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Tight Convex Relaxations for Vector-Valued Labeling∗

Bastian Goldluecke†, Evgeny Strekalovskiy‡, and Daniel Cremers‡

Abstract. Multilabel problems are of fundamental importance in computer vision and image analysis. Yet, find-
ing global minima of the associated energies is typically a hard computational challenge. Recently,
progress has been made by reverting to spatially continuous formulations of respective problems
and solving the arising convex relaxation globally. In practice this leads to solutions which are
either optimal or within an a posteriori bound of the optimum. Unfortunately, in previous methods,
both run time and memory requirements scale linearly in the total number of labels, making these
methods very inefficient and often not applicable to problems with higher dimensional label spaces.
In this paper, we propose a reduction technique for the case that the label space is a continuous
product space and the regularizer is separable, i.e., a sum of regularizers for each dimension of the
label space. In typical real-world labeling problems, the resulting convex relaxation requires orders
of magnitude less memory and computation time than previous methods. This enables us to apply
it to large-scale problems like optic flow, stereo with occlusion detection, segmentation into a very
large number of regions, and joint denoising and local noise estimation. Experiments show that
despite the drastic gain in performance, we do not arrive at less accurate solutions than the original
relaxation. Using the novel method, we can for the first time efficiently compute solutions to the
optic flow functional which are within provable bounds (typically 5%) of the global optimum.
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1. Introduction.

1.1. The multilabeling problem. Recently, there has been a surge of research activity on
convex relaxation techniques for energy minimization in computer vision. Particular efforts
have been directed toward binary and multilabel problems, as they lie at the heart of funda-
mental problems like segmentation [11, 22, 9, 41], stereo [27], three-dimensional reconstruc-
tion [12], Mumford–Shah denoising [26], and optic flow [15].

The aim is to assign to each point x of a domain Ω ⊂ R
n a label from a set Γ ⊂ R

d.
Assigning the label γ ∈ Γ to x is associated with the cost cγ(x) = c(x, γ) ∈ R. In computer
vision applications, this local cost denotes how well a given labeling fits some observed data.
The cost functions can be arbitrarily sophisticated, derived from statistical models or compli-
cated local matching scores. In the following, we will assume that the cost functions cγ lie in
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Figure 1. The proposed relaxation method can approximate the solution to multilabeling problems with a
huge number of possible labels by globally solving a convex relaxation model. This example shows two images and
the optic flow field between them, where flow vectors were assigned from a possible set of 50× 50 vectors, with
truncated linear distance as a regularizer. The problem has so many different labels that a solution cannot be
computed by alternative relaxation methods on current hardware. Reprinted with permission from [15, Figure 1],
c© 2010 by Springer-Verlag, Berlin, Heidelberg.

the Hilbert space of square integrable functions L2(Ω). Aside from minimizing the local costs,
we want the optimal assignment to exhibit a certain regularity. We enforce this requirement
by penalizing each possible labeling u : Ω → Γ with a regularizer J(u) ∈ R. This regularizer
reflects our knowledge about which label configurations are a priori more likely and typically
enforces a form of spatial coherence of the computed labeling.

Finding a labeling u : Ω → Γ which minimizes the sum of data term and regularizer, i.e.,

(1.1) argmin
u∈L2(Ω,Γ)

{
J(u) +

∫
Ω
c(x,u(x)) dx

}
,

is a hard computational challenge as the overall energy is generally not convex. For some
cases, good results may be obtained by local minimization, starting from a good initializa-
tion, possibly further improved by coarse-to-fine strategies commonly employed in optical
flow estimation. Yet, such methods cannot guarantee any form of quality of the result, and
performance typically depends on data, on initialization, and on the choice of algorithmic
minimization scheme (number of levels in the coarse-to-fine hierarchy, number of iterations
per level, etc.). The goal of this paper is to develop solutions to such problems which do not
depend on initialization and which lie within a computable bound of the global optimum; see
Figure 1.

1.2. Contribution: Product label spaces. In this work, we consider label spaces which
can be written as a product of a finite number d of spaces, Γ = Λ1 × · · · × Λd. The central
idea is as follows. Assume that the spaces Λk are discrete or have been discretized, and let
Nk be the number of elements in Λk. Then the total number of labels is N = N1 × · · · ×Nd.
In previous relaxations for the multilabel problem, this means that we need to optimize over
a number of N binary indicator functions, which can easily amount to thousands of indicator
functions in practical problems. In order to make problems of this form feasible to solve,
we present a reduction method which requires only N1 + · · · + Nd binary functions. As a
consequence, memory grows linearly (rather than exponentially) in the number of dimensions,
while computation time is greatly reduced.
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An important limitation, however, is that we consider only separable regularizers of the
form

(1.2) J(u) =
d∑

k=1

Jk(uk),

which means that J acts on the label components uk of u independently.
We will show that with the novel reduction technique, it is possible to efficiently solve

convex relaxations to multilabel problems which are far too large to approach with existing
techniques. A prototypical example is optic flow, where the total number of labels is typically
around 322 for practical problems. In that case, for example, we require only 64 indicator
functions instead of 1024. However, the proposed method applies to a much larger class of
labeling problems. This reduction in variable size not only allows for substantially higher
resolution of the label space, but also gives rise to a drastic speedup.

The present paper subsumes and extends two previous conference publications [15, 36].
For this journal paper, both earlier works were integrated into a comprehensive exposition
of continuous vectorial labeling problems. Contents of the earlier paper [15] were revised in
light of the new findings and improved relaxations in [36], and the differences between both
approaches were illuminated. Compared to the original conference publications, the present
paper provides a more detailed background and more complete theory. We included the total
cyclic variation [35] as an additional regularizer and extended the description of the algorithm
we use to implement the method. In particular, we were able to prove that our new data term
relaxation corresponds to the exact convex envelope for the nonconvex data term of the energy,
which makes it the tightest possible relaxation for the data term. All experiments in the earlier
paper were redone and updated with respect to the novel implementation of the algorithm
in [36]. We also included a few more more experimental comparisons, in particular, to discrete
methods, and extended the implementation to arbitrary label space dimension. Complete
source code to reproduce the experiments is publicly available on Sourceforge under a GPL3
license as part of our CUDA library for continuous convex optimization in image processing.1

2. Related work.

2.1. Discrete approaches. It is well known that in the fully discrete setting, the mini-
mization problem (1.1) is equivalent to maximizing a Bayesian posterior probability, where
the prior probability gives rise to the regularizer [37]. The problem can be stated in the frame-
work of Markov random fields (MRFs) and discretized using a graph representation, where the
nodes denote discrete pixel locations and the edge weights encode the energy functional [4].

Fast combinatorial minimization methods based on graph cuts can then be employed
to search for a minimizer. In the case that the label space is binary and the regularizer
submodular, a global solution of (1.1) can be found by computing a minimum cut [16, 21].
Continuous variants of this minimum cut problem have also been studied [34]. For multilabel
problems, one can approximate a solution for example by solving a sequence of binary problems
(α-expansions) [6, 31], linear programming (LP) relaxations [40], or quadratic pseudo-Boolean
optimization [20]. Exact solutions to multilabel problems can only be found in some special

1See https://sourceforge.net/p/cocolib.

https://sourceforge.net/p/cocolib
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cases. An important case are multilabel problems over a linearly ordered label set with convex
regularizer. The global optimum of this problem corresponds to a cut in a multilayered graph
which can be computed in polynomial time [17]. A different discrete encoding scheme for this
problem was also presented in [31].

In [32, 33] the problem of image registration is formulated as an MRF labeling problem,
which is minimized via LP relaxation. The authors present a decoupling strategy for the
displacement components which is related to ours, albeit applicable only in the discrete case.
It allows a simplification of the graph and consequently larger numbers of labels. Another
discrete method which is related to our work is found in [29]. The authors present a compact
encoding scheme for the multilabel problem called a log-transformation which makes the unary
term nonsubmodular. This is analogous to our transformation, which makes the previously
convex data term nonconvex. The problem of large label spaces is also tackled in [14], where
the authors compute optical flow from an MRF labeling problem using a lower dimensional
parametric description for the displacements.

However, in many important scenarios the label space cannot be ordered. Moreover, a
nonconvex regularizer is often more desirable to better preserve discontinuities in the solu-
tion. Even for relatively simple nonconvex regularizers like the Potts distance, the resulting
combinatorial problem is NP-hard [6]. In this paper, we work in a spatially continuous set-
ting, avoiding typical problems of graph-based discretization like anisotropy and metrication
errors [18].

2.2. Continuous approaches. Continuous approaches address the multilabel problem by
means of convex relaxation. To this end, the original nonconvex energy is replaced with a
convex lower bound, which can be minimized globally. We automatically get a bound on the
solution and know how far we are at most from the global optimum. How good the bound is
depends on the tightness of the relaxation, i.e., how close the energy is to the convex envelope
relaxation. For particular labeling problems, this strategy even leads to globally optimal
solutions. For example, as in the discrete setting, it is possible to solve the two-label problem
with length regularity, i.e., the regularizer being equal to the length of the interface between
the two regions, in a globally optimal way [11].

The framework presented in this paper is based on the calibration or lifting idea for the
Mumford–Shah functional, which was analyzed in depth in [1, 2]. The idea is that rather
than optimizing for the original labeling function, one instead estimates the characteristic
function of its epigraph (called the subgraph in [2]). Thus, one ends up with a relaxation of
the original problem in terms of these characteristic functions, which is convex. The question
is whether the solution of the relaxation corresponds to a solution of the original problem.
In [28, 27], it was shown that one can achieve a globally optimal solution for the special case
of a linearly ordered set of labels and convex regularizers. This construction is related to the
discrete approach proposed in [17].

For the general multilabel case, however, there is no relaxation known that would lead to
provably optimal solutions. Relaxations of different tightness have been proposed in [22, 9, 41].
They all have in common that they are very memory intensive if the number of labels becomes
larger. This makes it impossible to use them for scenarios with thousands of labels, as, for
example, optic flow.
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Our previous conference publication [15] relied on a straightforward relaxation of the
regularizer proposed in [41] and further generalized in [22], which was designed for a discrete
label space. In this paper, we instead employ the relaxation proposed in [25], which is based
on the calibration method [2]. Not only is it provably tighter than the above, but it also
allows us to accurately represent regularizers for continuous label spaces. In this context, we
show that the discrete relaxation [22, 15] can also be interpreted as a special case of the more
general continuous framework.

3. Multidimensional label spaces.

3.1. Discrete product label spaces. From now on we assume that the space of labels
is a product of a finite number d of spaces, Γ = Λ1 × · · · × Λd. In order to give a more
visual explanation of the main idea behind our work, we first discuss the discrete case, where
|Λk| = Nk ∈ N.

The convex relaxation introduced in [22, 41] works as follows. Instead of looking for
a labeling u : Ω → Γ directly, we associate each label γ with a binary indicator function
uγ ∈ L2(Ω, {0, 1}), where uγ(x) = 1 if and only if u(x) = γ. To make sure that a unique
label is assigned to each point, only one of the indicator functions can have the value 1. We
can model this restriction by viewing u as a function mapping into the set of corners Δ of
the N -simplex:

(3.1) u ∈ L2(Ω,Δ) with Δ =

⎧⎨⎩x ∈ {0, 1}N :

N∑
j=1

xj = 1

⎫⎬⎭ .

