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Abstract Multi-label problems are of fundamental importance in computer vision

and image analysis. Yet, finding global minima of the associated energies is typically

a hard computational challenge. Recently, progress has been made by reverting to

spatially continuous formulations of respective problems and solving the arising convex

relaxation globally. In practice this leads to solutions which are either optimal or within

an a posteriori bound of the optimum. Unfortunately, in previous methods, both run

time and memory requirements scale linearly in the total number of labels, making

them very inefficient and often inapplicable for problems with higher dimensional label

spaces.

In this paper, we propose a reduction technique for the case that the label space

is a continuous product space, and introduce proper regularizers. The resulting convex

relaxation requires orders of magnitude less memory and computation time than pre-

viously, which enables us to apply it to large-scale problems like optic flow, stereo with

occlusion detection, segmentation into a very large number of regions, and joint de-

noising and local noise estimation. Despite the drastic gain in performance, we do not

arrive at less accurate solutions than the original relaxation. Using the novel method,

we can for the first time efficiently compute solutions to the optic flow functional which

are within provable bounds (typically 5%) of the global optimum.
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Fig. 1: The proposed relaxation method can approximate the solution to multi-labeling

problems with a huge number of possible labels by globally solving a convex relaxation

model. This example shows two images and the optic flow field between them, where

flow vectors were assigned from a possible set of 50× 50 vectors, with truncated linear

distance as a regularizer. The problem has so many different labels that a solution

cannot be computed by alternative relaxation methods on current hardware.

1 Introduction

1.1 The Multi-labeling Problem

Recently, there has been a surge of research activity on convex relaxation techniques

for energy minimization in computer vision. Particular efforts were directed towards

binary and multilabel problems, as they lie at the heart of fundamental problems like

segmentation [19,18,7,29], stereo [22], 3D reconstruction [9], Mumford-Shah denoising

[21] and optic flow [11].

The aim is to assign to each point x in an image domain Ω ⊂ Rn a label from a set

Γ ⊂ Rd. Assigning the label γ ∈ Γ to x is associated with the cost cγ(x) = c(x, γ) ∈ R.

In computer vision applications, the local costs usually denote how well a given labeling

fits some observed data. They can be arbitrarily sophisticated, for instance derived

from statistical models or complicated local matching scores, our only assumptions

being that the cost functions cγ lie in the Hilbert space of square integrable functions

L2(Ω). Aside from minimizing the local costs, we want the optimal assignment to

exhibit a certain regularity. We enforce this requirement by penalizing each possible

labeling u : Ω → Γ with a regularization or prior term J(u) ∈ R. This prior reflects

our knowledge about which label configurations are a priori more likely, and typically

enforces a form of spatial coherence.

Finding a labeling u : Ω → Γ which minimizes the sum of data term and regular-

izer, i.e.

argmin
u∈L2(Ω,Γ )

{
J(u) +

∫
Ω

c(x,u(x)) dx

}
(1)

is a hard computational challenge as the overall energy is not convex. For some cases,

good results may be obtained by local minimization, starting from a good initialization,

possibly further improved by coarse-to-fine strategies commonly employed in optical

flow estimation. Yet, such methods cannot guarantee any form of quality of the re-

sult and performance typically depends on data, on initialization and on the choice

of algorithmic minimization scheme (number of levels in the coarse-to-fine hierarchy,

number of iterations per level, etc.). The goal of this paper is to develop solutions to

such problems which do not depend on initialization and which lie within a computable

bound of the global optimum.
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1.2 Contribution: Product label spaces

In this work, we discuss label spaces which can be written as a product of a finite

number d of spaces, Γ = Λ1×· · ·×Λd. The central idea is as follows. Assume that the

spaces Λk are discrete or have been discretized, and let Nk be the number of elements

in Λk. Then the total number of labels is N = N1 ·...·Nd. In previous relaxations for the

multi-label problem, this means that we need to optimize over a number of N binary

indicator functions, which can be rather large in practical problems. In order to make

problems of this form feasible to solve, we present a reduction method which only re-

quires N1+· · ·+Nd binary functions. As a consequence, both memory and computation

time grow linearly (rather than exponentially) in the number of dimensions.

We will show that with this novel reduction technique, it is possible to efficiently

solve convex relaxations to multi-label problems which are far too large to approach

with existing techniques. A prototypical example is optic flow, where the total number

of labels is typically around 322 for practical problems. In that case we only require 64

indicator functions instead of 1024. However, the proposed method applies to a much

larger class of labeling problems. This reduction in variable size not only allows for

substantially higher resolution of the label space, but it also gives rise to a drastic

speedup.

The present paper is a significantly revised and extended version of our original

conference paper [11]. Compared to this early version, we make a number of important

additional contributions:

– The regularizer in [11] was based on the relaxation in [18] for multilabel problems

with a discrete set of labels, which is known to be less tight than the relaxation

introduced in [7] for continuous label spaces. In contrast, we propose in this paper

a general framework for convex relaxations of multilabel problems, which is based

on a continuous, multi-dimensional label space and the calibration method detailed

in [1]. It allows to use additional tight regularizers in in the case of product spaces,

with arbitrary choice of regularizer for each label dimension.

– We establish that the previous regularization based on Euclidean representations of

the label distance can be recovered as a special case from the discretization of our

framework. Interestingly, from this new point of view we also obtain a relaxation

which is provably tighter.

– The relaxation of the data term in [11] was suboptimal in that it introduces an

unwanted trivial solution when relaxing from binary to continuous labels, which

had to be avoided by an additional smoothing degrading the quality of solutions.

In this paper, we propose a novel convex relaxation of the data term which does

not suffer from these problems.

– The new framework yields solutions which are provably closer to the global op-

timum. It allows using exact solvers without the need for approximations, which

also leads to faster computation times compared to the one we originally proposed

in [11].

– Finally, we reworked all experiments and introduce adaptive smoothing as an in-

teresting novel image processing application for multidimensional label spaces.
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2 Related work

2.1 Discrete approaches

It is well known that in the fully discrete setting, the minimization problem (1) is

equivalent to maximizing a Bayesian posterior probability, where the prior probability

gives rise to the regularizer [27]. The problem can be stated in the framework of Markov

Random Fields [14] and discretized using a graph representation, where the nodes

denote discrete pixel locations and the edges encode the energy functional [4].

Fast combinatorial minimization methods based on graph cuts can then be em-

ployed to search for a minimizer. In the case that the label space is binary and the

regularizer submodular, a global solution of (1) can be found by computing a minimum

cut [12,17]. For multi-label problems, one can approximate a solution for example by

solving a sequence of binary problems (α-expansions) [5,24], linear programming re-

laxations [28] or quadratic pseudo-boolean optimization [16]. Exact solutions to multi-

label problems can only be found in some special cases, notably [13], where a cut in

a multi-layered graph is computed in polynomial time to find a global optimum. The

construction is restricted to convex interaction terms with respect to a linearly ordered

label set. In [25,26] the problem of image registration is formulated as an MRF label-

ing problem, which is minimized via LP relaxation. The authors present a decoupling

strategy for the displacement components which is related to ours, albeit only applica-

ble in the discrete case. It allows a simplification of the graph and consequently larger

numbers of labels. The problem of large label spaces is also tackled in [10], where the

authors compute optical flow from an MRF labeling problem using a lower dimensional

parametric description for the displacements.

However, in many important scenarios the label space can not be ordered, or a non-

convex regularizer is more desirable to better preserve discontinuities in the solution.

Even for relatively simple non-convex regularizers like the Potts distance, the resulting

combinatorial problem is NP-hard [5]. In this paper, we work in the fully continuous

setting, avoiding typical problems of graph-based discretization like anisotropy and

metrication errors [15].

2.2 Continuous approaches

Continuous approaches deal with the multi-label problem by convex relaxation. The

original non-convex energy is replaced with a convex lower bound, which can be min-

imized globally. We automatically get a bound on the solution and know how far we

are from the global optimum. How good the bound is depends on the tightness of the

relaxation, i.e. how close the new energy is to the old one. While it sometimes can be

possible to even achieve global optimality using this class of methods [19,22], there is

no relaxation known which leads to globally optimal solutions of the general problem.

