likelihood of the training data.

Probabilistic predictions for a test point are obtained in two
steps. First, the distribution over the latent variable correspond-
ing to the test input is obtained using

p( f∗ | X,Y,x∗) =

∫

p( f∗ | X,x∗, f )p( f | X,Y)d f , (10)

where p( f | X,Y) = p(Y | f )p( f | X)/p(Y | X) is the poste-
rior distribution over latent variables. This is followed by
marginalising over the latent f∗ to yield the class likelihood
p(y∗=C1 | X,Y,x∗) as

p(y∗ =C1 | X,Y,x∗) =

∫

σ( f∗)p( f∗ | X,Y,x∗)d f∗. (11)

Exact inference is analytically intractable due to the sigmoid
likelihood function. Instead, we leverage expectation propa-
gation (EP) [Minka, 2001], a method widely used for this
purpose.

The GPC framework offers two key benefits over the
other approaches discussed here [Rasmussen and Williams,
2006]. Firstly, the classification output has a clear probabilistic
interpretation as it directly results in the class likelihood.
In contrast, neither the SVM nor the Boosting framework
provide an inherently probabilistic output in the Bayesian
sense, but instead estimate a suitable calibration. Secondly, and
crucially, the GP formulation addresses uncertainty or predic-

tive variance in the latent function f (x) via marginalisation

(or averaging) over all models induced by the training set
resulting in the estimate p(y∗ =C1 | X,Y,x∗) from Equation
(11). This process also gives rise to the well known property
of increased variance while far away from the data in GP
regression. Again this is in contrast to the SVM or Boosting
estimate p(y = Ci | f̂ ,x∗) that rely on a single discriminant
estimate f̂ : X → Y learnt via minimisation. In the context
of introspection, the ability to account for predictive variance
is a key advantage of Bayesian classification approaches.
Throughout this work we use the GPML toolbox [Rasmussen
and Nickisch, 2010] for GPC training and testing.

D. The Informative Vector Machine

A key drawback of a GPC is its significant computational
demand in terms of memory and run time during training and
testing, more than any of the other frameworks considered
here. This is due to the fact that the GP maintains a mean µ,
as well as a covariance matrix Σ, which is computed from a
kernel function and is of size N×N. A number of sparsification
methods have been proposed in order to mitigate this compu-
tational burden. For efficiency, in this work we adopt one such
sparsification method: the Informative Vector Machine (IVM)
[Lawrence et al., 2002]. The main idea of this algorithm is to
only use a subset of the training points denoted the active set,
I, from which an approximation q( f | X,y) = N( f | µ,Σ) of
the posterior distribution p( f | X,y) is computed. The IVM
algorithm computes µ and Σ incrementally, and at every
iteration j selects the training point (xk,yk) which maximises
the entropy difference ∆H jk between q j−1 and q j for inclusion
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into the active set. As q is Gaussian, ∆H jk can be computed
by

∆H jk = −
1

2
log |Σ jk |+

1

2
log |Σ j−1|. (12)

We use an efficient form of this, the details of which can be
found in Lawrence et al. [2005]. The algorithm stops when
the active set has reached a desired size. We choose this size
to be a fixed fraction q of the training set, which we set to be
0.4. Throughout this work we use the IVM MATLAB toolbox
[Lawrence] for both training and testing.

To find the kernel hyper-parameters θ of an IVM, two steps
are processed in a loop for a given number of times: estimation
of I from θ and minimising the marginal likelihood q(y | X),
thereby keeping I fixed. Although there are no convergence
guarantees, in practice a small number of iterations is sufficient
to find good kernel hyper-parameters.

Importantly for our work, since inference with the IVM
is similar to that with a GPC, the IVM retains the model
averaging described in (11). We argue, therefore, that the IVM
provides a significant and well-established improvement in
processing speed over a GPC while maintaining its introspec-
tive properties (see Section V for details).

E. Random Forests

Random Forests [Breiman, 2001] are made up of an ensem-
ble of decision trees generated via bagging. Bagging (a port-
manteau of “bootstrap aggregating”) involves creating multiple
classifiers using different subsets of some aspect of the training
data, in this case two aspects are bagged simultaneously: the
training data, and the feature dimensions. During testing, the
output p(C2) is the fraction of the individual trees which
classified the datum as being from that class.

The trees contain multiple binary nodes or branches, each
of which thresholds on a particular feature dimension of the
data, learning the threshold which helps split the training data
into the two classes. We have set each tree to use a number
of feature dimensions equal to the square root of the total
number, as recommended by the literature, with a total of
500 trees. Throughout this work we use the Bagged Decision
Tree functions in the MATLAB statistics toolbox (which is
an implementation of Random Forests) for both training and
testing.

This combination of many differing decision boundaries
(one boundary per tree) represents a sampling and then av-
eraging over the version space, similar to the marginalisation
over version space which takes place in the Gaussian process
classifier. A crucial difference is that in the GPC, each possible
model is weighted by its likelihood, and in Random Forests
each tree is weighted equally. However, these trees are care-
fully selected to separate the chosen subset of training data,
so this biasing is in a sense a {0,1} weighting. This could
be thought of as sampling 500 decision boundaries from the
shaded region in Figure 2b and taking an expectation over
their responses. This suggests that they should behave in a
more introspective manner than the other single-discriminant
frameworks like LogitBoost and the SVMs, but perhaps a more
sensitively weighted combination of the trees could perform
better.

