
TIGHT CONVEX RELAXATIONS
FOR VECTOR-VALUED LABELING

BASTIAN GOLDLUECKE1, EVGENY STREKALOVSKIY2 AND DANIEL CREMERS2
1HEIDELBERG COLLABORATORY FOR IMAGE PROCESSING 2TU MUENCHEN

PREPRINT - TO APPEAR IN SIIMS

Abstract. Multi-label problems are of fundamental importance in computer vision and image
analysis. Yet, finding global minima of the associated energies is typically a hard computational
challenge. Recently, progress has been made by reverting to spatially continuous formulations of
respective problems and solving the arising convex relaxation globally. In practice this leads to
solutions which are either optimal or within an a posteriori bound of the optimum. Unfortunately,
in previous methods, both run time and memory requirements scale linearly in the total number of
labels, making them very inefficient and often not applicable to problems with higher dimensional
label spaces.

In this paper, we propose a reduction technique for the case that the label space is a continuous
product space and the regularizer is separable, i.e. a sum of regularizers for each dimension of the
label space. On typical real-world labeling problems, the resulting convex relaxation requires orders
of magnitude less memory and computation time than previous methods. This enables us to apply
it to large-scale problems like optic flow, stereo with occlusion detection, segmentation into a very
large number of regions, and joint denoising and local noise estimation. Experiments show that
despite the drastic gain in performance, we do not arrive at less accurate solutions than the original
relaxation. Using the novel method, we can for the first time efficiently compute solutions to the
optic flow functional which are within provable bounds (typically 5%) of the global optimum.
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1. Introduction.

1.1. The Multi-labeling Problem. Recently, there has been a surge of re-
search activity on convex relaxation techniques for energy minimization in computer
vision. Particular efforts were directed towards binary and multilabel problems,
as they lie at the heart of fundamental problems like segmentation [23, 21, 9, 41],
stereo [27], 3D reconstruction [11], Mumford-Shah denoising [26] and optic flow [14].

The aim is to assign to each point x of a domain Ω ⊂ Rn a label from a set Γ ⊂ Rd.
Assigning the label γ ∈ Γ to x is associated with the cost cγ(x) = c(x, γ) ∈ R. In
computer vision applications, this local cost denotes how well a given labeling fits
some observed data. They can be arbitrarily sophisticated, derived from statistical
models or complicated local matching scores. In the following, we will assume that the
cost functions cγ lie in the Hilbert space of square integrable functions L2(Ω). Aside
from minimizing the local costs, we want the optimal assignment to exhibit a certain
regularity. We enforce this requirement by penalizing each possible labeling u : Ω→ Γ
with a regularizer J(u) ∈ R. This regularizer reflects our knowledge about which
label configurations are a priori more likely, and typically enforces a form of spatial
coherence of the computed labeling.

Finding a labeling u : Ω→ Γ which minimizes the sum of data term and regular-
izer, i.e.

argmin
u∈L2(Ω,Γ)

{
J(u) +

∫
Ω

c(x,u(x)) dx
}

(1.1)

is a hard computational challenge as the overall energy is generally not convex. For
some cases, good results may be obtained by local minimization, starting from a
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Fig. 1.1: The proposed relaxation method can approximate the solution to multi-
labeling problems with a huge number of possible labels by globally solving a convex
relaxation model. This example shows two images and the optic flow field between
them, where flow vectors were assigned from a possible set of 50 × 50 vectors, with
truncated linear distance as a regularizer. The problem has so many different la-
bels that a solution cannot be computed by alternative relaxation methods on current
hardware.

good initialization, possibly further improved by coarse-to-fine strategies commonly
employed in optical flow estimation. Yet, such methods cannot guarantee any form
of quality of the result and performance typically depends on data, on initialization
and on the choice of algorithmic minimization scheme (number of levels in the coarse-
to-fine hierarchy, number of iterations per level, etc.). The goal of this paper is to
develop solutions to such problems which do not depend on initialization and which
lie within a computable bound of the global optimum.

1.2. Contribution: Product label spaces. In this work, we consider label
spaces which can be written as a product of a finite number d of spaces, Γ = Λ1 ×
· · ·×Λd. The central idea is as follows. Assume that the spaces Λk are discrete or have
been discretized, and let Nk be the number of elements in Λk. Then the total number
of labels is N = N1 · . . . · Nd. In previous relaxations for the multi-label problem,
this means that we need to optimize over a number of N binary indicator functions,
which can easily amount to thousands of indicator functions in practical problems. In
order to make problems of this form feasible to solve, we present a reduction method
which only requires N1 + · · ·+Nd binary functions. As a consequence, memory grows
linearly (rather than exponentially) in the number of dimensions, while computation
time is greatly reduced.