As in the discrete setting, it is possible to solve the two-label problem in a globally

optimal way by minimizing a continuous convex energy and subsequent threshold-

ing [19]. Our framework for regularization is based on the calibration or lifting idea

for the Mumford-Shah functional, which was analyzed in depth in [2,1]. The idea is

that the instead of optimizing for the original labeling function, one instead uses the

characteristic function of its epigraph (called the subgraph in [1]). Thus, one ends up

with a relaxation of the original problem in terms of these characteristic functions,
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Fig. 2: The central idea of the reduction technique is that if a single indicator function

in the product space Γ takes the value 1, then this is equivalent to setting an indicator

function in each of the factors Λj . The memory reduction stems from the fact that there

are much more labels in Γ than in all the factors Λj combined.

which is convex. The question is whether the solution of the relaxation corresponds

to a solution of the original problem. In [23,22], it was shown that one can achieve a

globally optimal solution for the special case of convex interaction terms and a linearly

ordered set of labels. Their construction can be viewed as a continuous version of [13].

For the general multi-label case, however, there is no relaxation known which leads

to globally optimal solutions of the discrete problem. Relaxations of different tightness

have been proposed in [18,7,29]. They all have in common that they are very memory

intensive if the number of labels becomes larger, which makes it impossible to use them

for scenarios with thousands of labels, like for example optic flow. Currently the most

tight relaxation for the regularizer can be found in [20] based on the lifting framework.

We use this form of relaxation in the present paper, while our previous conference

publication [11] was based on the slightly more transparent, but less tight formulation

introduced in [29] and further generalized in [18]. However, we use a different set of

relaxation variables, which enables us to reveal the version of regularization in [18,11]

as another special case of the lifting framework.

3 Multi-dimensional Label Spaces

3.1 Discrete product label spaces

From now on we assume that the space of labels is a product of a finite number d of

spaces, Γ = Λ1 × · · · ×Λd. In order to give a more visual explanation of the main idea

behind our work, we first discuss the discrete case, where |Λk| = Nk ∈ N.

The convex relaxation introduced in [18,29] works as follows. Instead of looking

for a labeling u : Ω → Γ directly, we associate each label γ with a binary indicator

function uγ ∈ L2(Ω, {0, 1}), where uγ(x) = 1 if and only if u(x) = γ. To make sure

that a unique label is assigned to each point, only one of the indicator functions can

have the value one. We can model this restriction by viewing u as a function mapping
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into the set of corners ∆ of the N -simplex:

u ∈ L2(Ω,∆) with ∆ =

x ∈ {0, 1}N :

N∑
j=1

xj = 1

 . (2)

Obviously, we can identify u with the vector (uγ)γ∈Γ of indicator functions. Let 〈·, ·〉
denote the inner product on the Hilbert space L2(Ω), then problem (1) can thus be

written in the equivalent form

argmin
u∈L2(Ω,∆)

J(u) +
∑
γ∈Γ

〈
uγ , cγ

〉 , (3)

where we use bold face notation u for vectors (uγ)γ∈Γ indexed by elements in Γ .

We use the same symbol J to also denote the regularizer on the reduced space. Its

definition requires careful consideration, and will be discussed in detail later.

The central idea of the paper is the following. The full discrete label space Γ

has N = N1 · ... ·Nd elements, which means that it requires N indicator functions to

represent a labeling, one for each label. We will show that it suffices to use N1+ ...+Nd
indicator functions, which is a considerable reduction in problem dimensionality, thus

computation time and memory requirements. We achieve this by replacing the indicator

functions on the product Γ by indicator functions on the components Λk.

To this end, we associate to each label λ ∈ Λk, 1 ≤ k ≤ d an indicator function vλk .

In each component k, only one of the indicator functions can be set. Thus, the vector

vk = (vλk )λ∈Λk which consists of Nk binary functions can be viewed as a mapping into

the corners of the simplex ∆k,

∆k =

x ∈ {0, 1}Nk :

Nk∑
j=1

xj = 1

 . (4)

In particular, the reduced set of indicator functions v = (vλk )1≤k≤d,γ∈Λk can be seen

as a map L2(Ω,∆×) with

∆× = ∆1 × ...×∆d ⊂ RN1+...+Nd . (5)

Note that an element v ∈ L2(Ω,∆×) consists indeed of exactly N1 + ... + Nd binary

functions.

The following proposition illuminates the relationship between the original space of

indicator functions L2(Ω,∆) and the reduced space of indicator functions L2(Ω,∆×),

which is easy to understand visually, see Fig. 2.

Proposition 1 A bijection v 7→ u from L2(Ω,∆×) onto L2(Ω,∆) is defined by setting

uγ := vγ11 · ... · v
γd
d , (6)

for all γ = (γ1, ..., γd) ∈ Γ .

Proof In order to proof the proposition, we show that the mapping induces a point-wise

bijection from ∆× onto ∆. We first show it is onto: for u(x) in ∆, there exists exactly

one γ ∈ Γ with uγ(x) = 1. Set vλk (x) = 1 if λ = γk, and vλk (x) = 0 otherwise. Then

equation (6) is satisfied as desired, see Fig. 2. To see that the map is one-to-one, we

just count the elements in ∆×. Since ∆k contains Nk elements, the number of elements

in ∆× is N1 · ... ·Nd = N , the same as in ∆. ut
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With this reduced function space, another equivalent formulation to (1) and (3) is

argmin
v∈L2(Ω,∆×)

J(v) +
∑
γ∈Γ

〈
vγ11 · ... · v

γd
d , cγ

〉 . (7)

Note that while we have reduced the dimensionality of the problem considerably, we

have introduced another difficulty: the data term is not convex anymore, since it con-

tains a product of the components. Thus, in the relaxation, we need to take additional

care to make the final problem again convex.

3.2 Continuous label spaces and relaxation framework

We now turn to the more general case that each factor Λk is an interval in R, which

means that we deal with a continuous label space with an infinite number of labels.

In this situation, one is also interested in a number of continuous regularizers, which

can not be modeled satisfyingly on a discrete label space. As in the discrete case, the

regularizers are usually not convex and require a relaxation.

In the context of continuous labeling problems where the label range is an interval,

a central idea is functional lifting, which is a variant of the calibration method [1].

Here, one works with characteristic functions describing the hypograph instead of the

labeling function itself, an idea that was further refined and applied to a variety of image

processing problems in a number of subsequent works [7,20,21,22]. We are going to

translate this framework to the case of a product label space. With the regularizer, we

can restrict ourselves to the case that it can be decomposed into the sum of regularizers

on each component. However, for the data term this is not possible since the cost

function usually cannot be decomposed in a similar way. Therefore, we need to define

a relaxation framework in which we still can express arbitrary cost functions.

Let us first consider a single component uk : Ω → Λk of the full labeling function u.

The characteristic function of its hypograph is defined on Ω × Λk as

1hyp(uk)(x, λ) =

{
1, if λ ≤ uk(x)

0, else.
(8)

In [1,21,22], the labeling problem is reformulated in terms of new unknowns which

correspond to these characteristic functions. The reason is equation (14), which we

discuss later and which allows to give a convex reformulation of the regularizer in

terms of the new unknowns. This allows to obtain a globally optimal solution in the

new variables, which often is at least close to and sometimes equal to the solution of

the original non-convex problem.

In our case, however, we need different variables in order to be able to simulta-

neously formulate a convex relaxation of the data term. We work with the indicator

functions denoting if a specific label λ is set at a point x ∈ Ω, related to a labeling u

by

vk(x, λ) = δ(uk(x)− λ). (9)

Note that the new unknowns are actually distributions on the higher dimensional

space Ω×Λk, which however will reduce to regular functions after discretization. They
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Fig. 3: A special function of bounded variation u has an approximate gradient every-

where except on a nullset Su, where the values jump from u− to u+. The normal νu
denotes the direction of the jump from small to large values.

serve as a generalization of the discrete label indicator functions vλk ∈ L
2(Ω,∆k) to

the continuous case, in particular they satisfy the relations∫
Λk

vk(x, λ) dλ = 1,

∫
Λk

λ vk(x, λ) dλ = uk(x), (10)

which mimic the discrete case with sums replaced by integrals. Intuitively, this means

that for each fixed x ∈ Ω, vk(x, ·) has a total mass of 1 and is concentrated on the

label uk(x) ∈ Λk.