F. Kernel Types

Evaluation of the discriminant function for an SVM and the
covariance matrix for GPC inference both require the speci-
fication of a kernel function, k(·, ·). A rich body of literature
exists on different choices of kernels for both frameworks.
However, since our focus here is on a like-for-like compar-
ison of different classification frameworks we choose two
representative kernels rather than performing exhaustive model
selection to optimise performance for a particular application.
Firstly, as an example of the simplest kernel function available,
we consider the linear kernel defined as

kLIN(xi,x j) = xT
i x j+ r, (13)

where r is a constant real number. The linear kernel is an
apt choice where a linear separation of the data in feature
space leads to adequate performance or where computational
efficiency is of the essence. Often, however, a more sophis-
ticated, non-linear kernel is required. In this category we
use the squared exponential (SE) function as a canonical
representative. The SE kernel with length scale parameter l

is defined as

kS E(xi,x j) = exp
(

−
1

2l2
||xi−x j||

2
)

. (14)

In the context of an SVM, the SE function is more com-
monly known as a radial basis function (RBF).

V. Experimental Results

Our experiments investigate the introspective capacity of
the classifiers introduced in Section IV in settings relating
to autonomous driving. Specifically, we focus on two tasks:
the classification of cropped images of road signs, and the
detection of a salient class against a broad background class.
For the detection case, we repeat our experiments across
the three data sets detailed in Section V-A, which together
contain traffic lights, cars, and pedestrians. In investigating
both classification and detection we aim to address the full
spectrum of applications commonly encountered in robotics.
Classification addresses the case where a decision is made
between two, well-defined classes (e.g. two types of traffic
signs). We investigate classifier performance when a third,
previously unseen class is presented. The detection case is
arguably more commonplace, where a single class is separated
from a broad (in terms of intra-class variation) background

class (which is relevant in semantic mapping or detection).
Here, the concept of a previously unseen class does not exist
explicitly: the inherent assumption is that the data representing
the background class capture any non-class object likely to
be encountered. In practice this is rarely true, leading to a
significant number of novel instances which often result in
misclassification. While it could be argued that this issue
is ameliorated somewhat by expanding the dataset used for
training, we propose that the complexity of the feature space
encountered during persistent, long-term autonomy will keep
perplexing even the most expansively trained classifiers.

We then apply a decision-making process to the classifiers
trained for detection, and show how the quality of each
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roadworks ahead right ahead stop keep left
(1500) (688) (780) (298)

lorries prohibited speed limit yield
(420) (1980) (2159)

TABLE I: The seven classes of the German Traffic Sign
Recognition Benchmark (GTSRB) dataset considered in our
work. The numbers in brackets indicate the number of data
available per class.

classifier’s decisions change depending on the values chosen
for the cost function.

We finish by examining the uncertainty with which each
classifier makes errors, and compare the idealised drawings
from Figure 4 to the real curves generated from each of the
three data sets.

A. Datasets

In order to demonstrate the consistency of the introspective
capacities of the various frameworks, we evaluate our experi-
ments on several commonly-used data sets which encompass
several domains of robotics, namely the detection of various
key classes on the road.

1) Traffic Lights Recognition: the Traffic Lights Recogni-
tion (TLR) dataset [of Mines ParisTech, 2010] is a sequence
of colour images taken by a monocular camera from a car
driving through central Paris. The TLR dataset comprises just
over 11,000 frames, in which most of the traffic lights have
been labelled with bounding boxes and further metadata such
as the status of the signal or whether a particular label is am-
biguous (e.g. the image suffers from motion blur, the scale is
inappropriate, or a traffic light is facing the wrong way). A few
traffic lights have been omitted altogether. As recommended
by the authors, we exclude from our experiments any labels of
class ambiguous or yellow signal and any instances which are
partially occluded. We split the dataset into two parts (at frame
7,200 of 11,178), with an approximately equal number of
remaining labels in each part and with no physical traffic lights
in common. Positive data are extracted as labelled. Negative
background data are extracted by sampling patches of random
size and position from scenes in the dataset while ensuring
that the patches do not overlap with positive instances.

2) GTSRB: The German Traffic Sign Recognition Bench-
mark dataset [Stallkamp et al., 2012] comprises over 50,000
loosely-cropped images of 42 classes of road signs, with
associated bounding boxes and class labels. From this dataset
we specifically focus on the seven classes shown in Table I.
The images are resized according to the parameters in Table II,
and then we use the Torralba features from Section V-B for
classification.

Parameter TLR GTSRB DP KITTI

Cropped image height 30 32 96 26
Cropped image width 12 32 48 32
HOG cell size n/a n/a 10 10
N. of orientations n/a n/a 5 6
Final feature dimension 200 200 950 198

TABLE II: The parameters for the features for the TLR and
GTSRB (using Torralba features) and the DP and KITTI data
sets (using HOG features).

3) Daimler Pedestrian: The examples we use come from
the Daimler multi-cue occluded Pedestrian data set (DP) [En-
zweiler et al., 2010], and we use the non-occluded monocular
intensity images. There are over 52,000 positive and 32,000
negative examples split into training and test sets. The images
are resized according to the parameters in Table II, and then
we use the HOG features from Section V-B for classification.

4) KITTI: The KITTI data set [Geiger et al., 2012] com-
prises over 7,400 non-sequential colour images from a camera
pointing out from the front of a car driving through a German
city. The images come with ground truth information for
vehicles, with up to 15 in each frame. The images are cropped
and resized according to the parameters in Table II, and then
we use the HOG features from Section V-B for classification.

B. Features

A rich body of work on the detection and classification of
road signs and traffic lights has established a successful track
record of template-based features for this purpose. Specifically,
we leverage the approach proposed by Torralba et al. [2007] in
which a dictionary of partial templates is constructed, against
which test instances are matched. A single feature consists of
an image patch (ranging in size from 8×8 to 14×14 pixels)
and its location within the object as indicated by a binary mask
(h×w pixels according to Table II). For any given test instance,
the normalised cross-correlation is computed for each feature
in the dictionary. Therefore, per instance (or window, in the
detection case) a feature vector of length d is obtained, where
d is the size of the dictionary. We found empirically that d >

200 leads to negligible performance increase in classification.
Throughout our experiments we therefore set d = 200.