An important limitation, however, is that we only consider separable regularizers
of the form

J(u) =

d∑
k=1

Jk(uk), (1.2)

which means that J acts on the label components uk of u independently.
We will show that with the novel reduction technique, it is possible to efficiently

solve convex relaxations to multi-label problems which are far too large to approach
with existing techniques. A prototypical example is optic flow, where the total number
of labels is typically around 322 for practical problems. In that case, for example, we
only require 64 indicator functions instead of 1024. However, the proposed method
applies to a much larger class of labeling problems. This reduction in variable size
not only allows for substantially higher resolution of the label space, but it also gives
rise to a drastic speedup.
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The present paper subsumes and extends two previous conference publications [14,
36]. For this journal paper, both earlier works were integrated into a comprehensive
exposition of continuous vectorial labeling problems. Contents of the earlier paper [14]
were revised in light of the new findings and improved relaxations in [36], and the
differences between both approaches illuminated. Compared to the original conference
publications, we provide a more detailed background and more complete theory. We
included the total cyclic variation [35] as an additional regularizer and extended the
description of the algorithm we use to implement the method. In particular, we were
able to prove that our new data term relaxation corresponds to the exact convex
envelope for the non-convex data term of the energy, which makes it the tightest
possible relaxation for the data term. All experiments in the older paper were redone
and updated with respect to the novel implementation of the algorithm in [36]. We also
included a few more more experimental comparisons, in particular to discrete methods,
and extended the implementation to arbitrary label space dimension. Complete source
code to reproduce the experiments is publicly available on Sourceforge under a GPL3
license as part of our CUDA library for continuous convex optimization in image
processing 1.

2. Related work.

2.1. Discrete approaches. It is well known that in the fully discrete setting,
the minimization problem (1.1) is equivalent to maximizing a Bayesian posterior prob-
ability, where the prior probability gives rise to the regularizer [37]. The problem can
be stated in the framework of Markov random fields (MRF) and discretized using a
graph representation, where the nodes denote discrete pixel locations and the edge
weights encode the energy functional [4].

Fast combinatorial minimization methods based on graph cuts can then be em-
ployed to search for a minimizer. In the case that the label space is binary and the
regularizer submodular, a global solution of (1.1) can be found by computing a min-
imum cut [15, 20]. Continuous variants of this minimum cut problem have also been
studied [34]. For multi-label problems, one can approximate a solution for example
by solving a sequence of binary problems (α-expansions) [6, 31], linear programming
relaxations [40] or quadratic pseudo-boolean optimization [19]. Exact solutions to
multi-label problems can only be found in some special cases. An important case are
multi-label problems over a linearly ordered label set with convex regularizer. The
global optimum of this problem corresponds to a cut in a multi-layered graph which
can be computed in polynomial time [16]. A different discrete encoding scheme for
this problem was also presented in [31].

In [32, 33] the problem of image registration is formulated as an MRF labeling
problem, which is minimized via LP relaxation. The authors present a decoupling
strategy for the displacement components which is related to ours, albeit only appli-
cable in the discrete case. It allows a simplification of the graph and consequently
larger numbers of labels. Another discrete method which is related to our work is [29].
The authors present a compact encoding scheme for the multilabel problem called a
log-transformation which makes the unary term non-submodular. This is in analogy
to our transformation, which makes the previously convex data term non-convex. The
problem of large label spaces is also tackled in [13], where the authors compute optical
flow from an MRF labeling problem using a lower dimensional parametric description
for the displacements.

1https://sourceforge.net/p/cocolib
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However, in many important scenarios the label space cannot be ordered. More-
over, a non-convex regularizer is often more desirable to better preserve discontinuities
in the solution. Even for relatively simple non-convex regularizers like the Potts dis-
tance, the resulting combinatorial problem is NP-hard [6]. In this paper, we work in a
spatially continuous setting, avoiding typical problems of graph-based discretization
like anisotropy and metrication errors [17].

2.2. Continuous approaches. Continuous approaches address the multi-label
problem by means of convex relaxation. To this end, the original non-convex energy
is replaced with a convex lower bound, which can be minimized globally. We auto-
matically get a bound on the solution and know how far we are at most from the
global optimum. How good the bound is depends on the tightness of the relaxation,
i.e. how close the energy is to the convex envelope relaxation. For particular labeling
problems, this strategy even leads to globally optimal solutions. For example, as in
the discrete setting, it is possible to solve the two-label problem with length regularity,
i.e. the regularizer being equal to the length of the interface between the two regions,
in a globally optimal way [23].

The framework presented in this paper is based on the calibration or lifting idea
for the Mumford-Shah functional, which was analyzed in depth in [1, 2]. The idea is
that rather than optimizing for the original labeling function, one instead estimates
the characteristic function of its epigraph (called the subgraph in [2]). Thus, one ends
up with a relaxation of the original problem in terms of these characteristic functions,
which is convex. The question is whether the solution of the relaxation corresponds
to a solution of the original problem. In [28, 27], it was shown that one can achieve
a globally optimal solution for the special case of a linearly ordered set of labels and
convex regularizers. This construction is related to the discrete approach proposed
in [16].