We will reformulate the labeling problem in terms of the new variables v in sec-

tion 4. Some things have to be kept in mind, however. Since the new variables are

distributions in the continuous case, we cannot formulate a well-defined minimization

problem without first reducing them to L2-functions . This means that before writing

down the actual minimization problem we want to solve in the new variables, we have

to introduce a discretization of the label space. This is not a major drawback. First,

note that the definition of the continuous regularizers in section 5 does not require

the discretization, which means that we are still dealing correctly with the continuous

case. Furthermore, a discretization of the continuous label space into a finite number

of labels is also necessary in other previous work which employs the lifting idea [22,21]

when it comes to the actual implementation.

3.3 Regularization

We consider a general separable regularizer of the form

J(u) =

d∑
k=1

Jk(uk), (11)

which means that J acts on the components of u independently. In order to define

the regularizer, we require some technical preliminaries. Recall [3] that for functions

uk in the space SBV(Ω) of special functions of bounded variation, the distributional

derivative Duk can be decomposed as

Duk = ∇uk dx+ (u+k − u
−
k )νuk dHn−1xSuk (12)
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into a differentiable part and a jump part, see Fig. 3. Here, Suk is the (n−1)-dimensional

jump set of uk, where the values jump from u−k to u+k , νuk is the normal to Suk
oriented towards the the u+k side, and ∇uk is the approximate gradient of uk. The

measure Hn−1xSuk is the (n− 1)-dimensional Hausdorff measure restricted to the set

Suk . We refer to [3] for a comprehensive introduction to functions of bounded variation.

Making use of this decomposition, we can introduce the framework for regulariza-

tion. We consider regularizers for problem (1) of the form (11), with

Jk(uk) =

∫
Ω\Suk

hk(x, uk(x),∇uk(x)) dx+

∫
Suk

dk
(
s, u−k (s), u+k (s)

)
dHn−1(s), (13)

with functions hk : Ω × Λk × Rn → R and dk : Ω × Λk × Λk → R. The functions hk
and dk have to satisfy the following conditions:

1. hk(x, λ, p) is convex in p for fixed x, λ.

2. dk(x, ·, ·) is a metric on Λk for fixed x.

The interesting task, of course, is to identify suitable choices of hk and dk, and to

interpret what the choice means in practice. We will turn to this in section 5. Before we

can explore the possible regularizers, however, we need to introduce a convex relaxation

of the general regularizer (13) in section 4.

3.4 Notation conventions

Because the label space is multi-dimensional, the notation requires multiple indices

and is slightly more complex. Throughout this work, we keep the following conven-

tions to keep it as clear as possible. The index k = 1, . . . , d enumerating the factors

of the product space is always written as a subscript. Indices which are Greek letters

always enumerate labels, where γ, χ are labels in the full product space Γ with compo-

nents γk, χk ∈ Λk. Greek letters λ, µ denote labels in one of the factors Λk. If the label

space is discrete or has been discretized, the label is written as a superscript to the in-

dicator functions vλk . In the case of a continuous label space, the indicator functions vk
live on Ω × Λk, thus the label appears as an argument of the function vk(x, λ).

4 Convex relaxation

The minimization problem (3) which we want to solve is not convex: neither is the

energy a convex function nor is the domain of minimization a convex set. Thus, the

task of finding a global minimizer is in general computationally infeasible. We therefore

propose a convex relaxation. This means that instead of minimizing the original func-

tional, we minimize a convex one (ideally, the exact convex envelope) over the convex

hull of the original domain.

The relaxation is defined in terms of the new variables vk defined in (9). After

obtaining a solution v̂, the question remains of whether the solution corresponds to a

function û which solves the original problem. In general, this is not correct, but we can

compute a projection Π(v̂) onto the original problem domain and obtain an optimality

bound. Indeed, the energy of the optimal solution û must lie somewhere between the

energies of v̂ and Π(v̂), as v̂ minimizes the relaxation and Π(v̂) lies in the original

problem domain in which û is a minimizer.



10

In the following subsection we will introduce first a convex relaxation of the regu-

larizer, which is based on the calibration method - however, our variables are different

from the ones used in previous work, which requires a slight reformulation. There-

after, we present the new convex relaxation of the data term and show how it is an

improvement over the one presented in the original conference paper [11].

4.1 Convex relaxation of the regularizer

Our first goal is to give a new representation of the regularizer defined in (13). While it

is not convex in the labeling u, we will obtain a representation which is convex in the

new variables vk defined in (9). We do this by making use of the calibration or lifting

technique described in detail in [1]. Lemma 3.9 in [1] states that under the previous

assumptions on hk and dk, the regularizer Jk for each component can be represented

as

Jk(uk) = sup
φ∈K

{∫
Ω×Λk

φ1 · ∇x1hyp(uk) + φ2 ∂λ1hyp(uk) d(x, λ)

}
(14)

with the convex set

K =

{
φ =(φ1, φ2) : Ω × Λk → Rn ×R such that for all x ∈ Ω and λ, µ ∈ Λk,

φ2(x, λ) ≥ h∗k(x, λ,φ1(x, λ)) and

∣∣∣∣∫ µ

λ

φ1(x, s) ds

∣∣∣∣ ≤ dk(x, λ, µ)

}
.

(15)

Note that (14) is a convex representation of the regularizer in terms of the characteristic

functions 1hyp(uk) of the hypograph of uk, see equation (8). However, what we want is

a convex representation in terms of our new unknowns vk. We give this reformulation

in the following theorem.

Theorem 1 Let Jk be of the form (13), and the indicator functions vk defined as

in (9). Then

Jk(uk) = sup
(p,b)∈Ck

{∫
Ω×Λk

(−div(p)− b) vk d(x, λ)

}
, (16)

with the convex set

Ck =
{

(p, b) : Ω × Λk → Rn ×R such that for all x ∈ Ω and λ, µ ∈ Λk,

b(x, λ) ≥ h∗k
(
x, λ, ∂λp(x, λ)

)
,

|p(x, λ)− p(x, µ)|2 ≤ dk(x, λ, µ)
}
.

(17)

Above, h∗k(x, λ, q) denotes the convex conjugate of hk(x, λ, p) with respect to p.

Proof Since derivatives of indicator functions do not exist in ordinary sense, the integral

in (14) is meant to be a convenient notation for∫
Ω×Λk

(φ1, φ2) · νΓuk dHn(x, λ) (18)
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where

Γuk :=
{

(x, u(x))
∣∣x ∈ Ω \ Suk} ∪ {(x, s)

∣∣x ∈ Suk , s ∈ [u−k , u
+
k ]
}

(19)

is the extended graph of u, and νΓuk is the normal on Γuk pointing “downwards”.

Intuitively, ∇1hyp(uk) in (14) is nonzero only on Γuk , and equals νΓuk up to a delta

function factor. For a fixed φ denote the integral (18) by Jφ. It is equal to [1, lemma

2.8]

Jφ =

∫
Ω\Suk

(
φ1(x, uk) · ∇uk − φ2(x, uk)

)
dx

+

∫
Suk

(∫ u+
k

u−
k

φ1(x, s) ds

)
· νuk dHn−1(x).

(20)

Define p : Ω × Λk → Rn and b : Ω × Λk → R by

p(x, λ) :=

∫ λ

λ0

φ1(x, s) ds, b(x, λ) := φ2(x, λ) (21)

for some λ0 ∈ Λk. With these new variables we have

Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx

+

∫
Suk

(
p(x, u+k )− p(x, u−k )

)
· νuk dHn−1(x).