For the Daimler Pedestrian and KITTI data sets, we have
chosen to use Histogram of Oriented Gradients (HOG) [Dalal
and Triggs, 2005] features because the classes in question
(pedestrians and cars, respectively) have much greater varia-
tion than traffic lights, and so a gradient-based feature method
performs better than a template matching-based method, which
is more appropriate for classes with consistent appearance. We
use the implementation in vlfeat [Vedaldi and Fulkerson, 2010]
and use parameters as detailed in Table II.

C. Introspection in Classification

This section investigates classification output when the clas-
sifiers are trained on two classes, and then a third, previously
unseen class is presented to the classifier. This is an important
experiment because classifiers deployed in real-world appli-
cations will encounter images which do not closely resemble
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Training data Test data
Data set Positives Negatives Positives Negatives

TLR 250 500 1000 2500
DP 250 500 8000 16000
KITTI 200 500 2000 5000

TABLE III: The number of training and test data of each
class used for the detection experiments. The quantities of data
from the GTSRB data set for the classification experiments are
detailed in Section V-C.

Classifier Precision Recall F1

IVM 1.000 1.000 1.000
Non-linear GPC 1.000 1.000 1.000
Linear GPC 1.000 1.000 1.000
Non-linear SVM 1.000 1.000 1.000
Linear SVM 1.000 1.000 1.000
LogitBoost 1.000 1.000 1.000
Random Forest 1.000 1.000 1.000

TABLE IV: The classification performance when separating
stop sign from the lorries prohibited signs from the GTSRB
data set. Note that different class combinations were found to
yield classifiers of similar quality.

the data used to train them, and an introspective classifier will
respond to these with high uncertainty. As examples of classes
typically encountered in autonomous driving applications we
use a subset of the GTSRB dataset (see Section V-A2).

We arbitrarily select two classes for training: stop and lor-

ries prohibited. To investigate the efficacy of the features used
and training procedures employed, classifiers were trained
separating these two classes using a balanced training set of
400 data (200 per class). Classifier performance was evaluated
using standard metrics on a hold-out set of another 400 class
instances (200 of each class) of the same two classes. The
results are shown in Table IV, and show that classification
performance by the commonly-used metrics (precision, re-
call, and F1 measure) is commensurate across all classifiers.
The corresponding precision-recall curve confirms the perfect
separation of the classes and has been omitted here as it is
otherwise uninformative. The classifiers are then tested on 200
instances of previously unseen classes roadworks ahead, keep

left, 70kph, yield, and right ahead. The normalised entropy
histograms for both the seen and the unseen test classes are
shown in Figure 5. All classifiers are confident when tested
on classes which were present in the training set, which is
what we would expect. For the unseen test classes, the mean
normalised entropies for the GPC-based classifiers (IVM, non-
linear GPC, and linear GPC) and the Random Forests are more
consistently high than those of the other classification frame-
works, indicating that they reliably exhibit greater uncertainty
in their judgement. Conversely, the LogitBoost classifier is
extremely confident in all of its classifications with a very
narrow distribution, and the non-linear and linear SVMs have
inconsistent levels of uncertainty. These are effects consistently
observed throughout our experiments, which we attribute to
the manner in which the probabilities are estimated (as detailed
in Section IV). The unseen sign for which the classifiers
respond with the lowest uncertainty (greatest confidence) is
the 70 kph sign. We propose that this is due to its similarity

with one of the training classes, namely the ‘lorries prohibited’
sign.

In order to mitigate any influences of the specific training
and test data selected we repeated the above experiment
across a number of random dictionaries, data samples, and
unseen classes. Specifically, for each of five different unseen
classes, we perform forty iterations of classifier training and
testing with a random dictionary and training and test datasets
resampled for each run. The results, presented in Table V,
are consistent with those in Figure 5 in that the GPCs and
Random Forest tend to be more consistently uncertain for
the unseen test classes, while SVM and LogitBoost are more
confident with an often significantly narrower distribution of
normalised entropy values. The results in Table V indicate
that the gap in uncertainty between the different frameworks is
more pronounced for some unseen classes than for others. We
attribute this to the varying degree of similarity in feature space
between some unseen class and the classes in the training set.

We draw the conclusion that when faced with test data
which are not represented by the training data, the GPC-based
classifiers and Random Forest are more consistently uncertain
than the other classifiers, which is the introspective behaviour
we seek.

D. Introspection in Detection

We investigate the same classification frameworks as before
on various detection tasks, which each have a salient positive
class and a broad background class. We evaluate the classifiers
on three data sets: TLR (traffic lights), Daimler Pedestrian, and
KITTI (cars), as detailed in Section V-A.

As with the classification task, we first verify the efficacy
of the features selected and the training procedures employed.
Table VI shows the classification performance for classifiers
trained using the number of data shown in Table III. We
have chosen these values for two reasons. Firstly, we are
trying to highlight low-probability catastrophic events, which
will be few in number for the size of the test sets we are
considering here, but over the life-long autonomy we envisage
for our robots will occur in non-negligible numbers; larger
training sets reduce the prevalence of these low-probability
events, but will never be able to eliminate them. Secondly,
we are using off-the-shelf implementations of commonly-used
classification frameworks to keep the comparisons fair, We
note that in autonomous driving scenarios we typically see
more negative examples than positive examples, and so have
kept the training and test sets roughly to the same 1:2 ratio
of positives to negatives. While scanning an entire urban
scene for pedestrians is likely to yield many thousands more
negatives than positives, it is common [Enzweiler et al., 2012,
Fairfield and Urmson, 2011] to use 3D information or prior
maps to greatly reduce the portion of each image that needs to
be scanned, and thus making the ratio of positive to negative
windows much more even.