For the general multi-label case, however, there is no relaxation known that would
lead to provably optimal solutions. Relaxations of different tightness have been pro-
posed in [21, 9, 41]. They all have in common that they are very memory intensive
if the number of labels becomes larger. This makes it impossible to use them for
scenarios with thousands of labels, like for example optic flow.

Our previous conference publication [14] relied on a straight-forward relaxation
of the regularizer proposed in [41] and further generalized in [21], which was designed
for a discrete label space. In this paper, we instead employ the relaxation proposed
in [25], which is based on the calibration method [2]. Not only is it provably tighter
than the above, but it also allows us to accurately represent regularizers for continuous
label spaces. In this context, we show that the discrete relaxation [21, 14] can also be
interpreted as a special case of the more general continuous framework.

3. Multi-dimensional Label Spaces.

3.1. Discrete product label spaces. From now on we assume that the space
of labels is a product of a finite number d of spaces, Γ = Λ1 × · · · × Λd. In order to
give a more visual explanation of the main idea behind our work, we first discuss the
discrete case, where |Λk| = Nk ∈ N.

The convex relaxation introduced in [21, 41] works as follows. Instead of looking
for a labeling u : Ω → Γ directly, we associate each label γ with a binary indicator
function uγ ∈ L2(Ω, {0, 1}), where uγ(x) = 1 if and only if u(x) = γ. To make sure
that a unique label is assigned to each point, only one of the indicator functions can
have the value one. We can model this restriction by viewing u as a function mapping
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Fig. 3.1: The central idea of the reduction technique is that if a single indicator func-
tion in the product space Γ takes the value 1, then this is equivalent to setting an
indicator function in each of the factors Λj. The memory reduction stems from the
fact that there are much more labels in Γ than in all the factors Λj combined.

into the set of corners ∆ of the N -simplex:

u ∈ L2(Ω,∆) with ∆ =

x ∈ {0, 1}N :

N∑
j=1

xj = 1

 . (3.1)

Obviously, we can identify u with the vector (uγ)γ∈Γ of indicator functions. Let 〈·, ·〉
denote the inner product on the Hilbert space L2(Ω), then problem (1.1) can thus be
written in the equivalent form

argmin
u∈L2(Ω,∆)

J(u) +
∑
γ∈Γ

〈uγ , cγ〉

 , (3.2)

where we use bold face notation u for vectors (uγ)γ∈Γ indexed by elements in Γ.
We write cγ(x) := c(x, γ) for the discrete data term. We use the same symbol J
to also denote the regularizer on the reduced space. Its definition requires careful
consideration, and will be discussed in detail later.

The central idea of the paper is the following. The full discrete label space Γ has
N = N1 · . . . · Nd elements, which means that it requires N indicator functions to
represent a labeling, one for each label. We will show that it suffices to use N1 + . . .+
Nd indicator functions, which is a considerable reduction in problem dimensionality,
thus computation time and memory requirements. We achieve this by replacing the
indicator functions on the product Γ by indicator functions on the components Λk.

To this end, we associate to each label λ ∈ Λk, 1 ≤ k ≤ d an indicator function vλk .
In each component k, only one of the indicator functions can be set. Thus, the vector
vk = (vλk )λ∈Λk which consists of Nk binary functions can be viewed as a mapping into
the corners of the simplex ∆k,

vk ∈ L2(Ω,∆k) with ∆k =

x ∈ {0, 1}Nk :

Nk∑
j=1

xj = 1

 . (3.3)
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In particular, the reduced set of indicator functions v = (vλk )1≤k≤d,γ∈Λk can be seen
as a map L2(Ω,∆×) with

∆× = ∆1 × . . .×∆d ⊂ RN1+...+Nd . (3.4)

Note that an element v ∈ L2(Ω,∆×) consists indeed of exactly N1 + . . .+Nd binary
functions.

The following proposition illuminates the relationship between the original space
of indicator functions L2(Ω,∆) and the reduced indicator function space L2(Ω,∆×),
which is easy to understand visually, see Figure 3.1.

Proposition 3.1. A bijection v 7→ u from L2(Ω,∆×) onto L2(Ω,∆) is defined
by setting

uγ := vγ11 · . . . · v
γd
d , ∀γ = (γ1, . . . , γd) ∈ Γ. (3.5)

The proof of this proposition as well as of the other following results is given in the
appendix.