Obviously, we can identify u with the vector (uγ)γ∈Γ of indicator functions. Let 〈·, ·〉 denote
the inner product on the Hilbert space L2(Ω); then problem (1.1) can thus be written in the
equivalent form

(3.2) argmin
u∈L2(Ω,Δ)

⎧⎨⎩J(u) +
∑
γ∈Γ

〈uγ , cγ〉
⎫⎬⎭ ,

where we use boldface notation u for vectors (uγ)γ∈Γ indexed by elements in Γ. We write
cγ(x) := c(x, γ) for the discrete data term. We also use the same symbol J to denote the
regularizer on the reduced space. Its definition requires careful consideration and will be
discussed in detail later.

The central idea of the paper is the following. The full discrete label space Γ has N =
N1 × · · · × Nd elements, which means that it requires N indicator functions to represent a
labeling, one for each label. We will show that it suffices to use N1 + · · · + Nd indicator
functions, which is a considerable reduction in problem dimensionality, and thus computation
time and memory requirements. We achieve this by replacing the indicator functions on the
product Γ by indicator functions on the components Λk.

To this end, we associate to each label λ ∈ Λk, 1 ≤ k ≤ d, an indicator function vλk . In each
component k, only one of the indicator functions can be set. Thus, the vector vk = (vλk )λ∈Λk

which consists of Nk binary functions can be viewed as a mapping into the corners of the
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Figure 2. The central idea of the reduction technique is that if a single indicator function in the product
space Γ takes the value 1, then this is equivalent to setting an indicator function in each of the factors Λj . The
memory reduction stems from the fact that there are many more labels in Γ than in all the factors Λj combined.
Reprinted with permission from [15, Figure 2], c© 2010 by Springer-Verlag, Berlin, Heidelberg.

simplex Δk,

(3.3) vk ∈ L2(Ω,Δk) with Δk =

⎧⎨⎩x ∈ {0, 1}Nk :

Nk∑
j=1

xj = 1

⎫⎬⎭ .

In particular, the reduced set of indicator functions v = (vλk )1≤k≤d,γ∈Λk
can be seen as a

map L2(Ω,Δ×) with

(3.4) Δ× = Δ1 × · · · ×Δd ⊂ R
N1+···+Nd .

Note that an element v ∈ L2(Ω,Δ×) consists indeed of exactly N1+ · · ·+Nd binary functions.
The following proposition illuminates the relationship between the original space of indi-

cator functions L2(Ω,Δ) and the reduced indicator function space L2(Ω,Δ×), which is easy
to understand visually; see Figure 2.

Proposition 3.1. A bijection v �→ u from L2(Ω,Δ×) onto L2(Ω,Δ) is defined by setting

(3.5) uγ := vγ11 × · · · × vγdd for all γ = (γ1, . . . , γd) ∈ Γ.

The proof of this proposition, as well as those of the other propositions and theorems in
this paper, is given in the appendix.

Using this reduced function space, another formulation equivalent to (1.1) and (3.2) can
be given as

(3.6) argmin
v∈L2(Ω,Δ×)

⎧⎨⎩J(v) +
∑
γ∈Γ

〈
vγ11 × · · · × vγdd , cγ

〉⎫⎬⎭ .
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While we have reduced the dimensionality of the problem considerably, we have introduced
another difficulty: the data term is not convex anymore since it contains a product of the
components. Thus, in the relaxation, we need to take additional care to make the final
problem convex again.

3.2. Continuous label spaces and relaxation framework. We now turn to the more
general case that each factor Λk is an interval in R, which means that we deal with a continuous
label space with an infinite number of labels. In this situation, one is also interested in a
number of continuous regularizers, which cannot be modeled satisfyingly on a discrete label
space. As in the discrete case, the regularizers are usually not convex and require a relaxation.

In the context of continuous labeling problems where the label range is an interval, a
central idea is functional lifting, which is a variant of the calibration method [2]. Here, one
works with characteristic functions describing the hypograph instead of the labeling function
itself, an idea that was further refined and applied to a variety of image processing problems
in a number of subsequent works [9, 25, 26, 27]. We are going to translate this framework to
the case of a product label space. With the regularizer, we can restrict ourselves to the case
where it can be decomposed into the sum of regularizers on each component. However, for
the data term this is not possible since the cost function usually cannot be decomposed in a
similar way. Therefore, we need to define a relaxation framework in which we still can express
arbitrary cost functions.

Let us first consider a single component uk : Ω → Λk of the full labeling function u. The
characteristic function of its hypograph is defined on Ω× Λk as

(3.7) 1hyp(uk)(x, λ) =

{
1 if λ < uk(x),

0 else.

In [2, 26, 27], the labeling problem is reformulated in terms of new unknowns which correspond
to these characteristic functions. The reason is (4.1), which we discuss later and which allows
to give a convex reformulation of the regularizer in terms of the new unknowns. This allows
us to obtain a globally optimal solution in the new variables, which often is at least close to
and sometimes equal to the solution of the original nonconvex problem.

In our case, however, we need different variables in order to be able to simultaneously
formulate a convex relaxation of the data term. We work with the indicator functions denoting
whether a specific label λ is set at a point x ∈ Ω, related to a labeling u by

(3.8) vk(x, λ) = δ(uk(x)− λ),

where δ is the Dirac distribution. Note that the new unknowns are actually distributions on
the higher dimensional space Ω × Λk, which, however, will reduce to regular functions after
discretization. They serve as a generalization of the discrete label indicator functions vk ∈
L2(Ω,Δk) in (3.3) to the continuous case; in particular they satisfy the relations

(3.9)

∫
Λk

vk(x, λ) dλ = 1,

∫
Λk

λ vk(x, λ) dλ = uk(x),

which mimic the discrete case with sums replaced by integrals. Intuitively, this means that for
each fixed x ∈ Ω, vk(x, ·) has a total mass of 1 and is concentrated on the label uk(x) ∈ Λk.
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Figure 3. A special function of bounded variation u has an approximate gradient everywhere except on a
nullset Su, where the values jump from u− to u+. The normal νu denotes the direction of the jump from small
to large values. Adapted from Figure 2 in [36].

We will reformulate the labeling problem in terms of the new variables v in section 4.
Some things have to be kept in mind, however. Since the new variables are distributions
in the continuous case, we cannot formulate a well-defined minimization problem without
first reducing them to L2-functions. This means that before writing the actual minimization
problem that we want to solve in the new variables, we have to introduce a discretization of
the label space. Despite the necessary discretization, we follow other previous works which
employ the lifting idea [25, 26, 27, 28] and still insist that we correctly deal with a continuous
label space. This is justified since the definition of the continuous regularizers in section 5
does not make use of the discretization, in contrast to, e.g., [22], where the label space is
discretized from the beginning. One thing which remains to be discussed, however, is whether
the discrete solutions converge to the continuous one when the label space discretization is
refined, in the spirit of [8]. This is a possible avenue for future work.

3.3. Regularization. As stated in the beginning, we consider a separable regularizer of
the form

(3.10) J(u) =
d∑

k=1

Jk(uk).

In order to define its components, we require some technical preliminaries. Recall [3, Definition
10.5.1] that for functions uk in the space SBV(Ω) of special functions of bounded variation,
the distributional derivative Duk can be decomposed as

(3.11) Duk = ∇uk dx+ (u+k − u−k )νuk
dHn−1�Suk

into a differentiable part and a jump part; see Figure 3. Here, Suk
is the (n− 1)-dimensional

jump set of uk, where the values jump from u−k to u+k , νuk
is the normal to Suk

oriented
toward the u+k side, and ∇uk is the approximate gradient of uk [3, Proposition 10.4.1]. The
measure Hn−1�Suk

is the (n−1)-dimensional Hausdorff measure restricted to the set Suk
. We

refer to [3] for a comprehensive introduction to functions of bounded variation.
Making use of this decomposition, we can introduce the framework for regularization. We

consider regularizers for problem (1.1) of the form (3.10), with
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(3.12) Jk(uk) =

∫
Ω\Suk

hk(x, uk(x),∇uk(x)) dx+

∫
Suk

dk
(
s, u−k (s), u

+
k (s)

)
dHn−1(s),

with functions hk : Ω × Λk × R
n → R and dk : Ω × Λk × Λk → R. The functions hk and dk

have to satisfy the following conditions:
1. hk(x, λ, ·) is convex for fixed x ∈ Ω and λ ∈ Λk, and hk(x, ·, ·) is lower semicontinuous

for fixed x ∈ Ω.
2. dk(x, ·, ·) is a metric on Λk for fixed x ∈ Ω, and dk is continuous.
The interesting task, of course, is to identify suitable choices of hk and dk and to interpret

what the choices mean in practice. We will turn to this in section 5. Before we can explore
the possible regularizers, however, we need to introduce a convex relaxation of the general
regularizer (3.12) in section 4.

3.4. Notation conventions. Because the label space is multidimensional, the notation
requires multiple indices and is slightly more complex. Throughout this work, we keep the
following conventions to keep it as clear as possible. The index k = 1, . . . , d enumerating
the factors of the product space is always written as a subscript. Indices which are Greek
letters always enumerate labels, where γ, χ are labels in the full product space Γ with com-
ponents γk, χk ∈ Λk. Greek letters λ, μ denote labels in one of the factors Λk. If the label
space is discrete or has been discretized, the label is written as a superscript to the indicator
functions vλk . In the case of a continuous label space, the indicator functions vk live on Ω×Λk;
thus the label appears as an argument of the function vk(x, λ).

4. Convex relaxation. The minimization problem (3.2) which we want to solve is not
convex: neither is the energy a convex function nor is the domain of minimization a convex
set. Thus, the task of finding a global minimizer is in general computationally infeasible. We
therefore propose a convex relaxation. This means that instead of minimizing the original
functional, we minimize a convex one (ideally, the exact convex envelope) over the convex hull
of the original domain.

The relaxation is defined in terms of the new variables vk defined in (3.8). After obtain-
ing a solution v̂, the question remains of whether the solution corresponds to a function û
which solves the original problem. In general, this is not the case, but we can compute a
projection Π(v̂) onto the original problem domain and obtain an optimality bound. Indeed,
the energy of the optimal solution û must lie somewhere between the energies of v̂ and Π(v̂),
as v̂ minimizes the relaxation and Π(v̂) lies in the original problem domain in which û is a
minimizer.

In the following subsection we will introduce first a convex relaxation of the regularizer,
which is based on the calibration method—however, our variables are different from those
used in previous work, which requires a slight reformulation. Thereafter, we present the new
convex relaxation of the data term and show how it is an improvement over that presented in
the original conference paper [15].

4.1. Convex relaxation of the regularizer. Our first goal is to give a new representation
of the regularizer defined in (3.12). While in general it is not convex in the labeling u,
we will obtain a representation which is convex in the new variables vk defined in (3.8).
We do this by making use of the calibration or lifting technique described in detail in [2].
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Lemma 3.9 in [2] states that under the previous assumptions on hk and dk, the regularizer Jk
for each component can be represented as

(4.1) Jk(uk) = sup
φ∈K

{∫
Ω×Λk

φ1 · ∇x1hyp(uk) + φ2 ∂λ1hyp(uk) d(x, λ)

}
with the convex set

(4.2)

K =

{
φ =(φ1, φ2) ∈ C1

c (Ω × Λk;R
n × R) such that for all x ∈ Ω and λ, μ ∈ Λk,

φ2(x, λ) ≥ h∗k(x, λ,φ
1(x, λ)) and

∣∣∣∣∫ μ

λ
φ1(x, s) ds

∣∣∣∣ ≤ dk(x, λ, μ)

}
.