Figure 6 shows the corresponding precision-recall curves
for the classifiers across the data sets. The detection task,
having a varied background class and greater variation within
the positive class, is more challenging than the classification
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Fig. 5: Normalised entropy histograms (frequency vs NE) of the marginal probabilities for a variety of classifiers trained on
the road sign classes stop and lorries prohibited and tested on not only the training classes, but also classes which do not
appear in the training set (roadworks ahead, keep left, 70kph, and right ahead). Higher values for normalised entropy imply
more uncertainty in classifier output, so we expect the more introspective classifiers to be certain (low NE, left-hand end of
the x-axis) on the trained classes and uncertain (high NE, right-hand end of the x-axis) for the unseen classes.
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Test Class Classifier Normalised Entropy
µ± std. err. σ± std. err.

IVM 0.776 ± 0.081 0.145 ± 0.030
Non-linear GPC 0.751 ± 0.087 0.152 ± 0.029
Linear GPC 0.776 ± 0.108 0.150 ± 0.041
Non-linear SVM 0.476 ± 0.101 0.089 ± 0.056
Linear SVM 0.664 ± 0.122 0.250 ± 0.041
LogitBoost 0.019 ± 0.025 0.041 ± 0.073
Random Forest 0.756 ± 0.137 0.149 ± 0.053
IVM 0.794 ± 0.117 0.106 ± 0.026
Non-linear GPC 0.779 ± 0.124 0.107 ± 0.024
Linear GPC 0.777 ± 0.202 0.124 ± 0.058
Non-linear SVM 0.537 ± 0.126 0.028 ± 0.036
Linear SVM 0.494 ± 0.239 0.222 ± 0.049
LogitBoost 0.016 ± 0.022 0.031 ± 0.059
Random Forest 0.736 ± 0.166 0.078 ± 0.027
IVM 0.539 ± 0.140 0.173 ± 0.023
Non-linear GPC 0.546 ± 0.144 0.168 ± 0.023
Linear GPC 0.569 ± 0.166 0.177 ± 0.026
Non-linear SVM 0.407 ± 0.077 0.076 ± 0.053
Linear SVM 0.315 ± 0.195 0.197 ± 0.058
LogitBoost 0.008 ± 0.004 0.012 ± 0.026
Random Forest 0.394 ± 0.121 0.138 ± 0.029
IVM 0.579 ± 0.133 0.137 ± 0.020
Non-linear GPC 0.577 ± 0.130 0.136 ± 0.019
Linear GPC 0.585 ± 0.188 0.151 ± 0.029
Non-linear SVM 0.488 ± 0.111 0.039 ± 0.034
Linear SVM 0.177 ± 0.127 0.155 ± 0.056
LogitBoost 0.014 ± 0.019 0.030 ± 0.056
Random Forest 0.668 ± 0.161 0.113 ± 0.027
IVM 0.931 ± 0.025 0.080 ± 0.026
Non-linear GPC 0.934 ± 0.021 0.079 ± 0.023
Linear GPC 0.925 ± 0.031 0.085 ± 0.027
Non-linear SVM 0.641 ± 0.168 0.100 ± 0.047
Linear SVM 0.705 ± 0.142 0.212 ± 0.049
LogitBoost 0.059 ± 0.103 0.077 ± 0.127
Random Forest 0.904 ± 0.089 0.088 ± 0.043

TABLE V: Mean and standard deviation of normalised
entropies (including standard errors) from 40 iterations of
classifier training and testing, each with a randomly created
dictionary and both training and test datasets resampled.
Results are presented for classifiers trained on the road sign
classes stop and lorries prohibited and tested on five different
unseen classes as shown.

task. Classification performance according to the conventional
metrics is commensurate across all frameworks. The Random
Forest performs best for the TLR data set, and the non-linear
SVM and IVM perform consistently highly in the Daimler
Pedestrian and KITTI data sets. The GPC-based classifiers
all have commensurate performance in terms of precision and
recall.

In Figures 7, 8, and 9 we demonstrate how the lack
of introspection can impact classification performance when
accept/reject decisions are determined by classification confi-
dence, with one figure per data set. Specifically, we show the
cumulative effect of accepting classifications below a given
uncertainty threshold. First we note that when classifications
are accepted at any level of uncertainty (i.e. up to and including
unity normalised entropy) we get values which correspond
to those in Table VI. It is desirable for a classifier to be
close to the top left hand corner of the graphs pertaining to
true classifications (top row) and close to the bottom right
of the graphs pertaining to false classifications (bottom row).
This would correspond to making true classifications with low

uncertainty (high confidence) and making incorrect decisions
with high uncertainty.

Although the SVMs and LogitBoost classifiers generally
make true positive and true negative classifications with higher
certainty (i.e. low normalised entropy) than for the GPC
variants, they are also more confident when making mistakes.
This balance is discussed in more detail in Section VI, but in
summary we consider the avoidance of high-confidence errors
to be of primary importance, and after that, an increase in
classifications which are both confident and true results in a
more useful classifier.

The GPC-based classifiers (IVM, non-linear and linear
GPCs) behave very similarly to each other particularly in
the TLR and Daimler Pedestrian data sets, and perform very
well in terms of making mistakes with very high uncertainty.
The price paid for this more realistic assessment of the clas-
sification confidence is a reduction in correct classifications
above the normalised entropy threshold. Note that this does
not mean that subsequent samples are misclassified. It only
implies that some other remedial action might be taken —
for example obtaining label confirmation from a human or
gathering otherwise additional data to aid disambiguation.