Using this reduced function space, another equivalent formulation to (1.1) and
(3.2) can be given as

argmin
v∈L2(Ω,∆×)

J(v) +
∑
γ∈Γ

〈vγ11 · . . . · v
γd
d , c

γ〉

 . (3.6)

While we have reduced the dimensionality of the problem considerably, we have in-
troduced another difficulty: the data term is not convex anymore, since it contains a
product of the components. Thus, in the relaxation, we need to take additional care
to make the final problem convex again.

3.2. Continuous label spaces and relaxation framework. We now turn to
the more general case that each factor Λk is an interval in R, which means that we deal
with a continuous label space with an infinite number of labels. In this situation, one
is also interested in a number of continuous regularizers, which cannot be modeled
satisfyingly on a discrete label space. As in the discrete case, the regularizers are
usually not convex and require a relaxation.

In the context of continuous labeling problems where the label range is an interval,
a central idea is functional lifting, which is a variant of the calibration method [2].
Here, one works with characteristic functions describing the hypograph instead of the
labeling function itself, an idea that was further refined and applied to a variety of
image processing problems in a number of subsequent works [9, 25, 26, 27]. We are
going to translate this framework to the case of a product label space. With the
regularizer, we can restrict ourselves to the case that it can be decomposed into the
sum of regularizers on each component. However, for the data term this is not possible
since the cost function usually cannot be decomposed in a similar way. Therefore,
we need to define a relaxation framework in which we still can express arbitrary cost
functions.

Let us first consider a single component uk : Ω → Λk of the full labeling func-
tion u. The characteristic function of its hypograph is defined on Ω× Λk as

1hyp(uk)(x, λ) =

{
1 if λ < uk(x),
0 else.

(3.7)
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In [2, 26, 27], the labeling problem is reformulated in terms of new unknowns which
correspond to these characteristic functions. The reason is equation (4.1), which we
discuss later and which allows to give a convex reformulation of the regularizer in
terms of the new unknowns. This allows us to obtain a globally optimal solution in
the new variables, which often is at least close to and sometimes equal to the solution
of the original non-convex problem.

In our case, however, we need different variables in order to be able to simulta-
neously formulate a convex relaxation of the data term. We work with the indicator
functions denoting if a specific label λ is set at a point x ∈ Ω, related to a labeling u
by

vk(x, λ) = δ(uk(x)− λ), (3.8)

where δ is the Dirac distribution. Note that the new unknowns are actually distribu-
tions on the higher dimensional space Ω × Λk, which however will reduce to regular
functions after discretization. They serve as a generalization of the discrete label in-
dicator functions vk ∈ L2(Ω,∆k) in (3.3) to the continuous case, in particular they
satisfy the relations∫

Λk

vk(x, λ)dλ = 1,

∫
Λk

λ vk(x, λ) dλ = uk(x), (3.9)

which mimic the discrete case with sums replaced by integrals. Intuitively, this means
that for each fixed x ∈ Ω, vk(x, ·) has a total mass of 1 and is concentrated on the
label uk(x) ∈ Λk.

We will reformulate the labeling problem in terms of the new variables v in Sec-
tion 4. Some things have to be kept in mind, however. Since the new variables are
distributions in the continuous case, we cannot formulate a well-defined minimization
problem without first reducing them to L2-functions . This means that before writing
down the actual minimization problem we want to solve in the new variables, we have
to introduce a discretization of the label space. Despite the necessary discretization,
we follow other previous works which employ the lifting idea [25, 26, 27, 28], and
still insist that we correctly deal with a continuous label space. This is justified since
the definition of the continuous regularizers in Section 5 does not make use of the
discretization, in contrast to e.g. [21], where the label space is discretized from the
beginning. One thing which remains to be discussed, however, is whether the discrete
solutions converge to the continuous one when the label space discretization is refined,
in the spirit of [8]. This is a possible avenue for future work.

3.3. Regularization. As stated in the beginning, we consider a separable regu-
larizer of the form

J(u) =

d∑
k=1

Jk(uk). (3.10)

In order to define its components, we require some technical preliminaries. Recall [3,
Definition 10.5.1] that for functions uk in the space SBV(Ω) of special functions of
bounded variation, the distributional derivative Duk can be decomposed as

Duk = ∇uk dx+ (u+
k − u

−
k )νuk dHn−1xSuk (3.11)

into a differentiable part and a jump part, see Figure 3.2. Here, Suk is the (n − 1)-
dimensional jump set of uk, where the values jump from u−k to u+

k , νuk is the normal
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Fig. 3.2: A special function of bounded variation u has an approximate gradient ev-
erywhere except on a nullset Su, where the values jump from u− to u+. The normal
νu denotes the direction of the jump from small to large values.

to Suk oriented towards the u+
k side, and ∇uk is the approximate gradient of uk [3,

Proposition 10.4.1]. The measure Hn−1xSuk is the (n − 1)-dimensional Hausdorff
measure restricted to the set Suk . We refer to [3] for a comprehensive introduction to
functions of bounded variation.