Above, h∗k(x, λ, ·) denotes the convex conjugate of hk(x, λ, ·). In a slight abuse of notation,
the index c in the set C1

c (Ω × Λk;R
n × R) indicates that φ must have compact support, but

only with respect to the x ∈ Ω variable. Note that (4.1) is a convex representation of the
regularizer in terms of the characteristic functions 1hyp(uk) of the hypograph of uk; see (3.7).
However, what we want is a convex representation in terms of our new unknowns vk. We give
this reformulation in the following theorem.

Theorem 4.1. Let Jk be of the form (3.12), and let the indicator functions vk be defined as
in (3.8). Then

(4.3) Jk(uk) = sup
(p,b)∈Ck

{∫
Ω×Λk

(−div(p)− b) vk d(x, λ)

}
,

with the convex set

(4.4)

Ck =
{
(p, b) ∈ C1

c (Ω × Λk;R
n ×R) such that for all x ∈ Ω and λ, μ ∈ Λk,

b(x, λ) ≥ h∗k
(
x, λ, ∂λp(x, λ)

)
,

|p(x, λ)− p(x, μ)|2 ≤ dk(x, λ, μ)
}
.

Note that similarly to the discrete version of the indicator functions, the discrete version
of the set Ck in (4.4) will consist of tuples (pλ, bλ)λ∈Λk

of functions. Taking a closer look
at (4.3), we can see that the right-hand side is a convex functional in the new variables vk.
Thus, we have achieved our goal and can turn toward finding a similar relaxation of the data
term.

4.2. Convex relaxation of the data term. In this subsection, we deal with the noncon-
vexity of the data term in (3.6),

(4.5) Edata(v) =
∑
γ∈Γ

〈
vγ11 × · · · × vγdd , cγ

〉
.

Specifically, we show two different ways that it can be replaced with a convex function which
coincides with the original data term for binary functions. We first describe the convexification
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(a) Product function m(x1, x2) = x1x2.
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(b) Convex envelope co (m) and mollified ver-
sions for different ε.

Figure 4. Product function and its mollified convex envelope for the case d = 2. Reprinted with permission
from [15, Figure 3], c© 2010 by Springer-Verlag, Berlin, Heidelberg.

idea from the original conference paper [15] in the discrete case with a label space of dimen-
sion d = 2. While it leads to a working relaxation, it has certain shortcomings, the main
problem being that an unwanted constant solution has to be avoided by additional smoothing
when moving on from binary to continuous functions. These shortcomings will be remedied
by a new relaxation technique which we explain thereafter. We will show that this relaxation
is actually the best possible one, i.e., the convex envelope of the data term. Note that for the
data term, we already work in the setting of a discretized label space. While it is possible
to give a well-defined theoretical justification of the relaxation for the continuous case, the
associated trouble and loss of clarity are not worth the small theoretical gain.

Discrete two-dimensional case. In [15], we suggested replacing the multiplication func-
tion m(vγ11 , . . . , vγdd ) := vγ11 ×· · ·×vγdd with its convex envelope co (m). Analyzing the epigraph
of m (see Figure 4(a)) shows that

(4.6) co (m) (vγ11 , . . . , vγdd ) =

{
1 if vγ11 = · · · = vγdd = 1,

0 if any vγkk = 0.

This means that if in the functional, m is replaced by the convex function co (m), we retain
the same binary solutions, as the function values on binary input are the same.

We lose nothing on first glance, but on second glance, we forfeit differentiability of the
data term, since co (m) is not a smooth function any longer. Furthermore, the new function
we obtain is not the correct convex envelope of the full data term, but only for the constituting
addends. The particular problem this leads to is that for the constant function v̂ defined by

(4.7) v̂λk (x) := 1/Nk

the energy of the data term and hence the total energy are zero.
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In [15], this problem was circumvented by an additional mollification of the convex en-
velope. We replaced co (m) again by a mollified function co (m)ε, where ε > 0 is a small
constant. We illustrate this for the case d = 2, where one can easily write down the functions
explicitly. In this case, the convex envelope of multiplication is

(4.8) co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1,

x1 + x2 − 1 otherwise.

This is a piecewise linear function of the sum of the arguments, i.e., symmetric in x1 and x2;
see Figure 4(b). We smoothen the kink by replacing co (m) with smoothed version co (m)ε;
see [15]. This function does not satisfy the envelope condition (4.6) exactly, but only fulfills
the less tight

(4.9) co (m)ε (x1, . . . , xd)

{
= 1 if x1 = · · · = xd = 1,

≤ ε if any xj = 0.

Notably, the data term energy of the constant trivial minimizer (4.7) now becomes ε
∑

γ c
γ ,

which means that the relaxation of the data term leads to the correct pointwise solution with
energy minγ(c

γ) if ε > minγ(c
γ)/

∑
γ c

γ . Since the condition must be satisfied for each point
x ∈ Ω, it is best to let ε = ε(x) depend on x ∈ Ω and set it pointwise to the minimal possible
value. However, the choice of mollified envelope is suboptimal since it is just an approximation
to the correct envelope and distorts the original problem. Thus, we are now going to propose
a novel relaxation of the data term which avoids this problem altogether and is easier to deal
with in higher dimensional label spaces.

New convex envelope relaxation for the general d-dimensional case. In this paragraph, we
describe our new relaxation of the data term. It is the tightest possible relaxation and does not
suffer from the described drawbacks of the relaxation in [15]. The new relaxation of Edata(v)
is one of the main additional contributions of this paper. It is defined as

(4.10) Rdata(v) := sup
q∈Q

⎧⎨⎩
∫
Ω

∑
γ1∈Λ1

qγ11 vγ11 + · · ·+
∑

γd∈Λd

qγdd vγdd dx

⎫⎬⎭ .

The additional dual variables q = (qk)k=1,...,d range over the convex set

(4.11)
Q :=

{
q ∈ L2(Ω,RN1+···+Nd) such that for all x ∈ Ω and γ ∈ Γ,

qγ11 (x) + · · ·+ qγdd (x) ≤ cγ(x)
}
.

We first establish that the relaxation coincides with the original energy for binary functions.
Proposition 4.2. Let v ∈ L2(Ω,Δ×) be a binary function representing the label γ(x) ∈ Γ at

each point x ∈ Ω. Then

(4.12) Rdata(v) =

∫
Ω
cγ(x)(x) dx = Edata(v).
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In addition, one can prove the following theorem, which shows that the relaxation of the
data term has the correct pointwise minimizers, in contrast to the one proposed in [15]. This
means that no smoothing is necessary and an exact minimization algorithm can be employed
to obtain solutions.

Theorem 4.3. Let v̂ ∈ L2(Ω,Δ×) be a binary minimizer of Edata. Then v̂ is also a mini-
mizer of the relaxation,

(4.13) v̂ ∈ argmin
v∈L2(Ω,co(Δ×))

{Rdata(v)} .

In particular, Edata(v̂) = Rdata(v̂) =
∫
Ω ĉ(x) dx with ĉ(x) := infγ∈Γ(cγ(x)) for x ∈ Ω.

In fact, it turns out that the proposed data term relaxation is the best possible one, being
the convex envelope of the data term as stated in the proposition below. More specifically,
this is up to the natural sum equality

∑
λ∈Λk

vλk = 1, which is the first equation in (3.9) and
is also used in the definition (6.1) of the v domain in the overall optimization problem. To
make this statement precise, we first need a general definition of the data term Edata for all
indicator functions v ∈ L2(Ω,RN1+···+Nd), not only for binary ones. If v is binary representing
the label γ(x) ∈ Γ at each x ∈ Ω, i.e., vλk (x) = χλ=γk(x), Edata is already defined by (4.5) as

(4.14) Edata(v) =

∫
Ω
cγ(x)(x) dx =

∫
Ω

∑
γ∈Γ

cγ(x) vγ11 (x) · · · vγdd (x) dx.

For all other v we set Edata(v) := ∞.
Proposition 4.4. The convex envelope of Edata(v) is given by Rdata(v) + δS(v) with S :=

{v | ∑λ∈Λk
vλk (x) = 1 for all 1 ≤ k ≤ d, x ∈ Ω}.

5. Multilabel regularizers. In this section, we will explore suitable choices of the regu-
larizer and how they fit within the proposed framework. In particular, we will see how our
model can be specialized to the case of discrete label spaces where the label distance has a
Euclidean representation. This special case was discussed in [22, 15], and we will see that our
framework leads to a tighter relaxation for this case. We will also discuss additional contin-
uous regularizers which become possible based on the lifting framework discussed in the last
section. These were introduced in the previous works [9, 26, 27] when the unknowns were the
characteristic functions of the hypographs of uk. We show how we can accommodate them to
depend on the new unknowns. Notably, in each dimension of the label space its own type of
regularization can be chosen; in particular discrete and continuous regularizers can be mixed
freely.

5.1. Discrete label space and its Euclidean representation. We first consider the special
case of a discrete label space Λk. Thus, we need to define a regularizer Jk : L2(Ω, co (Δk)) → R

for functions with values in the convex hull of the simplex Δk. We first present the construction
used in [22, 15] and then show how we can embed it into our more general framework.

We assume that the metric dk has a Euclidean representation. This means that each
label λ ∈ Δk shall be represented by an Mk-dimensional vector aλ

k ∈ R
Mk with an Mk ≥ 1,

and the distance dk is defined as the Euclidean distance between the representations,
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(5.1) dk(λ, μ) =
∣∣∣aλ

k − aμ
k

∣∣∣
2

for all λ, μ ∈ Δk .

The goal in the construction of Jk is that the greater the distance between labels and the
longer the jump set, the greater shall be the penalty imposed by Jk. To make this idea
precise, we introduce the linear mappings Ak : co (Δk) → R

Mk which map labels onto their
representations,

(5.2) Ak(λ) = aλ
k for all λ ∈ Δk .

When the labels are enumerated and represented by the indicator functions vk in (3.3), then in
matrix notation, the vectors aλ

k become exactly the columns of Ak, which shows the existence
of this map. It turns out that a regularizer with desirable properties can be defined by

(5.3) JA
k (vk) := TVv(Akvk) ,

where

(5.4) TVv(f) :=

∫
Ω

√√√√ m∑
i=1

|∇fi|22 dx

denotes the vectorial total variation (TV) for functions f : Ω → R
m taking values in a real

vector space of dimension m. The following theorem has been proved in [22] and shows why
the above definition makes sense.

Theorem 5.1. The regularizer JA
k defined in (5.3) has the following properties:

1. JA
k is convex and positively homogeneous on L2(Ω, co (Δk)).

2. JA
k (vk) = 0 for any constant labeling vk.

3. If S ⊂ Ω has finite perimeter Per(S), then for all labels λ, μ ∈ Λk,

(5.5) JA
k (λ1S + μ1Sc) = dk(λ, μ) Per(S) ;

i.e., a change in labels is penalized proportionally to the distance between the labels
and the perimeter of the interface.

For the sake of simplicity, we give the main examples only for distances with Euclidean
representations. More general classes of distances on the labels can also be used; see [22].

• There is the case of ordered labels, where the embedding follows the natural ordering
of λ, μ ∈ R (Figure 5(a)), for example, by setting simply aλ

k = λ. If d = 1, then this
case can be solved in a globally optimal way using the lifting method [27].