The Random Forest is consistently uncertain in terms of all
four decision outcomes across all data sets. This is because the
probabilities it outputs are rarely far from p(C2)= 0.5. The fact
that it performs rather well in terms of accuracy, precision and
recall indicates that it is under confident.

The difficulties of the data sets clearly vary from the PR
curves and the confidences of the true detections, with TLR
being the easiest, followed by Daimler Pedestrian data set, and
then KITTI being the most challenging. This is likely to be
a result of the variation within the positive class paired with
the low number of positive exemplars in the training set (see
Table III).

E. Decision Making

In Section III-C we discussed the importance of the loss
function L(a,Ci) and how it shapes the decision of which
action a to choose, given some estimates of the state of the
environment {p(C1), . . . , p(C|C|)}. In robotics, we seek classifi-
cation frameworks which allow our robots to make decisions
which are faithful to the values instilled by the losses incurred
for particular outcomes. For instance, if we make the cost
associated with a particular outcome very large, then the
actions which can lead to that outcome should be chosen
more infrequently, or at least only when the classifier gives
a very confident estimate of the state of the environment. The
behaviour we seek is for classifiers to behave appropriately
given any relative costs associated with the possible outcomes.
We characterise this ‘appropriateness’ by comparing the total
cost incurred when using each classifier as part of the decision-
making pipeline, and we do so while varying the ratio of
the costs of false positive and false negative outcomes. Note
that we cannot mitigate the dangerous tendencies of less
introspective classifiers by adjusting the costs; each decision is
made by weighting the probabilities produced by a particular
framework, and thus if the probabilities are a poor indicator
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TLR Daimler Pedestrian KITTI
Classifier Precision Recall F1 Precision Recall F1 Precision Recall F1

IVM 0.995 0.916 0.954 0.953 0.872 0.911 0.868 0.725 0.790
Non-linear GPC 0.992 0.912 0.950 0.956 0.874 0.913 0.853 0.735 0.790
Linear GPC 0.988 0.899 0.941 0.956 0.875 0.914 0.816 0.708 0.758
Non-linear SVM 0.996 0.920 0.956 0.959 0.869 0.912 0.836 0.749 0.790
Linear SVM 0.967 0.910 0.938 0.932 0.876 0.903 0.813 0.709 0.757
LogitBoost 0.978 0.908 0.942 0.961 0.794 0.869 0.826 0.681 0.747
Random Forest 1.000 0.897 0.946 0.984 0.598 0.744 0.894 0.551 0.682

TABLE VI: The classifiers’ performances for the detection tasks across data sets according to conventional metrics. Precision,
recall, and F-measure are calculated by thresholding the classifiers’ probabilities at 0.5. The SVMs and GPCs give very similar
results across the data sets, with the Logitboost and Random Forest performing slightly worse than the others with the more
difficult data sets.
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Fig. 6: Precision-recall curves for the (a) TLR, (b) Daimler Pedestrian and (c) KITTI data sets. Note the increasing difficulty
of the data sets, and the consistency and commensurate nature of the classifiers in terms of these metrics. (Best viewed in
colour.)

of the truth of the classification, wrong decisions will be made
regardless of the costs set.

For each of the three data sets, we use the probabilistic
output of the classifiers to drive the decision-making pipeline,
and evaluate the decisions made. We set the costs of true
positive and true negative outcomes as 0, and the cost of a
false positive outcome as 1. The value for the last outcome,
the false negative or missed pedestrian, is varied from 1 to 107.
This cost of the false negative error appears on the x-axes of
Figures 10, 11, and 12. The y-axis of the left-hand figure in
each pair denotes the number of true outcomes (both positive
and negative together), and the y-axis of the right-hand figure
denotes the total cost of all the decisions made.

These pairs of graphs demonstrate the trade-off between
classifiers which avoid catastrophic decisions, and those which
might be so cautious that they never take the higher-risk
action. The left-hand graphs demonstrate the rate at which the
classifiers’ decisions become more and more cautious as the
cost of a false negative increases. We do not consider one to
be superior to another in terms of introspection, albeit it may
tell you about the usefulness of that classifier. On the right
hand graphs, the ideal is for a curve to be as low as possible
(close to the x-axis). This would represent a classifier which
makes good decisions given any particular cost ratio.

In Section III-C we described another way to characterise
the introspective tendencies of a classifier: by examining the
distribution of errors across p(C2). In Figure 4 we showed
that the number of cumulative errors as you increase the half-
length of the orange box (from Figure 4d) from 0 to 0.5
can take various shapes, and we showed the shape induced
by a more introspective classifier in teal (in Figure 4e). In
Figure 13 we show those curves for our classifiers across the
three data sets. Comparing it to Figure 4e, we see that for all
three data sets, the curves for the classifiers which consider
multiple discriminants (Random Forests and the GPC-based
classifiers) are closer to the desirable teal curve than the
single-discriminant classifiers (the SVMs and LogitBoost).
The Random Forest very strongly resembles the teal curve
across all data sets, and in the case of the KITTI data set
the IVM does also. This is a further, strong indication of the
introspective power of the Random Forests and GPC-based
classifiers over the others.