Making use of this decomposition, we can introduce the framework for regular-
ization. We consider regularizers for problem (1.1) of the form (3.10), with

Jk(uk) =

∫
Ω\Suk

hk(x, uk(x),∇uk(x)) dx+

∫
Suk

dk
(
s, u−k (s), u+

k (s)
)
dHn−1(s),

(3.12)
with functions hk : Ω × Λk × Rn → R and dk : Ω × Λk × Λk → R. The functions hk
and dk have to satisfy the following conditions:

1. hk(x, λ, ·) is convex for fixed x ∈ Ω, λ ∈ Λk, and hk(x, ·, ·) is lower semicon-
tinuous for fixed x ∈ Ω.

2. dk(x, ·, ·) is a metric on Λk for fixed x ∈ Ω, and dk is continuous.
The interesting task, of course, is to identify suitable choices of hk and dk, and to

interpret what the choice means in practice. We will turn to this in Section 5. Before
we can explore the possible regularizers, however, we need to introduce a convex
relaxation of the general regularizer (3.12) in Section 4.

3.4. Notation conventions. Because the label space is multi-dimensional, the
notation requires multiple indices and is slightly more complex. Throughout this work,
we keep the following conventions to keep it as clear as possible. The index k = 1, . . . , d
enumerating the factors of the product space is always written as a subscript. Indices
which are Greek letters always enumerate labels, where γ, χ are labels in the full
product space Γ with components γk, χk ∈ Λk. Greek letters λ, µ denote labels in
one of the factors Λk. If the label space is discrete or has been discretized, the label
is written as a superscript to the indicator functions vλk . In the case of a continuous
label space, the indicator functions vk live on Ω × Λk, thus the label appears as an
argument of the function vk(x, λ).

4. Convex relaxation. The minimization problem (3.2) which we want to solve
is not convex: neither is the energy a convex function nor is the domain of minimiza-
tion a convex set. Thus, the task of finding a global minimizer is in general com-
putationally infeasible. We therefore propose a convex relaxation. This means that
instead of minimizing the original functional, we minimize a convex one (ideally, the
exact convex envelope) over the convex hull of the original domain.
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The relaxation is defined in terms of the new variables vk defined in (3.8). After
obtaining a solution v̂, the question remains of whether the solution corresponds to
a function û which solves the original problem. In general, this is not the case, but
we can compute a projection Π(v̂) onto the original problem domain and obtain an
optimality bound. Indeed, the energy of the optimal solution û must lie somewhere
between the energies of v̂ and Π(v̂), as v̂ minimizes the relaxation and Π(v̂) lies in
the original problem domain in which û is a minimizer.

In the following subsection we will introduce first a convex relaxation of the
regularizer, which is based on the calibration method—however, our variables are
different from the ones used in previous work, which requires a slight reformulation.
Thereafter, we present the new convex relaxation of the data term and show how it
is an improvement over the one presented in the original conference paper [14].

4.1. Convex relaxation of the regularizer. Our first goal is to give a new
representation of the regularizer defined in (3.12). While in general it is not convex in
the labeling u, we will obtain a representation which is convex in the new variables vk
defined in (3.8). We do this by making use of the calibration or lifting technique
described in detail in [2]. Lemma 3.9 in [2] states that under the previous assumptions
on hk and dk, the regularizer Jk for each component can be represented as

Jk(uk) = sup
φ∈K

{∫
Ω×Λk

φ1 · ∇x1hyp(uk) + φ2 ∂λ1hyp(uk) d(x, λ)

}
(4.1)

with the convex set

K =

{
φ =(φ1, φ2) ∈ C1

c (Ω× Λk;Rn × R) such that for all x ∈ Ω and λ, µ ∈ Λk,

φ2(x, λ) ≥ h∗k(x, λ,φ1(x, λ)) and
∣∣∣∣∫ µ

λ

φ1(x, s) ds
∣∣∣∣ ≤ dk(x, λ, µ)

}
.

(4.2)
Above, h∗k(x, λ, ·) denotes the convex conjugate of hk(x, λ, ·). In a slight abuse of
notation, the index c in the set C1

c (Ω×Λk;Rn×R) indicates that φ must have compact
support, but only w.r.t. the x ∈ Ω variable. Note that (4.1) is a convex representation
of the regularizer in terms of the characteristic functions 1hyp(uk) of the hypograph
of uk, see equation (3.7). However, what we want is a convex representation in terms
of our new unknowns vk. We give this reformulation in the following theorem.