(22)

By the divergence theorem,∫
Ω\Suk

div
(
p(x, uk)

)
dx =

∫
Suk

(
p(x, u+k ) · (−νuk ) + p(x, u−k ) · νuk

)
dHn−1(x)

+

∫
∂Ω

p(x, uk) · ν∂Ω dHn−1(x).

(23)

In the integrand of the first integral on the right hand side there are two addends for

each point of Suk , because the integration on the left hand side is performed on both

sides of Suk . The outer normal for the u−k side is νuk by definition, and for the u+k side

it is just the opposite. The last integral on the right hand side is zero because φ and

therefore also p has compact support in Ω. Using (23) in (22) we obtain

Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx−

∫
Ω\Suk

div
(
p(x, uk)

)
dx (24)

By the chain rule,

div
(
p(x, uk)

)
= (divp)(x, uk) + ∂λp(x, uk) · ∇uk. (25)

Thus, the expression (24) simplifies to

Jφ =

∫
Ω\Suk

(
− (divp)(x, uk)− b(x, uk)

)
dx =

∫
Ω×Λk

(−divp− b) vk d(x, λ). (26)

The last equality is simply the definition of how the distribution vk(x, λ) = δ(uk − λ),

defined for uk ∈ SBV(Ω), acts on functions. Now, the claim of the proposition follows

directly from (14) and (26). ut
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(a) Product function m(x1, x2) = x1x2

 0

 0.2
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x1 + x2

co (m)
ε = 0.05
ε = 0.15
ε = 0.20

(b) Convex envelope co (m) and mollified
versions for different ε

Fig. 4: Product function and its mollified convex envelope for the case d = 2.

Note that similarly to the discrete version of the indicator functions, the discrete

version of the set Ck in (17) consists of tuples (pλ, bλ)λ∈Λk of functions. Taking a

closer look at equation (16), we can see that the right hand side is a convex functional

in the new variables vk. Thus, we have achieved our goal and can turn towards finding

a similar relaxation of the data term.

4.2 Convex relaxation of the data term

In this subsection, we deal with the non-convexity of the data term in (7),

Edata(v) =
∑
γ∈Γ

〈
vγ11 · ... · v

γd
d , cγ

〉
. (27)

Specifically, we show two different ways how it can be replaced with a convex func-

tion which has the same binary minimizers with equal energy. We first describe the

convexification idea from the original conference paper [11] in the discrete case with a

label space of dimension d = 2. While it leads to a working relaxation, it has certain

shortcomings, the main problem being that an unwanted constant solution has to be

avoided by additional smoothing when moving on from binary to continuous functions.

These shortcomings will be remedied by a new relaxation technique which we explain

thereafter. Note that for the data term, we already work in the setting of a discretized

label space. While it is, up to a point, possible to give a well-defined theoretical jus-

tification of the relaxation for the continuous case, the associated trouble and loss of

clarity is not worth the small theoretical gain.

Discrete two-dimensional case. In [11], we suggested to replace the multiplication func-

tion m(vγ11 , ..., vγdd ) := vγ11 · ... · v
γd
d with its convex envelope co (m). Analyzing the



13

epigraph of m, see Fig. 4(a), shows that

co (m) (x1, ..., xd) =

{
1 if x1 = ... = xd = 1,

0 if any xk = 0.
(28)

This means that if in the functional, m is replaced by the convex function co (m), we

retain the same binary solutions, as the function values on binary input are the same.

We lose nothing on first glance, but on second glance, we forfeited differentiability

of the data term, since co (m) is not a smooth function anymore. Furthermore, the new

function we obtain is not the correct convex envelope of the full data term, only for

the constituting addends. The particular problem this leads to is that for the constant

function v̂ defined by

v̂λk (x) := 1/Nk (29)

the energy of the data term and hence the total energy is zero.

In [11], this problem was circumvented by an additional mollification of the convex

envelope. We replaced co (m) again by a mollified function co (m)ε, where ε > 0 is a

small constant. We illustrate this for the case d = 2, where one can easily write down

the functions explicitly. In this case, the convex envelope of multiplication is

co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1

x1 + x2 − 1 otherwise.
(30)

This is a piecewise linear function of the sum of the arguments, i.e symmetric in x1
and x2, see Fig. 4(b). We smoothen the kink by replacing co (m) with

co (m)ε (x1, x2) =


0 if x1 + x2 ≤ 1− 4ε
1

16ε (x1 + x2 − (1− 4ε))2 if 1− 4ε < x1 + x2 < 1 + 4ε

1 if x1 + x2 ≥ 1 + 4ε

(31)

This function does not satisfy the envelope condition (28) exactly, but only fulfills the

less tight

co (m)ε (x1, . . . , xd)

{
= 1 if x1 = · · · = xd = 1,

≤ ε if any xj = 0.
(32)

Notably, the data term energy of the constant trivial minimizer (29) is now ε
∑
γ c

γ ,

which means that the relaxation of the data term leads to the correct pointwise solution

with energy minγ(cγ) if ε > minγ(cγ)/
∑
γ c

γ . Since the condition must be satisfied for

each point x ∈ Ω, it is best to set ε point-wise to the minimal possible value. However,

the choice of mollified envelope is suboptimal since it is just an approximation to the

correct envelope and distorts the original problem. Thus, we are now going to propose

a novel relaxation of the data term which avoids this problem altogether and is easier

to deal with in higher dimensional label spaces.
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New tighter relaxation for general d-dimensional case. In this paragraph, we describe

our new relaxation of the data term. It it much tighter and does not suffer from the

described drawbacks of the relaxation in [11]. The new relaxation of Edata(v) is one of

the main additional contributions of this paper. It is defined as

Rdata(v) := sup
q∈Q


∫
Ω

∑
γ1∈Λ1

qγ11 vγ11 + . . .+
∑
γd∈Λd

qγdd vγdd dx

 . (33)

The additional dual variables q = (qk)k=1..d range over the convex set

Q :=
{

(qk : Λk → R)k=1..d such that for all γ ∈ Γ ,

qγ11 + . . .+ qγdd ≤ c
γ}. (34)

We first establish that the relaxation coincides with the original energy for binary

functions.

Proposition 2 Let v ∈ L2(Ω,∆×) be a binary function representing the label γ(x) ∈
Γ in each point x ∈ Ω. Then

Rdata(v) =

∫
Ω

c(x, γ(x)) dx = Edata(v). (35)

Proof Since in each point, γ(x) is the label indicated by v(x), we have vγkk = 1 point-

wise. Thus for all q ∈ Q,

d∑
k=1

∑
λ∈Λk

qλkv
λ
k =

d∑
k=1

qγkk vγkk =

d∑
k=1

qγkk ≤ c
γ . (36)

This shows that at least R(v) ≤
∫
Ω
c(x, γ(x)) dx. To prove equality, we use Lagrange

multipliers to write the constraints in (34) as additional energy terms:

Rdata(v) = sup
q∈Q

d∑
k=1

∑
λ∈Λk

qλkv
λ
k

= sup
q

inf
µγ̂≥0

d∑
k=1

∑
λ∈Λk

qλkv
λ
k −

∑
γ̂∈Γ

µγ̂
(
qγ̂11 + . . .+ qγ̂dd − c

γ̂)
= inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ + sup
q

d∑
k=1

∑
λ∈Λk

qλk

(
vλk −

∑
γ̂∈Γ : γ̂k=λ

µγ̂
)
,

(37)

interchanging the ordering of supq and infµ. Evaluating the supremum over q leads to

constraints on the variables µγ̂ and we obtain

Rdata(v) = inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ (38)

with µγ̂ such that additionally ∑
γ̂∈Γ : γ̂k=λ

µγ̂ = vλk (39)
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for all 1 ≤ k ≤ d and λ ∈ Λk. First, for any fixed k and λ 6= γk, we have vλk = 0. Since

µγ̂ ≥ 0, (39) then gives µγ̂ = 0 for all γ̂ with γ̂k 6= γk. Thus, µγ̂ = 0 for all γ̂ 6= γ.

Next, plug λ = γk for some k into (39). Since any other addend µγ̂ is zero, the sum is

just µγ , while the right hand side is vγkk = 1.