VI. Discussion

To what degree is introspection a property of a single clas-
sifier, or of a classification framework? Can one SVM be more
introspective than another SVM? Are GPCs invariably more
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Fig. 7: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)
against normalised entropy. The classifiers have been trained on 250 traffic lights against 500 background patches, and tested
on 1,000 instances of traffic lights and 2,500 background patches. Note that lower normalised entropy implies more certainty
in classification. A more introspective classifier is one that simultaneously exhibits higher uncertainty (as witnessed by larger
normalised entropy in its output) when processing difficult instances and is more confident when it is correct. Consequently,
class decisions above a given normalised entropy threshold are deferred since the output is deemed ambiguous. This is desirable
since a single bad decision can have disastrous consequences. (Best viewed in colour.)

introspective than SVMs? The results in this paper indicate
a consistent behaviour of particular classification frameworks
across particular tasks (such as classification or detection),
which we attribute to the manner in which the classifiers are
designed (see Section IV). Thus we expect that introspection
quality is inherent to classification frameworks rather than
individual classifiers.

That said, varying the choice of kernel (and its parameters)
do produce very different behaviours, and it may be possible
to instil an improved introspective sense with an appropriate
choice of kernel. The reason for this is that in every framework
there is a link between classification confidence and distance
in kernel space. In the GPC, a test datum which lies far away
from the training data (in kernel space) yields a more uncertain
classification. But how can we guarantee that new, unseen
classes will be far away from our training data? In truth,
we cannot. We can only hope that the kernel has found a
warping of the feature space which adequately separates the
two classes of training data, and that new, unseen classes will
be sufficiently disparate from the training data in kernel space
to yield an uncertain classification. Owing to the opaque nature
of the kernel function, we cannot assume that points which
are close together in feature space will also be close in kernel
space. This brings into question the sanity of using distance

in kernel space as a metric for uncertainty in classification.

It should be noted that the sparse nature of the IVM could
be expected to reduce its introspective capabilities at the
expense of computational efficiency, when in fact it seems
to outperform the non-linear GPC in many cases. We attribute
this to the fact that the two implementations are from different
libraries and it is likely that the optimisation procedures in the
IVM are superior to those in the GPC, resulting in a better
choice of hyper parameters and thus a more effective sense of
how distance should relate to uncertainty.

In this paper we have investigated a variety of applications,
feature types, class types and quantities, as well as the nuances
between classification and detection. This is because it is not
always possible to determine the introspective quality of a
classification framework based on a single classifier and test
set. Can we say whether a classifier which is uncertain about
all decisions like the Random Forest is introspective or not?
We suggest that it is perhaps introspective, but certainly not
as useful as one which can also make correct classifications
confidently. A very introspective classifier will have a strong
correlation between confidence and correctness. Some situa-
tions, such as when a classifier is uncertain about everything,
do not yield enough information to determine a classifier’s
introspective capacity. Another such situation is where a
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Fig. 8: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)
against normalised entropy (uncertainty), using the Daimler Pedestrian data set. The classifiers are trained on 250 and 500
instances of pedestrians and background respectively, and are tested on 8,000 and 16,000 of those classes. See the caption for
Figure 7 for more detail. (Best viewed in colour.)

classifier gives perfect classification results. Without errors,
we cannot judge how a classifier deals with the unexpected
(unless we evaluate it on truly alien data, such as in the unseen
class experiment of Section V-C).

We have motivated the desire for a classifier to make
mistakes with high uncertainty, and we have shown that if this
is not the case, it will make unpredictable and expensive errors.
In addition, for the classifier to be useful, we would also like
its true classifications to be made with high confidence. All
the classifiers we have investigated in this work have fallen
short of both targets, but to varying degrees. If we cannot
have both, is there a trade-off to be struck, and are some
combinations more desirable than others? One difficulty lies
in formally defining how a ‘perfectly introspective’ classifier
should behave. We have approached this in terms of increased
distance between training and test data leading to uncertainty,
and that the degree of uncertainty should indicate the likeli-
hood of a mistake being made. More rigidly, we propose that
classifications with an uncertainty of 0.9 should be incorrect
by one mistake in ten, on average. If this were true, we could
make very well informed decisions.

Although we have found that the GPC-based classifiers
exhibit a greater introspective quality than the other classifiers
tested in this work, it must be said that they are still far
from perfectly introspective, regardless of our choice of the
definition of ‘perfect’. One obvious point of improvement for
the Random Forest is that it is very under-confident when

it makes true classifications, which is also a feature of the
GPC-based classifiers, although to a much lesser extent. It is
interesting to note that IVMs with a successively higher active-
set-fraction q get more and more confident, both in terms of
true and false classifications, so it may be possible to improve
them by simply training them on more data. If an introspective
classifier’s predictions all have high uncertainty, this could be a
useful sign that the problem is too complex and more training
data are required.

VII. Conclusions

This work demonstrates how performance metrics tradi-
tionally used in machine learning for classifier training and
evaluation may be insufficient to characterise system perfor-
mance in a robotics context, where a single misjudgement can
have disastrous consequences. To remedy this shortcoming,
we propose the concept of introspection: the ability to miti-
gate potentially overconfident classifications by an appropriate
assessment of predictive variance. Our experimental results
imply that, despite commensurate performance as measured
by more conventional metrics, GPC-based classifiers pos-
sess a more pronounced introspective capacity than other
classification frameworks commonly employed in robotics,
maintaining a useful balance between being confident when
they are correct, and uncertain when they are making mistakes.
We attribute this to their consideration of distance between
data, and accounting for predictive variance over the space
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Fig. 9: Cumulative frequency plots of classification confusion (true positives, true negatives, false positives, and false negatives)
against normalised entropy (uncertainty), using the KITTI data set. The classifiers are trained on 200 and 500 instances of
pedestrians and background respectively, and are tested on 2,000 and 5,000 of those classes. See the caption for Figure 7 for
more detail. (Best viewed in colour.)