Theorem 4.1. Let Jk be of the form (3.12), and the indicator functions vk
defined as in (3.8). Then

Jk(uk) = sup
(p,b)∈Ck

{∫
Ω×Λk

(−div(p)− b) vk d(x, λ)

}
, (4.3)

with the convex set

Ck =
{

(p, b) ∈ C1
c (Ω× Λk;Rn × R) such that for all x ∈ Ω and λ, µ ∈ Λk,

b(x, λ) ≥ h∗k
(
x, λ, ∂λp(x, λ)

)
,

|p(x, λ)− p(x, µ)|2 ≤ dk(x, λ, µ)
}
.

(4.4)
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(a) Product function m(x1, x2) = x1x2
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Fig. 4.1: Product function and its mollified convex envelope for the case d = 2.

Note that similarly to the discrete version of the indicator functions, the discrete
version of the set Ck in (4.4) will consist of tuples (pλ, bλ)λ∈Λk of functions. Taking a
closer look at equation (4.3), we can see that the right hand side is a convex functional
in the new variables vk. Thus, we have achieved our goal and can turn towards finding
a similar relaxation of the data term.

4.2. Convex relaxation of the data term. In this subsection, we deal with
the non-convexity of the data term in (3.6),

Edata(v) =
∑
γ∈Γ

〈vγ11 · . . . · v
γd
d , c

γ〉 . (4.5)

Specifically, we show two different ways how it can be replaced with a convex function
which coincides with the original data term for binary functions. We first describe
the convexification idea from the original conference paper [14] in the discrete case
with a label space of dimension d = 2. While it leads to a working relaxation, it has
certain shortcomings, the main problem being that an unwanted constant solution has
to be avoided by additional smoothing when moving on from binary to continuous
functions. These shortcomings will be remedied by a new relaxation technique which
we explain thereafter. We will show that this relaxation is actually the best possible
one, i.e. the convex envelope of the data term. Note that for the data term, we
already work in the setting of a discretized label space. While it is possible to give
a well-defined theoretical justification of the relaxation for the continuous case, the
associated trouble and loss of clarity is not worth the small theoretical gain.

Discrete two-dimensional case. In [14], we suggested to replace the multiplication
function m(vγ11 , . . . , vγdd ) := vγ11 · . . . · v

γd
d with its convex envelope co (m). Analyzing

the epigraph of m, see Figure 4.1(a), shows that

co (m) (vγ11 , . . . , vγdd ) =

{
1 if vγ11 = . . . = vγdd = 1,

0 if any vγkk = 0.
(4.6)

This means that if in the functional, m is replaced by the convex function co (m), we
retain the same binary solutions, as the function values on binary input are the same.
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We lose nothing on first glance, but on second glance, we forfeited differentiability
of the data term, since co (m) is not a smooth function anymore. Furthermore, the
new function we obtain is not the correct convex envelope of the full data term, but
only for the constituting addends. The particular problem this leads to is that for the
constant function v̂ defined by

v̂λk (x) := 1/Nk (4.7)

the energy of the data term and hence the total energy is zero.
In [14], this problem was circumvented by an additional mollification of the convex

envelope. We replaced co (m) again by a mollified function co (m)ε, where ε > 0 is a
small constant. We illustrate this for the case d = 2, where one can easily write down
the functions explicitly. In this case, the convex envelope of multiplication is

co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1,

x1 + x2 − 1 otherwise.
(4.8)

This is a piecewise linear function of the sum of the arguments, i.e symmetric in x1

and x2, see Figure 4.1(b). We smoothen the kink by replacing co (m) with smoothed
version co (m)ε, see [14]. This function does not satisfy the envelope condition (4.6)
exactly, but only fulfills the less tight

co (m)ε (x1, . . . , xd)

{
= 1 if x1 = · · · = xd = 1,

≤ ε if any xj = 0.
(4.9)

Notably, the data term energy of the constant trivial minimizer (4.7) becomes
now ε

∑
γ c

γ , which means that the relaxation of the data term leads to the correct
pointwise solution with energy minγ(cγ) if ε > minγ(cγ)/

∑
γ c

γ . Since the condition
must be satisfied for each point x ∈ Ω, it is best to let ε = ε(x) depend on x ∈ Ω
and set it pointwise to the minimal possible value. However, the choice of mollified
envelope is suboptimal since it is just an approximation to the correct envelope and
distorts the original problem. Thus, we are now going to propose a novel relaxation
of the data term which avoids this problem altogether and is easier to deal with in
higher dimensional label spaces.

New convex envelope relaxation for the general d-dimensional case. In this para-
graph, we describe our new relaxation of the data term. It is the tightest possible
relaxation and does not suffer from the described drawbacks of the relaxation in [14].
The new relaxation of Edata(v) is one of the main additional contributions of this
paper. It is defined as

Rdata(v) := sup
q∈Q


∫

Ω

∑
γ1∈Λ1

qγ11 vγ11 + . . .+
∑
γd∈Λd

qγdd vγdd dx

 . (4.10)

The additional dual variables q = (qk)k=1..d range over the convex set

Q :=
{
q ∈ L2(Ω,RN1+...+Nd) such that for all x ∈ Ω and γ ∈ Γ,

qγ11 (x) + . . .+ qγdd (x) ≤ cγ(x)
}
.