• Another case is the Potts or uniform distance, where dk(λ, μ) = 1 if and only if λ = μ,
and zero otherwise. This distance function can be achieved by setting aλ

k = 1√
2
eλ,

where (eλ)λ∈Λk
is an orthonormal basis in R

Nk ; see Figure 5(b). All changes between
labels are penalized equally.

• Another typical case is that the aλ
k denote feature vectors or actual geometric points,

for which |·|2 is a natural distance. For example, in the case of optic flow, each label
corresponds to a flow vector in R

2; see Figure 5(c). The representations aλ
1 ,a

μ
2 are

just real numbers, denoting the possible components of the flow vectors in the x- and
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(a) Ordered embedding (b) Potts embedding

Γ

x

y

(c) Optic flow embedding

Figure 5. Different embeddings for a label space. In an ordered embedding, all labels are mapped onto a
line, while for the Potts model, every label is mapped onto a different unit vector. For optical flow, each label
is already a vector in R

2, so a sensible embedding is given by the identity.

the y-direction, respectively. The Euclidean distance is a sensible distance on the
components to regularize the flow field, corresponding to the regularizer of the TV-L1

functional in [43]. Optic flow (and other geometric kinds of labels) would, however,
more naturally be modeled with a continuous label space using one of the continuous
regularizers in the later subsections.

5.2. New relaxation for the discrete label space. We will now show how to formulate
the regularizer JA

k defined above in the new more general framework. While the previous
formulation (5.3) already yields a relaxation to nonbinary functions v, we will see that our
framework results in a provably tighter one.

Taking a look at Theorem 5.1, we see that the regularizer must penalize the length of
the jump set weighted by the label distance. Thus, our general regularizer in (3.12) must
reduce to

(5.6) Jk(uk) =

∫
Suk

dk
(
u−k , u

+
k

)
dHn−1,

where dk is the same metric as that used above in the representation (5.1). We can see that
in order to reduce the general form to the one above, we must enforce a piecewise constant
labeling, since the approximate gradient ∇uk must be constantly zero outside the jump set.
Applying Theorem 4.1, we can find a convex representation of Jk in terms of the variables v,
which we formulate in the following proposition in its discretized form.

Proposition 5.2. A convex representation of (5.6) in terms of the variables v is given by

(5.7) Jk(uk) = sup
p∈Ck

⎧⎨⎩∑
λ∈Λk

∫
Ω
vλk div

(
pλ
)
dx

⎫⎬⎭ ,
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with

(5.8)
Ck =

{
p : Ω× Λk → R

n : pλ ∈ C1
c (Ω;R

n) for all λ ∈ Λk and∣∣pλ − pμ
∣∣
2
≤ dk(λ, μ) for all λ, μ ∈ Λk

}
.

We can now establish the relationship between our framework and the regularizer JA
k

derived from a representation of the labels in (5.3) and show that ours is tighter.
Proposition 5.3. Let the regularizer Jk be defined by the relaxation on the right-hand side

in (5.7). Then for all vk ∈ L2(Ω, co (Δk)),

(5.9) Jk(vk) ≥ JA
k (vk).

Equality holds if vk is binary.
The right-hand side of inequality (5.9) is exactly the previous regularizer used in [15, 22].

This implies that for binary functions, the regularizers coincide, which can already be seen
from representation (5.6); see Theorem 5.1. However, if we perform the relaxation to functions
taking values between 0 and 1, inequality (5.9) implies that the new relaxation is tighter,
leading to solutions closer to the global optimum.

We will show in the remainder of the section that in addition to handling the discrete case
better, our method also can handle continuous regularizers which penalize a smooth variation
of the labels. This is not possible with the piecewise constant approach of [22, 15] which
uses vectorial TV. For instance, our formulation is capable of representing more sophisticated
regularizers such as Huber-TV and the piecewise smooth Mumford–Shah functional, as we
will show in the following subsection. For the regularizers presented in the remainder of this
section, relaxations have previously been proposed for the case of a one-dimensional label
space in [9, 26, 27, 35]. However, the framework presented here is more general and allows us
to combine them freely in the different label dimensions.

5.3. Linear (TV) and truncated linear. For many applications, it is useful to penalize
the difference between two label values λ and μ only up to a certain threshold, reasoning that
once they are that different, it no longer matters exactly how different they are. This means
that if |λ− μ| becomes greater than a certain value t, jumps from λ to μ are still penalized,
but only by the constant t. Using linear penalization for small values, this leads to the robust
truncated linear regularizer [9]

(5.10) Jk(uk) =

∫
Ω\Suk

|∇uk|2 dx +

∫
Suk

min
(
t,
∣∣u+k − u−k

∣∣) dHn−1(s).

The constraint set (4.4) for this case is

(5.11)

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;R
n × R) such that for all λ, μ ∈ Λk,

∣∣∂λpλ
∣∣
2
≤ 1,

∣∣pλ − pμ
∣∣
2
≤ t, b = 0

}
.
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The second constraint needs to be imposed only if |λ− μ| ≥ t, since otherwise it is already
implied by the first constraint. In particular, the standard linear (TV) penalizer can be
implemented by letting t → ∞ and using only the first constraint.

5.4. Cyclic penalizer, TV-S1. Some applications have a cyclic or circular set of labels,
for example, regularization in the hue component in HSV or HSL color space. In this case,
the distance between the last and first labels is the same as between any other subsequent
pair of labels. This form of regularization was discussed in the functional lifting setting in the
recent work [35] and can be expressed in our framework by setting

(5.12) Jk(uk) =

∫
Ω\Suk

|∇uk|2 dx +

∫
Suk

min
(
u+k − u−k , 1− (u+k − u−k )

)
dHn−1(s)

for functions uk with range Λk := [0, 1). The corresponding constraint set in its discretized
form is given by

(5.13)

Ck =

{
(p, b) ∈ C1

c (Ω × Λk;R
n × R) such that for all λ ∈ Λk,

∣∣pλ − pλ+1
∣∣
2
≤ 1, b ≡ 0

}
,

where the circularly ordered label space Λk is represented by integers {0, . . . , Nk − 1} with
addition modulo Nk.

5.5. Huber-TV. The TV regularization is known to produce staircasing effects in the
reconstruction; i.e., the solution will be piecewise constant. While this is natural in the case
of a discrete label space, for continuous label spaces it impedes smooth variations of the
solution. A remedy for this is replacing the norm |∇uk|2 of the gradient by hα(∇uk) with the
Huber function

(5.14) hα(z) :=

{
1
2α |z|22 if |z|2 < α,

|z|2 − α
2 else

for some α > 0, which smooths out the kink at the origin. The Huber-TV regularizer is then
defined by

(5.15) Jk(uk) =

∫
Ω
hα(∇uk) dx +

∫
Suk

∣∣u+k − u−k
∣∣ dHn−1(s).

The limiting case α = 0 leads to the usual TV regularization. Theorem (4.1) gives a convex
representation for Jk; see also [27]. The constraint set in (4.4) is found to be

(5.16)

Ck =

{
(p, b) ∈ C1

c (Ω × Λk;R
n × R) such that for all λ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ
∣∣2
2
,
∣∣∂λpλ

∣∣
2
≤ 1

}
.



VECTOR-VALUED LABELING 1643

5.6. Piecewise smooth Mumford–Shah model. The celebrated Mumford–Shah regular-
izer [2, 26]

(5.17) Jk(uk) =

∫
Ω\Suk

1

2α
|∇uk|22 dx + νHn−1(Suk

)

with parameters α, ν > 0 allows us to estimate a denoised image uk which is piecewise smooth.
Parameter ν can be used to easily control the total length of the jump set Suk

. Bigger values
of ν lead to a smaller jump set; i.e., the solution will be smooth on wider subregions of Ω.
The constraint set in the convex representation of Theorem 4.1 becomes

(5.18)

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;R
n × R) such that for all λ, μ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ
∣∣2
2
,
∣∣pλ − pμ

∣∣
2
≤ ν

}
.

The limiting case α = 0 gives the piecewise constant Mumford–Shah regularizer (also called
Potts regularizer), which can also be obtained from Proposition 5.2 by setting dk(λ, μ) = ν
for all λ = μ. Compared to (5.3), this alternative yields a tighter but more memory intensive
relaxation for the Potts regularizer [9, 25].

6. Implementation.

6.1. Final relaxation to a convex problem. In order to transform the multilabel problem
into the final form which we are going to solve, we formulate it in terms of the indicator
functions vλk on the discretized label space using the representation (4.3) for the regularizer
and the relaxation (4.10) of the data term. Discretization of the label space is necessary now
to arrive at a well-posed problem. Let us briefly summarize and review the objects we are
dealing with in the final problem. The minimizer we are looking for is a vector v = (vk)k=1..d

of functions vk ∈ L2(Ω, co (Δk)), which means that we are looking for a minimizer in a convex
set D,

(6.1)
v ∈ D :=

{
v ∈ L2(Ω,RN1+···+Nd) such that for all x ∈ Ω, v(x) ∈ co (Δ×),

with Δ× = Δ1 × · · · ×Δd

}
.

In the convex hull co (Δ×) = co (Δ1)×· · ·×co (Δd) each co (Δk) is given by the same expression
as in (3.3) but with the set {0, 1} replaced by [0, 1].

Let us now turn to the regularizer, which is defined via the relaxation in Theorem 4.1.
The key ingredients are the convex sets Ck which depend on the kind of regularization we
want to use—possible options were detailed in the last section. Let C := C1 × · · · × Cd

denote the convex set of all regularizer dual variables, and define the linear operator K : C →
L2(Ω,RN1+···+Nd) via

(6.2) K(p, b) :=
(
−div(pλ

k)− bλk

)
k=1,...,d,λ∈Λk

.
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Then Theorem 4.1 in fact shows that the regularizer can be written in terms of v in the simple
form

(6.3) J(v) = sup
(p,b)∈C

{〈K(p, b),v〉} ,

where 〈·, ·〉 denotes the inner product on L2(Ω,RN1+···+Nd). The fully relaxed problem we are
going to solve can now be written as

(6.4) argmin
v∈D

{J(v) +Rdata(v)} ,

using the relaxation Rdata of the data term defined in (4.10). It is straightforward to prove
the existence of solutions.

Proposition 6.1. Problem (6.4) always has a minimizer v̂ ∈ D.
Note that because of the relaxation, the solution might not be binary. If it already has

values in Δk, we have found the global optimum of the original problem (1.1); otherwise we
have to project the result back to the smaller set of binary-valued functions. For this, let v̂ be
a minimizer of the final relaxation (6.4). Thus, the functions v̂λk might have values between
0 and 1. In order to obtain a feasible solution to the original problem (1.1), we just project
back to the space of allowed functions. The function û ∈ L2(Ω,Γ) closest to v̂ is given by
setting

(6.5) û(x) = argmax
γ∈Γ

{
v̂γ11 (x)× · · · × v̂γdd (x)

}
;

i.e., we choose the label where the combined indicator functions have the highest value. This
is the same as choosing the label by maximizing each component vk separately:

(6.6) û(x) = γ with γk = argmax
λ∈Λk

{
v̂λk (x)

}
for all 1 ≤ k ≤ d.

We cannot guarantee that the solution û is indeed a global optimum of the original
problem (1.1), since there is nothing equivalent to the thresholding theorem [11] known for
this kind of relaxation. However, we still can give a bound for how close we are to the global
optimum. Indeed, the energy of the optimal solution of (1.1) must lie somewhere between the
energies of v̂ and û, as previously explained in the beginning of section 4.