of feasible classification models. This is in contrast to other
commonly employed classification frameworks which often
only consider a one-shot (ML or MAP) solution. As a result
of this, model-averaging classifiers make better decisions than
single-discriminant classifiers like SVMs, and thus will cause
fewer catastrophic accidents despite appearing worse in terms
of F-measure.
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Corrigendum: Introspective Classification
for Robot Perception

Hugo Grimmett Rudolph Triebel Rohan Paul Ingmar Posner

I. Introduction

The authors wish to revise of the conclusions drawn in
Section V of the original paper [Grimmett et al., 2016] in
light of a recently emerged peculiarity of the probabilistic
calibration. Due to particular choices of optimisation bounds,
the SVMs never return probabilities (or henceforth in the
corrigendum, measurements z) in the range [ϵ,0.0025], where
ϵ < 10−6. Some of the measurements which should be made
within this range are moved to a point less than ϵ, and thus
an incorrect decision may appear more confident, and incur a
greater cost.

This finding explains the flat sections in the left-hand
graphs of Figures 10, 11, and 12 in the original paper. The
rapidly increasing nature of the SVMs on the right-hand
graphs indicated that they were accruing a cost due to high-
confidence false negative errors. This behaviour can now be
partly attributed to this probabilistic calibration, although we
will see that the SVMs continue to produce some catastrophic
mistakes. In this corrigendum we have changed the bounds
of the optimisation, thereby removing this ‘blind spot’, and
allowing the SVMs to make better decisions.

The authors wish to point out that while this affects Figures
1, 10, 11, and 12 (replaced by Figure 5 below), the changes
only affect the most confident of decisions, and so the concept
of introspection, the reasoning behind it, and any conclusions
up to that point are unaffected.

In the remainder of this corrigendum we present updated
results and conclusions, and contextualise these against two
idealised classifiers which clearly demonstrate the effects of
introspection in decision making. The idealised classifiers,
detailed in the next section, extend the idea of the ideal
introspective classifier introduced in Figure 4 of the original
paper.

We confirm that introspection in decision making is crucial,
and that there are differences in the introspective capacities of
the real classifiers benchmarked as part of this study. However,
we newly conclude that these differences are not sufficient to
consistently affect their decision-making abilities in the high-
confidence decision-making experiment presented.

II. Idealised Classifiers

In Figures 4a-c of the original paper we demonstrate the
merit of making mistakes with high uncertainty. Instead of
considering the error functions in Figure 4a, let us consider
two new idealised classifiers, each defined by a pair of
probability density functions f1(z) and f2(z). These two density
functions define the response of a classifiers for each of two
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Fig. 1: The probability density functions which define two
idealised classifiers, called uniform and optimal. (a) shows the
distribution of the measurement z which classifiers give for
the background class, and (b) shows the same for the positive
class (e.g. foreground). These two pairs of probability density
functions are chosen because they generate the error functions
in Figure 2 for balanced data sets. We draw samples from
these distributions to simulate the classifiers’ behaviours.

classes (with f1(z) for class C1, etc), and are shown in Figure
1 of this corrigendum.

We define making an error as either returning a measure-
ment z < 0.5 for an instance of the positive class, or returning
a measurement z > 0.5 for an instance of the negative class.
If we plot the probability of error given the measurement
z for these two classifiers applied to a balanced data set,
shown in Figure 2, we see that the uniform classifier does not
correlate confidence with correctness, because it has the same
probability of error whatever the value of z, and thus is not
introspective. In contrast, the optimal classifier makes mistakes
only with high uncertainty (in the region around z = 0.5).
This correlation between correctness and confidence makes
the optimal classifier more introspective than the uniform

classifier.

We note that the expected error rate is p(e) = 0.25 for both
classifiers, and that the difference in their behaviour arises only
from where in the range of z they make mistakes.

Considering these two classifiers to be at opposing ends of a
spectrum, where one is indifferent to uncertainty (the uniform

classifier) and one is always correct below a given uncertainty
threshold (the optimal classifier), we can compare them with
the real classifiers.

For the results in this corrigendum, we simulate the idealised
classifiers’ responses to 5,000 negative examples and 2,000
positive examples by drawing them from f1(z) and f2(z),
respectively. This process is repeated ten times. These numbers
are chosen to be consistent with the experiments conducted on
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Fig. 2: The likelihood of making an error given some measure-
ment z (or error function) for two idealised classifiers, given by
Figure 1. The uniform classifier is non-introspective because
the likelihood of error is not correlated with classification
confidence HN(z) (see (4) from the original paper), and thus is
not introspective. The optimal classifier has the same overall
error rate, but makes all of its mistakes with high uncertainty,
and is therefore more introspective.

real classifiers in the original paper and below.

III. Results

In Figure 3 we show the number of each type of outcome
(true positives and negatives, false positives and negatives)
for the decisions made with confidence greater than a given
threshold, this time for the idealised classifiers. The intuition
here is that if we have an additional safe action such as waiting
and gathering more data or asking a human for guidance, we
might use it for all test data that the robot perceives to be
above a certain threshold of uncertainty. In that case, we are
looking at how many correct and incorrect classifications (and
therefore decisions) the robot considered safe.

Figure 3 complements Figures 7, 8, and 9 in the original
paper, and serves as comparison between real and idealised
classifiers. Note how all the real classifiers, with the exception
of the random forest, are more confident about both true and
false outcomes than the optimal classifier up to an uncertainty
threshold of 0.8. Considering only the false outcomes (bot-
tom row), most real classifiers lie somewhere between the
two idealised classifiers, with the linear SVM and logitboost
being more similar to the less introspective uniform classifier.
Overall, the GPC-based classifiers are closest to the optimal

behaviour.