(4.11)

We first establish that the relaxation coincides with the original energy for binary
functions.
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Proposition 4.2. Let v ∈ L2(Ω,∆×) be a binary function representing the
label γ(x) ∈ Γ at each point x ∈ Ω. Then

Rdata(v) =

∫
Ω

cγ(x)(x) dx = Edata(v). (4.12)

In addition, one can prove the following theorem, which shows that the relaxation
of the data term has the correct pointwise minimizers, in contrast to the one proposed
in [14]. This means that no smoothing is necessary and an exact minimization algo-
rithm can be employed to obtain solutions.

Theorem 4.3. Let v̂ ∈ L2(Ω,∆×) be a binary minimizer of Edata. Then v̂ is
also a minimizer of the relaxation,

v̂ ∈ argmin
v∈L2(Ω,co(∆×))

{Rdata(v)} . (4.13)

In particular, Edata(v̂) = Rdata(v̂) =
∫

Ω
ĉ(x)dx with ĉ(x) := infγ∈Γ(cγ(x)) for x ∈ Ω.

In fact, it turns out that the proposed data term relaxation is the best possible
one, being the convex envelope of the data term as stated in the proposition below.
More specifically, this is up to the natural sum equality

∑
λ∈Λk

vλk = 1, which is the
first equation in (3.9) and is also used in the definition (6.1) of the v domain in the
overall optimization problem. To make this statement precise, we first need a general
definition of the data term Edata for all indicator functions v ∈ L2(Ω,RN1+...+Nd),
and not only for binary ones. If v is binary representing the label γ(x) ∈ Γ at each
x ∈ Ω, i.e. vλk (x) = χλ=γk(x), Edata is already defined by (4.5) as

Edata(v) =

∫
Ω

cγ(x)(x) dx =

∫
Ω

∑
γ∈Γ

cγ(x) vγ11 (x) · · · vγdd (x) dx. (4.14)

For all other v we set Edata(v) :=∞.
Proposition 4.4. The convex envelope of Edata(v) is given by Rdata(v)+δS(v)

with S :=
{
v
∣∣ ∑

λ∈Λk
vλk (x) = 1 ∀ 1 ≤ k ≤ d, x ∈ Ω

}
.

5. Multilabel Regularizers. In this section, we will explore suitable choices of
the regularizer, and how they fit within the proposed framework. In particular, we
will see how our model can be specialized to the case of discrete label spaces where
the label distance has an Euclidean representation. This special case was discussed
in [21, 14], and we will see that our framework leads to a tighter relaxation for this
case. We will also discuss additional continuous regularizers which become possible
based on the lifting framework discussed in the last section. These were introduced
in the previous works [9, 26, 27] when the unknowns were the characteristic functions
of the hypographs of uk. We show how we can accommodate them to depend on
the new unknowns. Notably, in each dimension of the label space its own type of
regularization can be chosen, in particular discrete and continuous regularizers can
be mixed freely.

5.1. Discrete label space and its Euclidean representation. We first con-
sider the special case of a discrete label space Λk. Thus, we need to define a regu-
larizer Jk : L2(Ω, co (∆k)) → R for functions with values in the convex hull of the
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(a) Ordered embedding (b) Potts embedding

Γ

x

y

(c) Optic flow embedding

Fig. 5.1: Different embeddings for a label space. In an ordered embedding, all labels
are mapped onto a line, while for the Potts model, every label is mapped onto a dif-
ferent unit vector. For optical flow, each label is already a vector in R2, so a sensible
embedding is given by the identity.

simplex ∆k. We first present the construction used in [21, 14], and then show how we
can embed it into our more general framework.

We assume that the metric dk has an Euclidean representation. This means that
each label λ ∈ ∆k shall be represented by an Mk-dimensional vector aλk ∈ RMk with
a Mk ≥ 1, and the distance dk is defined as the Euclidean distance between the
representations,

dk(λ, µ) =
∣∣aλk − aµk ∣∣2 for all λ, µ ∈ ∆k . (5.1)

The goal in the construction of Jk is that the higher the distance between labels and
the longer the jump set, the higher shall be the penalty imposed by Jk. To make this
idea precise, we introduce the linear mappings Ak : co (∆k)→ RMk which map labels
onto their representations,

Ak(λ) = aλk for all λ ∈ ∆k . (5.2)

When the labels are enumerated and represented by the indicator functions vk in
(3.3), then in matrix notation, the vectors aλk become exactly the columns of Ak,
which shows the existence of this map. It turns out that a regularizer with desirable
properties can be defined by

JAk (vk) := TVv(Akvk) , (5.3)

where

TVv(f) :=

∫
Ω

√√√√ m∑
i=1

|∇fi|22 dx (5.4)

denotes the vectorial total variation for functions f : Ω → Rm taking values in a
real vector space of dimension m. The following theorem has been proven in [21] and
shows why the above definition makes sense.