6.2. Numerical method. Using the representation (6.3) for J , and the definition (4.10)
for the relaxation Rdata, we can transform the final formulation (6.4) of the multilabel problem
into the saddle point problem

(6.7) min
v∈D

max
(p,b)∈C
q∈Q

{〈K(p, b) + q,v〉} .

We minimize the energy (6.7) with a recent general fast primal-dual algorithm from [10], which
is designed for this type of problem. The algorithm is essentially a gradient descent in the
primal variable v and a gradient ascent in the dual variables p, b, and q, with a subsequent
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application of proximation operators, which act as generalized reprojections. In our case, these
are just the usual orthogonal projections onto the respective constraint sets D, C, and Q. The
algorithm update equations for our case can be derived in a straightforward manner from
the general Algorithm 1 presented in [10]. The remaining question is therefore only how to
compute the projections onto the constraint sets after each algorithm iteration. Since these
sets are defined by numerous nonlocal constraints, a direct projection is quite costly.

Therefore, we suggest implementing as many constraints as possible using Lagrange mul-
tipliers by adding specific additional terms to the energy. This comes at the cost of having
more terms in the final overall energy and that the optimization is also done over additional
variables, the Lagrange multipliers. However, in the end, fewer of the explicit constraints
remain, so that the projections become easier to calculate. Also, the algorithm complexity
remains the same since the update equations are still straightforward.

First, the simplex constraint v ∈ D, i.e., vk ∈ co (Δk) with Δk in (3.3) for 1 ≤ k ≤ d, is
enforced by adding the Lagrange multiplier terms

(6.8) sup
σ

d∑
k=1

∫
Ω
σk(x)

( ∑
λ∈Λk

vλk (x)− 1

)
dx

to the energy (6.7), optimizing over σ : Ω → R
d in addition to the other variables. This leaves

just the simple condition v ≥ 0 for the indicator variables v. We note that it is also possible
to implement the simplex constraint explicitly by the iterative algorithm [23]. However, in the
end this increases the computation time per iteration many times over since the projection
then requires O(N1 + · · · +Nd) steps in the worst case. Also, the explicit projection reduces
only slightly the number of iterations needed to compute a minimizer of (6.7) to a certain
precision. Therefore, overall the Lagrange multiplier approach turns out to be faster and is
also easier to implement.

Next, we enforce the constraints (p, b) ∈ C on the dual variables of the regularizer by
introducing new variables

(6.9) dλ
k = ∂λp

λ
k or dλμ

k = pλ
k − pμ

k ,

depending on the kind of constraints in Ck. To enforce these equalities, we add the corre-
sponding Lagrange multiplier terms

(6.10) inf
η

∫
Ω
ηλ
k

(
∂γp

λ
k − dλ

k

)
dx or inf

η

∫
Ω
ηλ,μ
k

(
pλ
k − pμ

k − dλμ
k

)
dx

for each 1 ≤ k ≤ d and λ ∈ Γk, respectively, λ, μ ∈ Γk, to the energy. Instead of computing
the projection of (p, b) in each step, we can then perform the projection of the new vari-
ables (dk, bk) on a corresponding constraint set. The advantage is that the overall projection

decouples into independent projections of dλ
k or dλμ

k and bλk onto simple convex sets, which
are easy to implement. Alternatively, constraints of the form

∣∣pλ
k − pμ

k

∣∣
2
≤ m as used in (5.8),

(5.11), and (5.18) can be enforced using convex duality, by adding the terms

(6.11) inf
η

∫
Ω
ηλ,μ
k

(
pλ
k − pμ

k

)
+m

∣∣ηλ,μ
k

∣∣
2
dx
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Table 1
The table shows the total amount of memory required for the implementations of the previous and proposed

methods depending on the size of the problem (using TV regularization). For the proposed method, the projection
(6.12) of the data term dual variables can be implemented either globally (g), or more slowly but more memory
efficient as a subproblem of the proximation operator (p), here using N1/5 chunks. Also shown is the total run
time for 5000 iterations, which usually suffices for convergence. Numbers in red indicate a memory requirement
larger than what fits on the largest currently available CUDA capable devices ( 6 GiB). Note that the proposed
framework can still handle all problem sizes above.

# Pixels # Labels Memory (MiB) Run time (s)

P = Px × Py N1 ×N2 previous proposed (g/p) previous proposed (g/p)

320× 240 8× 8 112 112/102 31 26/140

320× 240 16× 16 450 337/168 125 80/488

320× 240 32× 32 1800 1124/330 503 215/1953

320× 240 50× 50 4394 2548/504 2110 950/5188

320× 240 64× 64 7200 4050/657 – 1100/8090

640× 480 8× 8 448 521/413 127 102/560

640× 480 16× 16 1800 1351/676 539 295/1945

640× 480 32× 32 7200 4502/1327 – 1290/7795

640× 480 50× 50 17578 10197/2017 – –/32887

640× 480 64× 64 28800 16202/2627 – –/48583

to the energy instead of (6.10). We used this way in our implementation, as it turns out to
be much faster in practice. The optimization (6.7) is now performed over the primals v, d, η
and the duals p, b, q, σ.

Finally, the projection of a q̃ onto Q consists of solving

argmin
q∈Q

⎧⎨⎩
d∑

k=1

∑
λ∈Λk

(
qλk − q̃λk

)2⎫⎬⎭(6.12)

pointwise for each x ∈ Ω. The number of constraints in Q, as defined in (4.11), equals the
total number of labels in the product space Γ = Λ1 × · · · × Λd. Unfortunately, implementing
these constraints by adding Lagrange multiplier terms

(6.13) inf
μ≥0

−
∫
Ω

∑
γ∈Γ

μγ(x)
(
qγ11 (x) + · · ·+ qγdd (x)− cγ(x)

)
dx

to the global problem (6.7), i.e., for each x ∈ Ω, is not possible for larger problems since it
requires too many additional variables μ to be memory efficient.

Thus, for larger problems, the projection needs to be computed explicitly after each outer
iteration as a subproblem by solving (6.12), which increases the run time; see Table 1. To make
sure that q lies in Q, we add the corresponding Lagrange multiplier terms to the local energy
(6.12). This results in another saddle point problem to be optimized over now unconstrained q
and μ ≥ 0, which we again solve using the algorithm in [10]. Specifically, since the q-only terms
are uniformly convex, we use Algorithm 2 of [10] with the accelerated O( 1

N2
iter

) convergence

rate. Since there is only a small change in the variables q per outer iteration, only a small
number of inner iterations is required. In our experiments, we used 10 inner iterations.
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6.3. Memory requirements. When the domain Ω is discretized into P pixels, the primal
and dual variables are represented as matrices. There are essentialy two types of data. The
first type is relatively cheap to store, since memory requirements scale with the sum N1 +
· · · + Nd of the independent dimensions. The second type is expensive, since it scales with
N1 · · ·Nd. The variables and constants appearing in the energy are classified in the following
table, where n = dimΩ is the dimension of the image domain Ω.

Variable or constant Floating point numbers
σ P · d
v, q P · (N1 + · · ·+Nd)
p nP · (N1 + · · ·+Nd)
μ, c P · (N1 · · ·Nd)

The relaxation of the regularizer incurs additional costs per label space dimension, depending
on the type of regularizer. This is summarized in the following table.

Regularizer Additional variables Additional floating point numbers
Potts using (5.3) – –
TV or cyclic TV ηλ

k , d
λ
k 2nP ·Nk

Huber-TV ηλ
k , d

λ
k , b

λ
k (2n+ 1)P ·Nk

Truncated linear ηλ,μ
k nP ·Nk(Nk − 1)/2

Potts using (5.18), α = 0 ηλ,μ
k nP ·Nk(Nk − 1)/2

Piecewise smooth ηλ,μ
k , ηλ

k , d
λ
k , b

λ
k nP ·Nk(Nk − 1)/2 + (2n+ 1)P ·Nk

Obviously, truncated linear and piecewise smooth regularization can require a lot of additional
memory if the dimensions of the factors are large. They seem therefore practically feasible
only when the label space consists of many small factors. However, the projections onto
the regularizer constraints can also be solved locally in each iteration for each dimension
separately. This removes the need to store these variables globally at the cost of additional
computation time.

The most expensive variable is μ, appearing in the global problem (6.13) or local prob-
lem (6.12), respectively. If we have enough memory to store it, it is more efficient to solve the
global problem. However, it is also possible here to trade computation time for a reduction
in memory requirements by solving the local problem (6.12) in each iteration. For this, note
that (6.12) can be separated into independent subproblems for each x ∈ Ω and can be solved
in chunks of points x in parallel. The size of the chunks can be chosen to fit into the available
memory; ideally we choose it as large as possible for maximum parallelization.

Finally, note that the data term c is an expensive constant to store. If there is not enough
graphics processing unit (GPU) memory for it, it is possible, e.g., to hold it in main memory
and transfer separate layers of it during computation of the primal prox operator to the GPU.
This increases computation time by a factor of 5–10, so it is usually much more efficient to
compute the data term on the fly on the GPU if it is of a simple form.



1648 B. GOLDLUECKE, E. STREKALOVSKIY, AND D. CREMERS

In summary, with the above reduction techniques it is possible to get rid of all memory
expensive variables and constants at the cost of more computation time. To give an idea
about the final requirements, they are compared for the case of a two-dimensional label space
and TV penalization in Table 1. Note that the memory requirements for the original method
without using the reduction are (n + 2)P · (N1 · · ·Nd) to store all primal and dual variables
even for the simplest regularizer, while all regularizer costs scale with N = N1 · · ·Nd according
to the second table on the previous page. Statistics for a three-dimensional label space with
different regularizers can be found in Table 2. Clearly, large scale problems can be solved only
by using the proposed reduction technique.

7. Experiments. We demonstrate the correctness and usability of our method on several
examples. Different regularizers are used in the examples. In the cases where the regularizer
can be simulated with the previous relaxation [15], we compared the resulting optimality
bounds. On average, our bounds were approximately three times better (3–5% with the
proposed framework compared to 10–15% with the previous relaxation). All experiments
were performed with a parallel CUDA implementation running on a NVIDIA GTX 680 GPU
for section 7.1, and on a TESLA C2070 for all other experiments. The time steps for the
algorithm are chosen automatically using the recent preconditioned version [24] of [10]. The
number of iterations in each experiment is chosen appropriately so that visually the solution
remains stable and does not change anymore (usually 1000–5000 depending on problem size).

7.1. Segmentation. Multidimensional label spaces occur naturally in the problem of im-
age segmentation, where a multichannel input image f is segmented according to a local cost
equal to the squared distance to the labels,

(7.1) cγ(x) =

d∑
k=1

(fk(x)− γk)
2.

Typical multichannel images are, of course, color images with various color spaces which are
usually three-dimensional; see Figure 6 for some segmentation examples.

We choose this archetypical problem for an extensive comparison of our method to different
labeling approaches. We first compare our proposed scheme for vectorial multilabel problems
(VML) to the similar continuous method for a scalar label space (SML) [22]. For comparisons
with discrete approaches, we used the MRF software accompanying the comparative study
in [38].2 We compare to the α-expansion (α-EXP) and α-β-swap (SWAP) algorithms based
on the maxflow library [6, 5, 21] using the newest updated implementation for [13].3 We
also compare to two message-passing methods, max-product belief propagation (BP) [39] and
sequential tree-reweighted message passing (TRW-S) [40, 19].