The revised graphs for the original Figures 10, 11, and 12
are shown in Figures 5a, 5b, and 5c of this corrigendum.
Notice that the SVM curves in pink and yellow on the
left-hand-side graphs are now smooth. Removing the ‘blind
spot’ in the SVM probabilities improves their high-confidence
decisions, particularly in the case of the non-linear SVM.

In Figure 5a we see that the decisions made by the linear
SVM are improved, but it still incurs higher costs than
all classifiers save logitboost. In Figure 5b the two SVMs
still make bad decisions, but not as catastrophically as in
the original paper. Figure 5c shows the same bad decisions
from the linear SVM as before, but as a result of including
more runs, we uncover some catastrophic decisions by the

linear GPC. Overall, each of the three linear classifiers makes
catastrophic decisions in at least one of the three data sets.

We show the high-confidence decision-making capabilities
of the idealised classifiers in Figure 5d. The uniform classifier
makes catastrophic mistakes much as the real classifiers do,
because it too is capable of making high-confidence errors.
The optimal classifier, however, incurs a lower (or equal) total
cost than the less introspective uniform classifier regardless of
the choice of cost ratio. The costs asymptote to the maximum
possible number of false positives, each worth a cost of 1. The
more introspective optimal classifier makes decisions which
are truer to the chosen loss function.

In Figure 4 we show the replacements for Figure 13 in
the original paper, with the addition of the comparison with
the idealised classifiers. This figure serves to show whether
errors are made with high uncertainty, as is desirable for
an introspective classifier. We see that the multi-discriminant
classifiers do make their mistakes with higher uncertainty than
the others in each of the three data sets, where the KITTI
data set is the most challenging. This is consistent with the
multi-discriminant GPC-based classifiers making poor high-
confidence decisions in the KITTI data set alone. The idealised
classifiers demonstrate that the single-discriminant classifiers
are overconfident relative to the non-introspective uniform

classifier.

Overall, no single real classifier behaves like the optimal

idealised classifier, avoiding all high-cost errors. The random
forest avoids high-cost errors only by being uncertain about
all decisions. These findings indicate that while the multi-
discriminant classifiers appear to be more introspective than
single-discriminant classifiers, none presented here are consis-
tently introspective across all three data sets and the differences
do not seem to make a tangible difference in decision making.

IV. Conclusions

The third-class experiment presented in the original paper
and extended here with the introduction of the idealised clas-
sifiers indicates that the multi-discriminant GPCs are slightly
more introspective than the SVMs, on the basis that the SVMs
are overconfident. However, the difference in behaviour in
the decision-making experiments is not overwhelming. No
real classifier benchmarked as part of this study is capable
of consistently avoiding catastrophic outcomes in all three
data sets presented. This could be due to contributory effects
which we do not control in this experiment, for instance the
probabilistic calibrations used and how they are trained, or the
choice of kernel. Evaluating the relevance of these factors is
a vein for further investigation.

The use of idealised classifiers serve as baselines for the
behaviour of the real classifiers. We find that most real
classifiers behave somewhere between the more introspective
optimal and the non-introspective uniform idealisations. In
Figure 4 the single-discriminant classifiers such as the SVMs
and logitboost appear to be more over-confident than the multi-
discriminant GPCs and random forests.

We conclude from the idealised classifiers that introspection
is crucial in decision making, but that none of the real
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Fig. 3: Idealised classifiers: cumulative frequency plots of clas-
sification confusion (true positives, true negatives, false posi-
tives, and false negatives) against classification uncertainty. A
more introspective classifier is one that simultaneously exhibits
higher uncertainty when processing difficult instances (bottom
right corner for false positives and negatives) and is more
confident when it is correct (top left corner for true positives
and negatives). Here we confirm that the optimal is the more
introspective of the two idealised classifiers. For each run,
the classifiers generated 2,000 positive and 5,000 negative
measurements. We show the mean and standard error over
10 independent runs.

classifiers benchmarked here are introspective enough to allow
them to avoid catastrophic decisions in all three data sets. The
benchmarking of other frameworks (e.g. deep architectures)
remains further work. In addition, we are also exploring the
notion of whether a framework can be designed or trained
specifically such that its introspective capacity is improved.
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(c) KITTI
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(d) Idealised

Fig. 4: We show the proportion of errors made by a classifier
contained within a region around p(C2) = 0.5. The x-axis
shows the size of that region, the orange window as described
in Figure 4 of the original paper. To generate these curves, we
randomly sample 1,000 positive and 1,000 negative test data
and count the number of errors within a certain window. Note
that a classifier which is uncertain when it makes mistakes
will be closer to the top left of each plot. The random forest
performs very well in this respect, although it makes all

decisions with large uncertainty. This shows one side of the
introspective coin. We show the mean and standard error over
10 independent runs.
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(a) TLR - 1,000 positive and 2,500 negative test examples.
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(b) Daimler Pedestrian - 8,000 positive and 16,000 negative test examples.
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(c) KITTI - 2,000 positive and 5,000 negative test examples.
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(d) Idealised classifiers - 2,000 positive and 5,000 negative test examples.

Fig. 5: High-confidence decision making. The x-axes represent the cost of a false negative error (FN, e.g. missing a traffic
light, pedestrian, etc), while the cost of a false positive error (FP) is held at 1. On the left we show the number of correct
decisions made (positive and negative) as we vary the cost of a false negative, and on the right we show the total cost of all
decisions (correct decisions carry 0 cost). Ideal behaviour on the left is to smoothly become more conservative (which requires
making fewer correct decisions) as the cost increases, and on the right the ideal is to incur minimal total cost at every point
on the x-axis. We show the mean and standard error over 10 independent runs.