Therefore, the constraints (39) ensure that µγ̂ = 0 for all γ̂ 6= γ and µγ = 1, so

(38) gives Rdata(v) = cγ . ut

In addition, one can prove the following theorem, which shows that the relaxation of the

data term has the correct pointwise minimizers, in contrast to the one proposed in [11].

This means that no smoothing is necessary and an exact minimization algorithm can

be employed to obtain solutions.

Theorem 2 Let v̂ ∈ L2(Ω,∆×) be a binary minimizer of Edata. Then v̂ is also a

minimizer of the relaxation,

v̂ ∈ argmin
v∈L2(Ω,co(∆×))

{Rdata(v)} . (40)

In particular, Edata(v̂) = Rdata(v̂) =
∫
Ω
ĉ dx with ĉ := infγ∈Γ (cγ) pointwise.

Proof Let v ∈ L2(Ω, co (∆×)) be arbitrary, and set qλk := ĉ/d. Then

d∑
k=1

∑
λ∈Λk

qλkv
λ
k =

d∑
k=1

ĉ

d

∑
λ∈Λk

vλk = d
ĉ

d
= ĉ, (41)

and
∑
k q

γk
k = ĉ ≤ cγ for all γ, so q ∈ Q. This shows that R(v) ≥ ĉ, which is the

minimum of Edata for binary functions. ut

5 Multilabel Regularizers

In this section, we will explore suitable choices of the regularizer, and how they fit within

the proposed framework. In particular, we will see how our model can be specialized to

the case of discrete label spaces where the label distance has a Euclidean representation.

This special case was discussed in [18,11], and we will see that our framework leads to a

tighter relaxation for this case. We will also discuss additional continuous regularizers

which become possible based on the lifting framework discussed in the last section.

These were introduced in the previous works [7,21,22] when the unknowns were the

characteristic functions of the hypographs of uk. We show how we can accommodate

them to depend on the new unknowns. Notably, in each dimension of the label space

its own type of regularization can be chosen, in particular discrete and continuous

regularizers can be mixed freely.

5.1 Discrete label space and its Euclidean representation

We first consider the special case of a discrete label space Λk. Thus, we need to define

a regularizer Jk : L2(Ω, co (∆k)) → R for functions with values in the convex hull of

the simplex ∆k. We first present the construction used in [18,11], and then show how

we can embed it into our more general framework.
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(a) Ordered embedding (b) Potts embedding

Γ

x

y

(c) Optic flow embedding

Fig. 5: Different embeddings for a label space. In an ordered embedding, all labels are

mapped onto a line, while for the Potts model, every label is mapped onto a different unit

vector. For optical flow, each label is already a vector in R2, so a sensible embedding is

given by the identity.

We assume that the metric dk has a Euclidean representation. This means that

each label λ ∈ ∆k shall be represented by an Mk-dimensional vector aλk ∈ RMk , and

the distance dk is defined as the Euclidean distance between the representations,

dk(λ, µ) =
∣∣∣aλk − aµk ∣∣∣

2
for all λ, µ ∈ ∆k . (42)

The goal in the construction of Jk is that the higher the distance between labels and

the longer the jump set, the higher shall be the penalty imposed by Jk. To make this

idea precise, we introduce the linear mappings Ak : co (∆k)→ RMk which map labels

onto their representations,

Ak(λ) = aλk for all λ ∈ ∆k . (43)

When the labels are enumerated, then in matrix notation, the vectors aλk become

exactly the columns of Ak, which shows the existence of this map. It turns out that a

regularizer with desirable properties can be defined by

JAk (vk) := TVv(Akvk) , (44)

where

TVv(f) :=

∫
Ω

√√√√ m∑
i=1

|∇fi|22 dx (45)

denotes the vectorial total variation for functions f : Ω → Rm taking values in a real

vector space of dimension m. The following theorem was proved in [18] and shows why

the above definition makes sense.

Theorem 3 The regularizer JAk defined in (44) has the following properties:

1. JAk is convex and positively homogeneous on L2(Ω, co (∆k)).

2. JAk (vk) = 0 for any constant labeling vk.
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3. If S ⊂ Ω has finite perimeter Per(S), then for all labels λ, µ ∈ Λk,

JAk (λ1S + µ1Sc) = dk(λ, µ) Per(S) , (46)

i.e. a change in labels is penalized proportional to the distance between the labels

and the perimeter of the interface.

For the sake of simplicity, we only give the main examples for distances with Euclidean

representations. More general classes of distances on the labels can also be used, see [18].

– The case of ordered labels, where the embedding follows the natural ordering

of λ, µ ∈ R, Fig. 5(a), for example by setting simply aλk = λ. If d = 1, then

this case can be solved in a globally optimal way using the lifting method [22].

– The Potts or uniform distance, where dk(λ, µ) = 1 if and only if λ = µ, and zero

otherwise. This distance function can be achieved by setting aλk = 1√
2
eλ, where

(eλ)λ∈Λk is an orthonormal basis in RNk , see Fig. 5(b). All changes between labels

are penalized equally.

– Another typical case is that the aλk denote feature vectors or actual geometric

points, for which |·|2 is a natural distance. For example, in the case of optic flow,

each label corresponds to a flow vector in R2, see Fig. 5(c). The representations

aλ1 ,a
µ
2 are just real numbers, denoting the possible components of the flow vectors

in x and y-direction, respectively. The Euclidean distance is a sensible distance on

the components to regularize the flow field, corresponding to the regularizer of the

TV-L1 functional in [30]. Optic flow (and other geometric kinds of labels) would

however more naturally be modeled with a continuous label space using one of the

continuous regularizers in the later subsections.

5.2 New relaxation for the discrete label space

We will now show how to formulate the regularizer JAk defined above in the new more

general framework. While the previous formulation (44) already yields a relaxation to

non-binary functions v, we will see that our framework results in a provably tighter

one.

Taking a look at theorem 3, we see that the regularizer must penalize the length

of the jump set weighted by the label distance. Thus, our general regularizer in (13)

must reduce to

Jk(uk) =

∫
Suk

dk
(
u−k , u

+
k

)
dHn−1. (47)

where dk is the same metric as used above in the representation (42). We can see that

in order to reduce the general form to the one above, we must enforce a piecewise

constant labeling, since the approximate gradient ∇uk must be constant zero outside

the jump set. Applying theorem 1 we can find a convex representation of Jk in terms

of the variables v, which we formulate in the following proposition in its discretized

form.

Proposition 3 A convex representation of (47) in terms of the variables v is given

by

Jk(uk) = sup
p∈Ck

∑
λ∈Λk

∫
Ω

vλk div
(
pλ
)

dx

 , (48)
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with

Ck =
{
p : Ω × Λk → Rn :

∣∣pλ − pµ∣∣
2
≤ dk(λ, µ) for all λ, µ ∈ Λk

}
. (49)

Proof We can enforce a piecewise constant labeling uk, if we enforce the approxi-

mate gradient ∇uk to be constant zero. In (13), this can be achieved by setting

hk(x, uk(x),∇uk(x)) = c |∇uk| with a constant c > 0, and then letting c → ∞ to

enforce ∇uk ≡ 0 on Ω \ Suk . Inserting the convex conjugate h∗k(x, λ, q) = δ{|q|≤c}, we

find that the conditions in (17) now reduce to

bλ ≥ 0,
∣∣∂λpλ∣∣2 ≤ c, ∣∣pλ − pµ∣∣2 ≤ dk(λ, µ). (50)

The supremum over bλ ≥ 0 is easily eliminated from (16) since vλk ≥ 0, i.e. −bλvλk ≤ 0

with 0 being the maximum possible value. The second constraint in (50) follows from

the third if we choose c ≥ maxλ>µ
dk(λ,µ)
|λ−µ| . Thus we arrive at (48) with the set Ck as

claimed in the proposition. ut

We can now establish the relationship between our framework and the regular-

izer JAk derived from a representation of the labels, and show that ours is more tight.