Table 2 shows detailed statistics of memory requirements, run time, and error bounds.
Throughout all experiments, we used a fixed number of iterations to keep results compara-
ble, tuned to be sufficient for convergence on intermediate-sized label spaces. For VML and
SML, we used 1000 iterations; for TRW-S and BP, 50 iterations; and for α-EXP and SWAP,
5 iterations.

2For MRF 2.1, see http://vision.middlebury.edu/MRF/code/.
3For the gco-v3 library, see http://vision.csd.uwo.ca/code/.

http://vision.middlebury.edu/MRF/code/
http://vision.csd.uwo.ca/code/
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Table 2
Performance comparison of several continuous and discrete multilabel algorithms on the segmentation prob-

lem using a three-dimensional label space and different regularizers. Results are averaged over 10 different
images with average resolution of 0.7 megapixels. See section 7.1 for a discussion.

Potts regularizer (using (5.3) for the continuous methods)

4× 4× 4 6× 6× 6
Algorithm mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 367 15.25 0.46 998 42.83 0.72
SML 607 16.81 1.43 > 4 GiB – –
α-EXP 677 25.13 0.204 1369 88.90 0.544

SWAP 677 29.84 0.285 1369 137.57 0.815

BP 1368 36.63 6.945 4256 119.43 11.565

TRW-S 1368 40.06 0.16 4256 129.52 0.80
8× 8× 8 10 × 10× 10

mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 2173 94.59 1.03 21856 209.346 0.80
α-EXP 2746 173.64 0.904 5020 343.67 1.014

SWAP 2746 461.48 1.345 5020 1472.45 1.625

BP 8667 254.08 16.295 16610 496.12 17.735

TRW-S 8667 287.30 1.95 16610 539.51 2.70

Linear (TV) regularizer
4× 4× 4 6× 6× 6

Algorithm mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 401 18.67 1.50 1055 48.09 1.67
α-EXP 677 18.04 0.064 1369 82.70 –4

SWAP 677 23.67 0.165 1369 139.90 –5

BP 510008 740.498 5.875 > 64 GiB – –
TRW-S 510008 746.008 0.04 > 64 GiB – –

8× 8× 8 10 × 10× 10
mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 2253 101.75 2.27 22876 217.666 3.10
α-EXP 2746 201.05 –4 5020 408.93 –4

SWAP 2746 504.47 –5 5020 1576.32 –5

Truncated linear regularizer
4× 4× 4 6× 6× 6

Algorithm mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 435 20.77 0.95 1168 55.01 1.83
α-EXP 677 18.13 0.094 1369 82.78 –4

SWAP 677 23.68 0.185 1369 139.30 –5

BP 510008 750.368 4.495 > 64 GiB – –
TRW-S 510008 741.808 0.04 > 64 GiB – –

8× 8× 8 10× 10× 10
mem (MiB)1 time (s)2 bound (%)3 mem (MiB)1 time (s)2 bound (%)3

VML 15236 132.336 3.24 8056,7 13046,7 3.50
α-EXP 2746 200.11 –4 5020 408.73 –4

SWAP 2746 507 –5 5020 1578.29 –5

1: GPU memory for VML and SML, otherwise CPU memory (measured with valgrind memory profiler).
2: Intel Core i7-3820 CPU at 3.8 GHz with 64 GiB of RAM, nVidia GTX 680 GPU with 4 GiB of RAM.
3: Optimality bound in percent of the lower bound to solution provided by the algorithm.
4: No lower bound provided by algorithm, a theoretical (far from tight) a priori bound is known to be ≥100% [6, 13].

Bound was computed with lower bound returned by TRW-S, if any is given.
5: No lower bound provided by algorithm, no theoretical bound known as far as we know. See also 4.
6: Data term computed on the fly (saves GPU storage, minimal run-time increase).
7: Data term relaxation reprojection computed in each iteration reduces GPU memory usage by 2 GiB, but

increases computation time by a factor of 5.
8: Requires general regularizer implementation, which is inefficient according to the author of the code. Unfortu-

nately, no specialized implementation is available for three-dimensional regularizers.
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Input RGB 6× 6× 6 HSL 8× 5× 5 L∗a∗b∗ 8× 5× 5

Figure 6. Segmentation using different three-dimensional spaces of equidistant color labels. The perceptually
uniform color space CIELAB gives the visually most compelling results with the most natural looking color
reproduction. There is a linear penalizer in all channels, except for the H channel, which requires cyclic
regularization. The above examples require less than two minutes run time, and all results are within 3% of the
global optimum.

Memory requirements and largest problem size. Our method can deal with much larger
problems than any of the other algorithms. On a high-end workstation with 64 GiB of main
memory, the generic implementation of TRW-S already stops working at 123 labels for the
Potts model. However, the implementation is extremely general, and requirements could
probably be reduced by more specialized code. About the largest problem which can be solved
with α-EXP has 153 labels, after which the reference implementation produces a segmentation
fault—this hints at a hidden limitation of the implementation; memorywise it should be able
to cope with about 173.

In contrast, the GPU has only 4 GiB of memory, and our method can still handle problems
up to 313 (almost 30000 labels), albeit with high run-time requirements. The table below
shows limit cases at an image resolution of 640 × 950—note that GPU memory shown is the
theoretical minimum amount required, but we leverage all the remaining GPU memory to
minimize the number of chunks for the local projections.

VML α-EXP
Label space GPU mem (MiB) run time (min) CPU mem (MiB) run time (min)
15× 15× 15 550 79 18120 31
23× 23× 23 836 485 > 64 GiB (est. 480)
31× 31× 31 1123 1179 > 64 GiB (est. 7680)

Performance. For smaller problems when we can use the global implementation of the con-
straints, our method outperforms the others in terms of run time, while attaining comparable
optimality bounds. When the problems become larger, we need to switch to local projections
per iteration, which increases run time fivefold and makes the other methods faster across
a certain range of problem sizes. However, note that the run time of our algorithm scales
better, so that at problem size 233 the algorithm is about to break even with the estimated
computation times of α-EXP again, the latter approximately doubling its computation time
every time the dimension of each factor is increased by 2; see Table 2.
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VML EXP SWAP BP TRW-S

VML TRW-S

Figure 7. Closeups of 4 × 4× 4 RGB label segmentations (top) using different algorithms reveal a typical
problem of discrete approaches: they exhibit a preference for horizontal and vertical region boundaries since they
penalize an L1-distance instead of the correct Euclidean length [18, 42]. The error can be reduced by increasing
the neighborhood connectivity, but only at extremely high costs of memory and computation time. Overall, these
metrication errors lead to blocky and visually less pleasing segmentation results (bottom).

From a theoretical point of view, the move-making schemes α-EXP and SWAP solve the
problem by iterating binary decisions instead of dealing with the whole problem at once,
which explains their efficiency. However, as a result they cannot give reasonable optimality
bounds; see remarks in Table 2. As an additional drawback, all discrete methods suffer from
metrication errors [18, 42], as detailed in Figure 7.

7.2. Adaptive denoising. As a novel application of a multidimensional label space, we
present adaptive denoising, where we jointly estimate a noise level and a denoised image by
solving a single minimization problem. Note that here we require the continuous label space
to represent the image intensity range.

The Mumford–Shah energy can be interpreted as a denoising model which yields the max-
imum a posteriori estimate for the original image under the assumption that the input image
f was distorted with Gaussian noise of standard deviation σ. An interesting generalization of
this model is when the standard deviation of the noise is not constant but rather varies over
the image. Viewing it as an additional unknown, the label space becomes two-dimensional,
with one dimension representing the unknown intensity u of the original image, and the second
dimension representing the unknown standard deviation σ of the noise. The data term of the
energy can then be written as [7]

(7.2)

∫
Ω

(u− f)2

2σ2
+

1

2
log(2πσ2) dx.
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Input, spatially varying noise Denoised image and reconstructed standard deviation

Figure 8. The algorithm allows us to jointly recover the unknown standard deviation σ of the noise as well
as the intensity of a denoised image by solving a single optimization problem. Ground truth: within rectangle
Gaussian noise with standard deviation σ = 0.25, outside σ = 0.02; image intensity within ellipsoid u = 0.7,
outside u = 0.3. Image resolution is 256×256 using 32×32 labels. Computation time is 4.4 minutes. Reprinted
with permission from [36, Figure 4], c© 2011 by IEEE Computer Society, Washington, DC.

Input, textured object Simultaneous piecewise smooth approximation

of intensity (left) and standard deviation (right)

Figure 9. A piecewise smooth image approximation of both intensity and noise standard deviation using
(7.2) and the Mumford–Shah regularizer for both u and σ. This model allows us to separate textured objects
in a natural way by jointly estimating the mean and standard deviation of image intensities. The amount of
smoothing is stronger in the region of larger standard deviation. Image resolution is 320 × 214 using 32 × 32
labels, leading to a run time of 10.3 minutes.

Results of the optimization can be observed in Figures 8 and 9. For the regularizer, we
used piecewise constant Mumford–Shah for both σ and u in Figure 8, and piecewise smooth
Mumford–Shah in Figure 9. In the real-world example Figure 9, the solution can be interpreted
as a uniformly smooth approximation, where all regions attain a similar smoothness level
regardless of the amount of texture in the input.

7.3. Depth and occlusion map. In this test, we simultaneously compute a depth map and
an occlusion map for a stereo pair of two color input images IL, IR : Ω → R

3. The occlusion
map shall be a binary map denoting whether a pixel in the left image has a matching pixel
in the right image. Thus, the space of labels is two-dimensional with Λ1 consisting of the
disparity values and a binary Λ2 = {0, 1} for the occlusion map. We use the TV smoothness
penalty on the disparity values. The Potts regularizer is imposed for the occlusion map. The
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Figure 10. The proposed method can be employed to simultaneously optimize for a displacement and an
occlusion map. This problem is also too large to be solved by alternative relaxation methods on current GPUs.
From left to right: left and right input images IL and IR, and computed disparity and occlusion map; red areas
denote occluded pixels. Reprinted with permission from [15, Figure 6], c© 2010 by Springer-Verlag, Berlin,
Heidelberg.

distance on the label space thus becomes

(7.3) d(γ, χ) = s1 |γ1 − χ1|+ s2 |γ2 − χ2| ,
with suitable weights s1, s2 > 0. We penalize an occluded pixel with a constant cost cocc > 0,
which corresponds to a threshold for the similarity measure above which we believe that a
pixel is no longer matched correctly. The cost associated with a label γ at (x, y) ∈ Ω is then
defined as

(7.4) cγ(x, y) =

{
cocc if γ2 = 1,

|IL(x, y)− IR(x− γ1, y)|2 otherwise.

The result for the “Moebius” test pair from the Middlebury benchmark is shown in Figure 10.
The input image resolution was scaled to 640 × 512, requiring 128 disparity labels, which
resulted in a total memory consumption which was slightly too big for previous methods but
still in reach of the proposed algorithm. Total computation time required was 1170 seconds.

7.4. Optic flow. In this experiment, we compute optic flow between two color input
images I0, I1 : Ω → R

3 taken at two different time instants. The space of labels is again
two-dimensional, with Λ1 = Λ2 denoting the possible components of flow vectors in the x-
and y-direction, respectively. We regularize both directions with either TV or a truncated
linear penalty on the component distance, i.e.,

(7.5) d(γ, χ) = smin(t, |γ1 − χ1|) + smin(t, |γ2 − χ2|) ,
with a suitable manually chosen weight s > 0 and threshold t > 0. Note that we can provide a
tight relaxation of the exact penalizer, which was only coarsely approximated in the previous
approaches [15, 22]. The cost function just compares pointwise pixel colors in the images; i.e.,

(7.6) cγ(x, y) = |I0(x, y)− I1(x+ γ1, y + γ2)|2 .

Results can be observed in Figures 1, 11, 12, and 13. See Figure 12 for the color code of the
flow vectors. In all examples, the number of labels is so high that this problem is currently
impossible to solve with previous convex relaxation techniques by a large margin; see Table 1.
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First image I0 Second image I1

Previous relaxation Proposed relaxation

(25 minutes run time) (2 minutes run time)

Figure 11. Optical flow fields with 32×32 labels computed on an image with resolution 320×240 using TV
regularization. With the new relaxation of the regularizers, we achieve optimality bounds which are on average
three times lower than with previous relaxations from [15, 22], using the proposed data term relaxation (4.10)
for both cases. The result in the lower left is computed with the TV relaxation from [22]. Since the scaling
of the regularity term is not directly comparable, we chose optimal parameters for both algorithms manually.
The large time difference results from a narrow constraint on the time step; see section 7.4. Reprinted with
permission from [36, Figure 3], c© 2011 by IEEE Computer Society, Washington, DC.

Compared to the relaxation proposed in the original conference publication [15], total
computation time was reduced dramatically; see Figure 11. The large computation time for
the TV relaxation of [15] is caused by an overly restrictive constraint on the time steps due
to the structure of the embedding matrix Ak in (5.3). Using N1 = N2 := N labels in each
direction of the two-dimensional optic flow label space, the time steps can be seen to be
proportional to N−3/2. In contrast, the proposed TV relaxation in section 5.3 allows larger
time steps proportional to N−1/2 and thus leads to a substantially lower number of iterations.
We suggest using the preconditioning variant of the algorithm [10] where the time steps are
chosen adaptively.

Due to the global optimization of a convex energy, we can successfully capture large
displacements without having to implement a coarse-to-fine scheme, see Figure 12. Table 3
shows detailed numeric results of our method on the data sets of the Middlebury benchmark
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First image I0 Second image I1 Flow field and color code

Figure 12. When employed for optic flow, the proposed method can successfully capture large displacements
without the need for coarse-to-fine approaches, since a global optimization is performed over all labels. In
contrast to existing methods, our solution is within a known bound of the global optimum. Reprinted with
permission from [15, Figure 7], c© 2010 by Springer-Verlag, Berlin, Heidelberg.

First image I0 Second image I1 Flow field

Figure 13. Example with a larger image resolution of 640 × 480 pixels, which requires 32× 32 labels. The
regularizer is the TV in each component. Computation time is 21.6 minutes. Reprinted with permission from
[36, Figure 1], c© 2011 by IEEE Computer Society, Washington, DC.

with public ground truth available. We compare our current method with a linear regularizer
using 35× 35 labels to our old relaxation [15] and TV-L1 optic flow [43], which utilizes a very
similar energy which is optimized with a coarse-to-fine scheme and quadratic relaxation of the
linearized functional. Results show that we get reasonable optimality bounds for the energy
and are in most cases within 5% of the global optimum, while accuracy of the actual optical
flow results depends on how fine the discretization is compared to the maximum displacement.
The new method is obviously superior to the old relaxation in all respects—the previous one
is provided only for reference, and we strongly recommend using the new one proposed in
this work. For a method which is competitive on the Middlebury benchmark, we would need
to further increase the number of labels, by, e.g., implementing a coarse-to-fine scheme, and
fine-tune our data terms. This is, however, beyond the scope of this paper, since our focus is
to provide an efficient optimization framework.

8. Conclusion. We have introduced a continuous convex relaxation for multilabel prob-
lems where the label space has a product structure and the regularizer is separable. Such
labeling problems are plentiful in computer vision. The proposed reduction method improves
on previous methods in that it requires orders of magnitude less memory and computation
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Table 3
Accuracy comparison on Middlebury data sets. Maximum displacement (Δ) and average endpoint error

(aep) are measured in pixels, and average angular error (aan) in degrees. Not surprisingly, accuracy for the
VML method is strongly correlated with the number of labels per pixel and thus decreases with larger maximum
displacement. On data sets with small maximum displacement, the accuracy using 35× 35 labels is comparable
to that of TV-L1 optical flow, while other data sets would require either coarse-to-fine schemes or a greater
number of labels for the method to remain competitive. The proposed new relaxation outperforms the previous
one [15] in all respects.

Data set VML VML-ECCV [15] TV-L1 [43]
size Δ aep aan bound [%] aep aan bound [%] aep aan
Venus

420 × 380 10 0.39 4.25 0.21 0.81 5.44 5.88 0.44 7.74
Dimetrodon

584 × 388 5 0.22 4.58 6.12 0.62 6.38 7.87 0.22 3.94
Hydrangea

584 × 388 12 0.42 4.06 2.64 0.81 5.60 9.26 0.22 2.64
RubberWhale
584 × 388 5 0.18 5.73 2.36 0.29 6.12 8.60 0.20 6.29

Grove2
640 × 480 5 0.34 4.54 5.01 0.55 6.16 13.25 0.22 3.12

Grove3
640 × 480 15 1.06 12.02 9.22 2.01 14.49 10.50 0.76 7.41

Urban2
640 × 480 22 0.81 9.31 1.07 0.97 8.15 6.32 0.47 3.51

Urban3
640 × 480 18 1.38 8.95 1.05 1.65 10.82 4.99 0.90 8.02

time, while retaining the advantages: a very flexible choice of regularizer on the label space, a
globally optimal solution of the relaxed problem, and an efficient parallel GPU implementation
with guaranteed convergence.

The proposed framework combines the advantages of the efficient multidimensional data
term relaxation [36] with the tight relaxation of the regularizers in [9]. It allows for a very gen-
eral class of continuous regularizers on multidimensional label spaces and can thus efficiently
solve a significant range of problems. For example, we can explicitly encourage the solution to
be smooth in certain regions and can represent Huber-TV and truncated linear regularization
by an exact and tight relaxation. The regularizers can be arbitrarily mixed, in the sense that
each dimension of the label space can have its own type of regularity. Because of the reduced
memory requirements, we can successfully handle specific problems with very large numbers
of labels, which could not be done with previous labeling methods. A systematic experimental
comparison with discrete algorithms (α-EXP, SWAP, BP, TRW-S) shows a good performance
and often improved results.

9. Appendix: Proofs of propositions and theorems in the main paper.

9.1. Proof of Proposition 3.1.
Proof. In order to prove the proposition, we show that the mapping induces a pointwise

bijection from Δ× onto Δ. We first show that it is onto: for u(x) in Δ, there exists exactly
one γ ∈ Γ with uγ(x) = 1. Set vλk (x) = 1 if λ = γk, and vλk (x) = 0 otherwise. Then (3.5) is
satisfied as desired; see Figure 2. To see that the map is one-to-one, we just count the elements
in Δ×. Since Δk contains Nk elements, the number of elements in Δ× is N1 × · · · ×Nd = N ,
the same as in Δ.
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9.2. Proof of Theorem 4.1.
Proof. Since derivatives of indicator functions do not exist in an ordinary sense, the integral

in (4.1) is meant to be a convenient notation for

(9.1)

∫
Ω×Λk

(φ1, φ2) · νΓuk
dHn(x, λ),

where

(9.2) Γuk
:=
{
(x, u(x))

∣∣ x ∈ Ω \ Suk

}
∪
{
(x, s)

∣∣ x ∈ Suk
, s ∈ [u−k , u

+
k ]
}

is the extended graph of u, and νΓuk
is the normal on Γuk

pointing “downwards.” Intuitively,
∇1hyp(uk) in (4.1) is nonzero only on Γuk

and equals νΓuk
up to a delta function factor. For a

fixed φ denote the integral (9.1) by Jφ. It is equal to [2, Lemma 2.8]

(9.3)

Jφ =

∫
Ω\Suk

(
φ1(x, uk) · ∇uk − φ2(x, uk)

)
dx

+

∫
Suk

(∫ u+
k

u−
k

φ1(x, s) ds

)
· νuk

dHn−1(x).

Define p : Ω× Λk → R
n and b : Ω× Λk → R by

(9.4) p(x, λ) :=

∫ λ

λ0

φ1(x, s) ds, b(x, λ) := φ2(x, λ)

for some λ0 ∈ Λk. Since φ ∈ C1
c (Ω × Λk;R

n × R), also (p, b) ∈ C1
c (Ω × Λk;R

n × R). With
these new variables we have

(9.5)

Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx

+

∫
Suk

(
p(x, u+k )− p(x, u−k )

)
· νuk

dHn−1(x).

By the divergence theorem,

(9.6)

∫
Ω\Suk

div
(
p(x, uk)

)
dx =

∫
Suk

(
p(x, u+k ) · (−νuk

) + p(x, u−k ) · νuk

)
dHn−1(x)

+

∫
∂Ω

p(x, uk) · ν∂Ω dHn−1(x).

In the integrand of the first integral on the right-hand side there are two addends for each
point of Suk

, because the integration on the left-hand side is performed on both sides of Suk
.

The outer normal for the u−k side is νuk
by definition, and for the u+k side it is just the opposite.

The last integral on the right-hand side is zero because φ and therefore also p have compact
support in Ω. Using (9.6) in (9.5) we obtain

(9.7) Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx−

∫
Ω\Suk

div
(
p(x, uk)

)
dx.
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By the chain rule,

(9.8) div
(
p(x, uk)

)
= (divp)(x, uk) + ∂λp(x, uk) · ∇uk.

Thus, the expression (9.7) simplifies to

(9.9) Jφ =

∫
Ω\Suk

(− (divp)(x, uk)− b(x, uk)
)
dx =

∫
Ω×Λk

(−divp− b) vk d(x, λ).

The last equality is simply the definition of how the distribution vk(x, λ) = δ(uk −λ), defined
for uk ∈ SBV(Ω), acts on functions. Now, the claim of the proposition follows directly from
(4.1) and (9.9).

9.3. Proof of Proposition 4.2.
Proof. Since at each point x ∈ Ω, γ(x) is the label indicated by v(x), by the defining

property (3.8) we have vλk (x) = 1 for λ = γk(x) and vλk (x) = 0 for all λ ∈ Λk with λ = γk(x).
Thus, for all q ∈ Q,

(9.10)

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) =

d∑
k=1

q
γk(x)
k ≤ cγ(x)(x).

This shows that at least Rdata(v) ≤
∫
Ω cγ(x)(x) dx = Edata(v). To prove equality, first observe

that we can safely interchange the supremum over q ∈ Q with the integration over Ω since the
constraints in Q on q are pointwise in x. This means that we need only show the pointwise
equality, i.e., that for each fixed x ∈ Ω the integrand in (4.10) yields cγ(x) when taking the
supremum over q ∈ Q. We use Lagrange multipliers μ to write the constraints in (4.11) as
additional energy terms, interchanging the ordering of supq and infμ:

(9.11)

Rdata(v) = sup
q∈Q

d∑
k=1

∑
λ∈Λk

qλkv
λ
k

= sup
q

inf
μγ̂≥0

d∑
k=1

∑
λ∈Λk

qλkv
λ
k −

∑
γ̂∈Γ

μγ̂
(
qγ̂11 + · · ·+ qγ̂dd − cγ̂

)
= inf

μγ̂≥0

∑
γ̂∈Γ

μγ̂cγ̂ + sup
q

d∑
k=1

∑
λ∈Λk

qλk

(
vλk −

∑
γ̂∈Γ: γ̂k=λ

μγ̂

)
.