Proposition 4 Let the regularizer Jk be defined by the relaxation on the right hand

side in equation (48). Then for all vk ∈ L2(Ω, co (∆k)),

Jk(vk) ≥ TVv(Akvk) = JAk (vk). (51)

Equality holds if vk is binary.

Proof The claim follows from our general formulation (48) with a special choice of

the dual variables p together with additional relaxations of the equations in Ck. The

special form for pλ we choose is

pλ =

Mk∑
i=1

aλk,iqi, (52)

with q : Ω × {1, . . . ,Mk} → Rn such that |q|2 ≤ 1 and the vectors aλk ∈ RMk which

define the Euclidean representation of dk, see equation (42). This is only a subset of

possible p ∈ Ck in proposition 4. The constraint on p in (48) is satisfied, since by the

Cauchy-Schwarz inequality and the definition of the representation,

∣∣pλ − pµ∣∣
2

=

∣∣∣∣∣
Mk∑
i=1

(aλk,i − a
µ
k,i)qi

∣∣∣∣∣
2

≤

√√√√Mk∑
i=1

(aλk,i − a
µ
k,i)

2 ·

√√√√Mk∑
i=1

|qi|22

=
∣∣Akeλ −Akeµ∣∣2 ∣∣q∣∣2 ≤ dk(λ, µ).

(53)
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Plugging (52) into (48) we obtain the desired result

Jk(vk) ≥ sup
|q|2≤1

∑
λ∈Λk

∫
Ω

(
Mk∑
i=1

aλk,iqi

)
· ∇vλk dx


= sup
|q|2≤1


∫
Ω

Mk∑
i=1

qi · ∇

∑
λ∈Λk

aλk,iv
λ
k

 dx


= sup
|q|2≤1

{∫
Ω

Mk∑
i=1

qi · ∇(Akvk)i dx

}
= TVv(Akvk).

(54)

The inequality in the first step is a consequence of choosing the special form of p’s,

thus reducing the set over which the supremum is taken. ut

The right hand side of inequality (51) is exactly the previous regularizer used

in [11,18]. This implies that for binary functions, the regularizers coincide, which can

already be seen from representation (47), see theorem 3. However, if we perform the

relaxation to functions taking values between 0 and 1, inequality (51) implies that the

new relaxation is more tight, leading to solutions closer to the global optimum.

We will show in the remainder of the section that in addition to handling the dis-

crete case better, our method also can handle continuous regularizers which penalize a

smooth variation of the labels. This is not possible with the piecewise constant approach

of [18,11] which uses vectorial total variation. For instance, our formulation is capable

of representing more sophisticated regularizers such as Huber-TV and the piecewise

smooth Mumford-Shah functional, as we will show in the following paragraphs. For

the regularizers presented in the remainder of this section, relaxations have previously

been proposed for the case of a one-dimensional label space in [7,21,22]. However, the

framework presented here is more general and allows to combine them freely in the

different label dimensions.

5.3 Huber-TV

The TV regularization is known to produce staircasing effects in the reconstruction,

i.e. the solution will be piecewise constant. While this is natural in case of a discrete

label space, for continuous label spaces it impedes smooth variations of the solution.

A remedy for this is replacing the norm |∇uk|2 of the gradient by the Huber function

|∇uk|α :=

{
1
2α |∇uk|

2
2 , if |uk|2 ≤ α

|∇uk|2 −
α
2 , else.

(55)

which smooths out the kink at the origin. The Huber-TV regularizer is then defined

by

Jk(uk) =

∫
Ω

|∇uk|α dx. (56)
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The special case α = 0 leads to the usual TV regularization. Theorem (1) gives a

convex representation for Jk, see also [22]. The constraint set in (17) is found to be

Ck =

{
(p, b) : Ω × Λk → Rn ×R such that for all λ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ∣∣22, ∣∣∂λpλ∣∣2 ≤ 1

}
.

(57)

5.4 Piecewise smooth Mumford-Shah

The celebrated Mumford-Shah regularizer [1,21]

Jk(uk) =

∫
Ω\Suk

1

2α
|∇uk|22 dx + νHn−1(Suk ) (58)

allows to estimate a denoised image uk which is piecewise smooth. Parameter ν can be

used to easily control the total length of the jump set Suk . Bigger values of ν lead to a

smaller jump set, i.e. the solution is smooth on wider subregions of Ω. The constraint

set in the convex representation of theorem 1 becomes

Ck =

{
(p, b) :Ω × Λk → Rn ×R such that for all λ, µ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ∣∣22, ∣∣pλ − pµ∣∣
2
≤ ν

}
.

(59)

The limiting case α = 0 gives the piecewise constant Mumford-Shah regularizer, which

can also be obtained from proposition 3 setting dk(λ, µ) = ν for all λ 6= µ.

5.5 Truncated linear

For many applications, it is useful to penalize the difference between two label values λ

and µ only up to a certain threshold, reasoning that once they are that different, it

does not matter anymore how different exactly they are. This means that if |λ − µ|
becomes greater than a certain value t, jumps from λ to µ are still penalized only

by the constant t. Using linear penalization for small values this leads to the robust

truncated linear regularizer [7]

Jk(uk) =

∫
Ω\Suk

|∇uk|2 dx +

∫
Suk

min
(
t,
∣∣u+k − u−k ∣∣) dHn−1(s). (60)

The constraint set for this case is

Ck =

{
(p, b) : Ω × Λk → Rn ×R such that for all λ, µ ∈ Λk,

∣∣∂λpλ∣∣2 ≤ 1,
∣∣pλ − pµ∣∣

2
≤ t, b = 0

}
.

(61)

The second constraint needs to be imposed only if |λ− µ| ≥ t, since otherwise it is

already implied by the first constraint.
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6 Implementation

6.1 Final relaxation to a convex problem

In order to transform the multilabel problem into the final form which we are going

to solve, we formulate it in terms of the indicator functions vλk on the discretized

label space using the representation (16) for the regularizer and the relaxation (33)

of the data term. Discretization of the label space is necessary now to arrive at a

well-posed problem. Let us briefly summarize and review the objects we are dealing

with in the final problem. The minimizer we are looking for is a vector v = (vk) of

functions vk ∈ L2(Ω, co (∆k)), which means that we are looking for a minimizer in a

convex set D,

v ∈ D :=
{
v ∈ L2(Ω,RN1+...+Nd) such that for all x ∈ Ω, v(x) ∈ co (∆×) ,

with ∆× = ∆1 × ...×∆d
}
.

(62)

Let us now turn to the regularizer, which is defined via the relaxation in theorem 1.

The key ingredients are the convex sets Ck which depend on the kind of regularization

we want to use - possible options were detailed in the last section. Let C := C1× ...×Cd
denote the convex set of all dual variables, and define the linear operator K : C →
L2(Ω,RN1+...+Nd) via

K(p, b) :=
(
−div(pλk)− bλk

)
k=1..d,λ∈Λk

. (63)

Then theorem 1 in fact shows that the regularizer can be written in terms of v in the

simple form

J(v) = sup
(p,b)∈C

{〈K(p, b),v〉} , (64)

where 〈·, ·〉 denotes the inner product on L2(Ω,RN1+...+Nd). The fully relaxed problem

we are going to solve can now be written as

argmin
v∈D

{J(v) +Rdata(v)} , (65)

using the relaxation Rdata of the data term defined in (33). We will show in the next

subsection that a solution always exists, and describe a numerical algorithm to find

one afterwards.

Note that because of the relaxation, the solution might not be binary. If it already

has values in ∆k, we have found the global optimum of the original problem (1), oth-

erwise we have to project the result back to the smaller set of binary valued functions.

For this, let v̂ be a minimizer of the final relaxation (65). Thus, the functions v̂λk might

have values in between 0 and 1. In order to obtain a feasible solution to the origi-

nal problem (1), we just project back to the space of allowed functions. The function

û ∈ L2(Ω,Γ ) closest to v̂ is given by setting

û(x) = argmax
γ∈Γ

{
v̂γ11 (x) · ... · v̂γdd (x)

}
, (66)

i.e. we choose the label where the combined indicator functions have the highest value.