Evaluating the supremum over q leads to constraints on the variables μγ̂ , and we obtain

(9.12) Rdata(v) = inf
μγ̂≥0

∑
γ̂∈Γ

μγ̂cγ̂

with μγ̂ such that additionally

(9.13)
∑

γ̂∈Γ: γ̂k=λ

μγ̂ = vλk for all 1 ≤ k ≤ d and λ ∈ Λk.
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First, for any fixed 1 ≤ k ≤ d and any λ ∈ Λk with λ = γk, by assumption we have vλk = 0.
Since μγ̂ ≥ 0, (9.13) then gives μγ̂ = 0 for all γ̂ ∈ Γ with γ̂k = γk. Combining this for all
1 ≤ k ≤ d, we get μγ̂ = 0 for all γ̂ = γ. Next, plug λ = γk for some k into (9.13). Since any
other addend μγ̂ is zero, the sum is just μγ , while the right-hand side is vγkk = 1.

Therefore, the constraints (9.13) ensure that μγ̂ = 0 for all γ̂ = γ and μγ = 1, so that
(9.12) gives Rdata(v) = cγ .

9.4. Proof of Theorem 4.3.
Proof. Let v ∈ L2(Ω, co (Δ×)) be arbitrary, and set qλk (x) := ĉ(x)/d. Then

(9.14)

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) =

d∑
k=1

ĉ(x)

d

∑
λ∈Λk

vλk (x) =

d∑
k=1

ĉ(x)

d
= ĉ(x),

and
∑

k q
γk
k (x) = ĉ(x) ≤ cγ(x) for all γ ∈ Γ and x ∈ Ω, so q ∈ Q. This shows that Rdata(v) ≥∫

Ω ĉ(x) dx, which is the minimum of Edata for binary functions.

9.5. Proof of Proposition 4.4.
Proof. By convex duality [30], the convex envelope of Edata is given by the Legendre–

Fenchel biconjugate E∗∗
data. The first convex conjugate E∗

data of Edata is given as

(9.15) E∗
data(q) = sup

v

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx − Edata(v).

Since Edata is finite only for binary v, i.e., if vλk (x) = χλ=γk(x) for some γ : Ω → Γ, this reduces
to

(9.16) F (q) := E∗
data(q) = sup

γ:Ω→Γ

∫
Ω

( d∑
k=1

q
γk(x)
k (x)− cγ(x)(x)

)
dx.

The biconjugate is then

(9.17) E∗∗
data(v) = sup

q

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx − F (q).

For q ∈ L2(Ω,RN1+···+Nd) and a ∈ L2(Ω,R), define qa ∈ L2(Ω,RN1+···+Nd) by (qa)
λ
k(x) :=

qλk (x) + ak(x). Then obviously

(9.18) F (qa) = F (q) +

∫
Ω

d∑
k=1

ak(x) dx.

Inserting qa for q in (9.17), we obtain

(9.19) E∗∗
data(v) = sup

q, a

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx−F (q)+

∫
Ω

d∑
k=1

ak(x)

( ∑
λ∈Λk

vλk (x)−1

)
dx.



1660 B. GOLDLUECKE, E. STREKALOVSKIY, AND D. CREMERS

Holding q fixed and taking the supremum over a, we see that in order for E∗∗
data(v) to be finite,

we necessarily must have

(9.20)
∑
λ∈Λk

vλk (x) = 1 for all 1 ≤ k ≤ d, for a.e. x ∈ Ω.

We assume these equalities from now on, i.e., that v ∈ S with S as defined in the proposition.
In the same way as we arrived at (9.19), we see that given (9.20) the expression in (9.17),

over which the supremum is taken, does not change if we replace q by qa for some a. Also,
(9.18) shows that for each q and any fixed α ∈ R we can find an a with F (qa) = α. Combining
these two observations, we obtain

(9.21) E∗∗
data(v) = sup

q:F (q)=α

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx − α.

Adding α on both sides of the equation and taking the supremum over all α ≤ 0, we get

(9.22) E∗∗
data(v) = sup

q:F (q)≤0

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx.

This is almost the expression (4.10) for Rdata(v). We need only replace the integral constraints
on q in F (q) ≤ 0, with F in (9.16), with pointwise constraints. For this, note that in (9.16)
the supremum over γ may be safely put inside the integral over Ω since the label space Γ is
finite (after the assumed discretization). Therefore, F (q) ≤ 0 is equivalent to

(9.23)

∫
Ω
sup
γ∈Γ

( d∑
k=1

qγkk (x)− cγ(x)

)
dx ≤ 0.

Denoting the integrand by a(x), this becomes equivalent to

(9.24) ∃ a : Ω → R :

∫
Ω
a(x) dx ≤ 0,

d∑
k=1

qγkk (x)− cγ(x) ≤ a(x) for all γ ∈ Γ, x ∈ Ω.

Given a q satisfying these constraints for some a, define q̂ by q̂λk (x) := qλk (x)− a(x)/d. Then
q̂ satisfies (9.24) with a ≡ 0; i.e. q̂ ∈ Q with the constraint set Q in (4.11). Furthermore,

(9.25)

∫
Ω

d∑
k=1

∑
λ∈Λk

q̂λk (x)v
λ
k (x) dx =

∫
Ω

d∑
k=1

∑
λ∈Λk

(
qλk (x)−

a(x)

d

)
vλk (x) dx

=

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx −

∫
Ω
a(x) dx

≥
∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx
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using first (9.20) and then
∫
Ω a(x) ≤ 0. Thus, among all q with F (q) ≤ 0 or, equivalently,

with (9.24), the expression in the supremum (9.22) will be largest if we choose a ≡ 0 in (9.24).
Hence,

(9.26) E∗∗
data(v) = sup

q∈Q

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)v
λ
k (x) dx = Rdata(v)

for v ∈ S.
9.6. Proof of Proposition 5.2.
Proof. We can enforce a piecewise constant labeling uk if we enforce the approximate gradi-

ent ∇uk to be constant zero. In (3.12), this can be achieved by setting hk(x, uk(x),∇uk(x)) =
c |∇uk| with a constant c > 0, and then letting c → ∞ to enforce∇uk ≡ 0 on Ω\Suk

. Inserting
the convex conjugate h∗k(x, λ, q) = δ{|q|≤c}, we find that the conditions in (4.4) now reduce to

(9.27) bλ ≥ 0,
∣∣∂λpλ

∣∣
2
≤ c,

∣∣pλ − pμ
∣∣
2
≤ dk(λ, μ).

The supremum over bλ ≥ 0 is easily eliminated from (4.3) since vλk ≥ 0, i.e., −bλvλk ≤ 0 with 0
being the maximum possible value. The second constraint in (9.27) follows from the third

if we choose c ≥ maxλ>μ
dk(λ,μ)
|λ−μ| . Thus we arrive at (5.7) with the set Ck as claimed in the

proposition.

9.7. Proof of Proposition 5.3.
Proof. The claim follows from our general formulation (5.7) with a special choice of the

dual variables p together with additional relaxations of the equations in Ck. The special form
for pλ we choose is

(9.28) pλ =

Mk∑
i=1

aλ
k,iqi,

with q : Ω × {1, . . . ,Mk} → R
n such that |q|2 ≤ 1 and the vectors aλ

k ∈ R
Mk which define

the Euclidean representation of dk; see (5.1). This is only a subset of possible p ∈ Ck

in Proposition 5.3. The constraint on p in (5.7) is satisfied, since by the Cauchy–Schwarz
inequality and the definition of the representation,

(9.29)

∣∣pλ − pμ
∣∣
2
=

∣∣∣∣∣
Mk∑
i=1

(aλ
k,i − aμ

k,i)qi

∣∣∣∣∣
2

≤
√√√√Mk∑

i=1

(aλ
k,i − aμ

k,i)
2 ·

√√√√Mk∑
i=1

|qi|22

=
∣∣Ake

λ −Ake
μ
∣∣
2

∣∣q∣∣
2
≤ dk(λ, μ).
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Plugging (9.28) into (5.7), we obtain the desired result

(9.30)

Jk(vk) ≥ sup
|q|2≤1

⎧⎨⎩∑
λ∈Λk

∫
Ω

(
Mk∑
i=1

aλ
k,iqi

)
· ∇vλk dx

⎫⎬⎭
= sup

|q|2≤1

⎧⎨⎩
∫
Ω

Mk∑
i=1

qi · ∇
⎛⎝∑

λ∈Λk

aλ
k,iv

λ
k

⎞⎠ dx

⎫⎬⎭
= sup

|q|2≤1

{∫
Ω

Mk∑
i=1

qi · ∇(Akvk)i dx

}
= TVv(Akvk).

The inequality in the first step is a consequence of choosing the special form of p’s, thus
reducing the set over which the supremum is taken.

9.8. Proof of Proposition 6.1.
Proof. Both J and Rdata are support functionals of convex sets in the Hilbert space L :=

L2(Ω,RN1+···+Nd): (6.3) shows that the regularizer J is the support functional of K(C), while
we can see from definition (4.10) that the data term Rdata is the support functional of Q.
It follows that both J and Rdata are lower semicontinuous and convex on L. The set D is
closed; thus its indicator function δD is also convex and closed, and, furthermore, δD is coercive
since D is bounded. From the above, it follows that the functional

(9.31) v �→ J(v) +Rdata(v) + δD(v)

is closed and coercive. Since being closed is equivalent to being lower semicontinuous in the
Hilbert space topology of L, these properties imply the existence of a minimizer in L (see
Theorems 3.2.5 and 3.3.3 in [3]), which must necessarily lie in D. Since neither functional is
strictly convex, the solution is in general not unique.

Acknowledgment. We thank Antonin Chambolle (École Polytechnique) for helpful dis-
cussions concerning the proof of Proposition 4.4.
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[2] G. Alberti, G. Bouchitté, and G. Dal Maso, The calibration method for the Mumford-Shah func-
tional and free-discontinuity problems, Calc. Var. Partial Differential Equations, 16 (2003), pp. 299–
333.

[3] H. Attouch, G. Buttazzo, and G. Michaille, Variational Analysis in Sobolev and BV Spaces: Ap-
plications to PDEs and Optimization, MOS-SIAM Ser. Optim. 6, SIAM, Philadelphia, 2006.

[4] Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via graph cuts, in Pro-
ceedings of the IEEE International Conference on Computer Vision (ICCV), 2003, pp. 26–33.

[5] Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for
energy minimization in vision, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), pp. 1124–1137.

[6] Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, IEEE
Trans. Pattern Anal. Mach. Intell., 23 (2001), pp. 1222–1239.



VECTOR-VALUED LABELING 1663

[7] T. Brox and D. Cremers, On local region models and a statistical interpretation of the piecewise smooth
Mumford-Shah functional, Int. J. Comput. Vision, 84 (2009), pp. 184–193.

[8] A. Chambolle, Finite-differences discretizations of the Mumford-Shah functional, M2AN Math. Model.
Numer. Anal., 33 (1999), pp. 261–288.

[9] A. Chambolle, D. Cremers, and T. Pock, A Convex Approach for Computing Minimal Partitions,
Technical Report TR-2008-05, Department of Computer Science, University of Bonn, Bonn, Germany,
2008.

[10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications
to imaging, J. Math. Imaging Vision, 40 (2011), pp. 120–145.
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