We cannot guarantee that the solution û is indeed a global optimum of the original

problem (1), since there is nothing equivalent to the thresholding theorem [19] known

for this kind of relaxation. However, we still can give a bound how close we are to the

global optimum. Indeed, the energy of the optimal solution of (1) must lie somewhere

between the energies of v̂ and û, as previously explained.
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6.2 Existence of solutions

Regarding existence of solutions to the final problem (65), one can prove the following

proposition.

Proposition 5 Problem (65) always has a minimizer v̂ ∈ D, which is in general not

unique.

Proof Both J and Rdata are support functionals of convex sets in the Hilbert space L :=

L2(Ω,RN1+...+Nd): equation (64) shows that the regularizer J is the support functional

of KC, while we can see from definition (33) that the data term Rdata is the support

functional of Q. It follows that both J and Rdata are lower semi-continuous and convex

on L. The set D is closed, thus its indicator function δD is also convex and closed,

furthermore δD is coercive since D is bounded. From the above, it follows that the

functional

v 7→ J(v) +Rdata(v) + δD(v) (67)

is closed and coercive. Since being closed is equivalent to being lower semi-continuous

in the Hilbert space topology of L, these properties imply the existence of a minimizer

in L, see theorems 3.2.5 and 3.3.3 in [3], which must necessarily lie in D. Since neither

functional is strictly convex, the solution is usually not unique. ut

6.3 Numerical method

Using the representation (64) for J , and the definition (33) for the relaxation Rdata,

we can transform the final formulation (65) of the multilabel problem into the saddle

point problem

min
v∈D

max
(p,b)∈C
q∈Q

{〈K(p, b) + q,v〉} . (68)

We minimize the energy (68) with a recent general fast primal-dual algorithm in [8],

which is designed for this type of problem. The algorithm is essentially a gradient

descent in v and gradient ascent in p, b and q, with a subsequent application of

proximation operators, which act as generalized reprojections. In our case, these are

just the usual orthogonal projection onto the constraint sets D, C and Q. Since they are

defined by numerous non-local constraints, a direct projection is quite costly. Therefore,

we implement as many constraints as possible using Lagrange multipliers.

First, the simplex constraint v ∈ D, i.e. vk ∈ co (∆k) with ∆k in (4) for 1 ≤ k ≤ d,

is enforced by adding the Lagrange multiplier terms

sup
σ

d∑
k=1

∫
Ω

σk

( ∑
λ∈Λk

vλk − 1

)
dx (69)

to the energy (68), optimizing over σ : Ω → Rd in addition to the other variables. This

leaves just the simple condition v ≥ 0 for the indicator variables v.

Next, we enforce the constraints (p, b) ∈ C on the dual variables of the regularizer

by introducing new variables

dλk = ∂λp
λ
k or dλµk = pλk − p

µ
k , (70)
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depending on the kind of constraints in Ck. Corresponding to these, we add Lagrange

multiplier terms

inf
η

〈
η, ∂γp

λ
k − d

λ
k

〉
or inf

η

〈
η,pλk − p

µ
k − d

λµ
k

〉
(71)

to the energy to enforce the equalities (70). Instead of computing the projection of (p, b)

in each step, we can then instead perform the projection of the new variables (dk, bk)

on a corresponding constraint set. The advantage is that it decouples into independent

projections of dλk or dλµk and bλk onto simple convex sets, which are easy to implement.

Alternatively, constraints of the form
∣∣pλk − pµk ∣∣2 ≤ m can be enforced using convex

duality, by simply adding the terms

inf
η

〈
η,pλk − p

µ
k

〉
+m |η|2 (72)

to the energy instead of (71). We used this way in our implementation, as it turns out

to be much faster in practice. The optimization (68) is now performed over v, p, b, q,

σ and d,η.

Finally, the projection of a q̃ onto Q consists of solving

argmin
q∈Q

 ∑
k,λ∈Λk

1

2

(
qλk − q̃

λ
k

)2 (73)

pointwise for each x ∈ Ω. The number of constraints in Q, as defined in (34), equals

the total number of labels in the product space. Unfortunately, implementing these

constraints by adding Lagrange multipliers to the global problem (68), i.e. for each

x ∈ Ω, is not possible for larger problems since it requires too many dual variables to

be memory efficient. Thus, for larger problems, the projection needs to be computed

explicitly after each iteration, which increases run time, see Fig. 6. To make sure that

q lies in Q we add the Lagrange multiplier terms

sup
µ≥0

∑
γ∈Γ

µγ(qγ11 + . . .+ qγdd − c
γ)

 (74)

to the local energy (73). This results in another saddle point problem to be optimized

over now unconstrained q and µ ≥ 0, which we again solve using the algorithm in [8].

Specifically, since the q-only terms are uniformly convex, we use the algorithm 2 of [8]

with the accelerated O( 1
N2 ) convergence rate. Note that for each x ∈ Ω we thus need

O(N1 · · ·Nd) memory to solve the local problem (73), which at first seems to contradict

our statement to substantially reduce the overall memory requirements to O((N1+. . .+

Nd)|Ω|). However, the problems (73) are independent of each other for different x ∈ Ω
and can be solved in chunks of O

(
(N1 + . . .+Nd)|Ω|/N1 · · ·Nd

)
points x in parallel.

Since there is only a small change in the variables q per outer iteration, only a small

number of inner iterations is required. In our experiments, we used 10 inner iterations.
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# of Pixels # Labels Memory [Mb] Run time [s]

P = Px × Py N1 ×N2 Previous Proposed (g/p) Previous Proposed (g/p)

320× 240 8× 8 112 112 / 102 196 26 / 140

320× 240 16× 16 450 337 / 168 ∗ 80 / 488

320× 240 32× 32 1800 1124 / 330 ∗ 215 / 1953

320× 240 50× 50 4394 2548 / 504 ∗ 950 / 5188

320× 240 64× 64 7200 4050 / 657 - 1100 / 8090

640× 480 8× 8 448 521 / 413 789 102 / 560

640× 480 16× 16 1800 1351 / 676 ∗ 295 / 1945

640× 480 32× 32 7200 4502 / 1327 - 1290 / 7795

640× 480 50× 50 17578 10197 / 2017 - - / 32887

640× 480 64× 64 28800 16202 / 2627 - - / 48583

Fig. 6: The table shows the total amount of memory required for the implementations of

the previous and proposed methods depending on the size of the problem. For the pro-

posed method, the projection (73) of the data term dual variables can be implemented

either globally (g), or slower but more memory efficient as a sub-problem of the proxi-

mation operator (p), here using N1/5 chunks. Also shown is the total run time for 5000

iterations, which usually suffices for convergence. Numbers in red indicate a memory

requirement larger than what fits on the largest currently available CUDA capable de-

vices (6 GB). Failures marked with a “∗” are due to another limitation: the shared

memory is only sufficient to store the temporary variables for the simplex projection

up until dimension 128. Note that the proposed framework can still handle all problem

sizes above.

7 Experiments

We demonstrate the correctness and usability of our method on several examples.

Different regularizers are used in the examples. In the cases where the regularizer can

be simulated with the previous relaxation [11], we compared the resulting optimality

bounds. On average, our bounds were approximately three times better (3− 5% with

the proposed framework compared to 10 − 15% with the previous relaxation). All

experiments were performed with a parallel CUDA implementation running on a nVidia

GTX 480 GPU, respectively on a TESLA C2070 for larger problems.

When the domain Ω is discretized into P pixels, the primal and dual variables

are represented as matrices. For (68), we have to store P · (N1 + ... + Nd) floating

point numbers for the primal variables v, and P (n + 2) · (N1 + ... + Nd) floating

point numbers for the dual variables p, b and q. Depending on whether the projection

(73) is implemented globally or as a sub-problem of the proximation, as described in
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Input, spatially varying noise Denoised image and reconstructed standard deviation

Fig. 7: The algorithm allows to jointly recover the unknown standard deviation σ of

the noise as well as the intensity of a denoised image by solving a single optimization

problem. Ground truth: Within rectangle Gaussian noise with standard deviation σ =

0.25, outside σ = 0.02; image intensity within ellipsoid u = 0.7, outside u = 0.3. Image

resolution is 256× 256 using 32× 32 labels. Computation time is 4.4 minutes.

the previous section, we need P · N1 · · ·Nd, respectively nc · N1 · · ·Nd floating point

numbers for the auxiliary variables µ in (74). The number of “chunks” nc can be chosen

appropriately depending on available memory, e.g. nc = Pa · (N1 + . . .+Nd)/N1 · · ·Nd
with some constant a > 0. Finally, e.g. for the TV or Huber-TV regularizer with the

constraint set (57), the auxiliary variables dλk in (70) are stored using Pn·(N1+. . .+Nd)

floating point numbers.

In contrast, without using our reduction scheme, the memory requirements grow

proportional to N1 · · ·Nd instead of only N1 + . . .+Nd. For the algorithm [8], we need

space for dual variables and two times the primal variables in total, so we end up with

the total values shown in Fig. 6. Thus, problems with large number of labels can only

be handled with the proposed reduction technique.

7.1 Adaptive denoising

As a novel application of a multi-dimensional label space, we present adaptive denois-

ing, where we jointly estimate a noise level and a denoised image by solving a single

minimization problem. Note that here we require the continuous label space to rep-

resent the image intensity range. The Mumford-Shah energy can be interpreted as a

denoising model which yields the maximum a posteriori estimate for the original image

under the assumption that the input image f was distorted with Gaussian noise of

standard deviation σ. If this standard deviation is itself viewed as an unknown which

varies over the image, the label space becomes two-dimensional, with one dimension

representing the unknown intensity u of the original image, the second dimension rep-

resenting the unknown standard deviation σ of the noise. The data term of the energy

can then be written as [6] ∫
Ω

(u− f)2

2σ2
+

1

2
log(2πσ2) dx. (75)

Results of the optimization can be observed in Fig. 7 and Fig. 8. For the regularizer,

we used piecewise constant Mumford-Shah for both σ and u in Fig. 7, and piecewise
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Input, textured object Simultaneous piecewise smooth approximation
of intensity (left) and standard deviation (right)

Fig. 8: A piecewise smooth image approximation of both intensity and noise standard

deviation using (75) and the Mumford-Shah regularizer for both u and σ. This model

allows to separate textured objects in a natural way by jointly estimating the mean and

standard deviation of image intensities. The amount of smoothing is stronger in region

of larger standard deviation. Image resolution is 320× 214 using 32× 32 labels, leading

to a run time of 10.3 minutes.

smooth Mumford-Shah in Fig. 8. In the real world example Fig. 8, the solution can be

interpreted as a uniformly smooth approximation, where all regions attain a similar

smoothness level regardless of the amount of texture in the input.

7.2 Depth and Occlusion map

In this test, we simultaneously compute a depth map and an occlusion map for a stereo

pair of two color input images IL, IR : Ω → R3. The occlusion map shall be a binary

map denoting whether a pixel in the left image has a matching pixel in the right image.

Thus, the space of labels is two-dimensional with Λ1 consisting of the disparity values

and a binary Λ2 for the occlusion map. We use the a TV smoothness penalty on the

disparity values. A Potts regularizer is imposed for the occlusion map. The distance

on the label space thus becomes

d(γ, χ) = s1 |γ1 − χ1|+ s2 |γ2 − χ2| , (76)

with suitable weights s1, s2 > 0. We penalize an occluded pixel with a constant

cost cocc > 0, which corresponds to a threshold for the similarity measure above which

we believe that a pixel is not matched correctly anymore. The cost associated with a

label γ at (x, y) ∈ Ω is then defined as

cγ(x, y) =

{
cocc if γ2 = 1,

|IL(x, y)− IR(x− λ1, y)|2 otherwise.
(77)

The result for the “Moebius” test pair from the Middlebury benchmark is shown

in Fig. 9. The input image resolution was scaled to 640× 512, requiring 128 disparity

labels, which resulted in a total memory consumption which was slightly too big for

previous methods, but still in reach of the proposed algorithm. Total computation time

required was 1170 seconds.
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Fig. 9: The proposed method can be employed to simultaneously optimize for a displace-

ment and an occlusion map. This problem is also too large to be solved by alternative

relaxation methods on current GPUs. From left to right: Left and right input image IL
and IR, and computed disparity and occlusion map; red areas denote occluded pixels.

7.3 Optic Flow

In this experiment, we compute optic flow between two color input images I0, I1 : Ω →
R3 taken at two different time instants. The space of labels is again two-dimensional,

with Λ1 = Λ2 denoting the possible components of flow vectors in x and y-direction,

respectively. We regularize both directions with either TV or a truncated linear penalty

on the component distance, i.e.

d(γ, χ) = smin(t, |γ1 − χ1|) + smin(t, |γ2 − χ2|) , (78)

with a suitable manually chosen weight s > 0 and threshold t > 0. Note that we can

provide a tight relaxation of the exact penalizer, which was only coarsely approximated

in the previous approaches [11,18]. The cost function just compares pointwise pixel

colors in the images, i.e.

cγ(x, y) = |I0(x, y)− I1(x+ γ1, y + γ2)|2 . (79)

Results can be observed in Figs. 1, 10, 11 and 12. See Fig. 11 for the color code

of the flow vectors. In all examples, the number of labels is so high that this problem

is currently impossible to solve with previous convex relaxation techniques by a large

margin, see Fig. 6. Compared to the relaxation proposed in the original conference

publication [11], total computation time was reduced dramatically, see Fig. 10. Due to

the global optimization of a convex energy, we can successfully capture large displace-

ments without having to implement a coarse-to-fine scheme, see Fig. 11. A comparison

of the energies of the continuous and discretized solution shows that we are within 5%

of the global optimum for all examples.

8 Conclusion

We have introduced a continuous convex relaxation for multi-label problems where the

label space is a product space. Such labeling problems are plentiful in computer vision.

The proposed reduction method improves on previous methods in that it requires orders

of magnitude less memory and computation time, while retaining the advantages: a

very flexible choice of regularizer on the label space, a globally optimal solution of

the relaxed problem and an efficient parallel GPU implementation with guaranteed

convergence.
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First image I0 Second image I1

Previous relaxation Proposed relaxation
(25 minutes run time) (2 minutes run time)

Fig. 10: Optical flow fields with 32×32 labels computed on an image with resolution 320×
240 using TV regularization. With the new relaxation of the regularizers, we achieve

optimality bounds which are on average three times lower than with previous relaxations

from [11,18]. Since the scaling of the regularity term is not directly comparable, we chose

optimal parameters for both algorithms manually. The large time difference results from

a narrow constraint on the time step for [18].

Compared to the original conference publication [11], we presented a much tighter

relaxation for the products in the data term, which avoids the problem of a trivial

pointwise solution and therefore eliminates the need for additional smoothing. Further-

more, we improved upon the regularization by combining the advantages of the efficient

multi-dimensional relaxation with the tight relaxation of the regularizers in [7]. The

new framework also allows to formulate more general continuous regularizers on multi-

dimensional label spaces and thus solve a more general class of problems efficiently.

For example, we can explicitly encourage the solution to be smooth in certain regions,

and can represent Huber-TV and truncated linear regularization by an exact and tight

relaxation. The regularizers can be arbitrarily mixed, in the sense that each dimension

of the label space can have its own type of regularity.

Because of the reduced memory requirements, we can successfully handle specific

problems with very large number of labels, which could not be done with previous

convex relaxation techniques. Among other examples we presented a convex relaxation

for the optic flow functional with truncated linear penalizer on the distance between

the flow vectors. To our knowledge, this is the first relaxation for this functional which

can be optimized globally and efficiently.
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First image I0 Second image I1 Flow field and color code

Fig. 11: When employed for optic flow, the proposed method can successfully capture

large displacements without the need for coarse-to-fine approaches, since a global opti-

mization is performed over all labels. In contrast to existing methods, our solution is

within a known bound of the global optimum.
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