Theorem 5.1. The regularizer JAk defined in (5.3) has the following properties:
1. JAk is convex and positively homogeneous on L2(Ω, co (∆k)).
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2. JAk (vk) = 0 for any constant labeling vk.
3. If S ⊂ Ω has finite perimeter Per(S), then for all labels λ, µ ∈ Λk,

JAk (λ1S + µ1Sc) = dk(λ, µ) Per(S) , (5.5)

i.e. a change in labels is penalized proportionally to the distance between the
labels and the perimeter of the interface.

For the sake of simplicity, we only give the main examples for distances with Euclidean
representations. More general classes of distances on the labels can also be used,
see [21].

• The case of ordered labels, where the embedding follows the natural ordering
of λ, µ ∈ R, Figure 5.1(a), for example by setting simply aλk = λ. If d =
1, then this case can be solved in a globally optimal way using the lifting
method [27].

• The Potts or uniform distance, where dk(λ, µ) = 1 if and only if λ = µ, and
zero otherwise. This distance function can be achieved by setting aλk = 1√

2
eλ,

where (eλ)λ∈Λk is an orthonormal basis in RNk , see Figure 5.1(b). All changes
between labels are penalized equally.

• Another typical case is that the aλk denote feature vectors or actual geometric
points, for which |·|2 is a natural distance. For example, in the case of optic
flow, each label corresponds to a flow vector in R2, see Figure 5.1(c). The
representations aλ1 ,a

µ
2 are just real numbers, denoting the possible compo-

nents of the flow vectors in x and y-direction, respectively. The Euclidean
distance is a sensible distance on the components to regularize the flow field,
corresponding to the regularizer of the TV-L1 functional in [43]. Optic flow
(and other geometric kinds of labels) would however more naturally be mod-
eled with a continuous label space using one of the continuous regularizers in
the later subsections.

5.2. New relaxation for the discrete label space. We will now show how to
formulate the regularizer JAk defined above in the new more general framework. While
the previous formulation (5.3) already yields a relaxation to non-binary functions v,
we will see that our framework results in a provably tighter one.

Taking a look at Theorem 5.1, we see that the regularizer must penalize the length
of the jump set weighted by the label distance. Thus, our general regularizer in (3.12)
must reduce to

Jk(uk) =

∫
Suk

dk
(
u−k , u

+
k

)
dHn−1. (5.6)

where dk is the same metric as used above in the representation (5.1). We can see
that in order to reduce the general form to the one above, we must enforce a piecewise
constant labeling, since the approximate gradient∇uk must be constantly zero outside
the jump set. Applying Theorem 4.1 we can find a convex representation of Jk in terms
of the variables v, which we formulate in the following proposition in its discretized
form.

Proposition 5.2. A convex representation of (5.6) in terms of the variables v
is given by

Jk(uk) = sup
p∈Ck

{∑
λ∈Λk

∫
Ω

vλk div
(
pλ
)
dx

}
, (5.7)
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with

Ck =
{
p : Ω× Λk → Rn : pλ ∈ C1

c (Ω;Rn) for all λ ∈ Λk and∣∣pλ − pµ∣∣
2
≤ dk(λ, µ) for all λ, µ ∈ Λk

}
.

(5.8)

We can now establish the relationship between our framework and the regular-
izer JAk derived from a representation of the labels in (5.3), and show that ours is
tighter.

Proposition 5.3. Let the regularizer Jk be defined by the relaxation on the
right hand side in equation (5.7). Then for all vk ∈ L2(Ω, co (∆k)),

Jk(vk) ≥ JAk (vk). (5.9)

Equality holds if vk is binary.
The right hand side of inequality (5.9) is exactly the previous regularizer used

in [14, 21]. This implies that for binary functions, the regularizers coincide, which can
already be seen from representation (5.6), see Theorem 5.1. However, if we perform
the relaxation to functions taking values between 0 and 1, inequality (5.9) implies that
the new relaxation is more tight, leading to solutions closer to the global optimum.

We will show in the remainder of the section that in addition to handling the
discrete case better, our method also can handle continuous regularizers which penal-
ize a smooth variation of the labels. This is not possible with the piecewise constant
approach of [21, 14] which uses vectorial total variation. For instance, our formulation
is capable of representing more sophisticated regularizers such as Huber-TV and the
piecewise smooth Mumford-Shah functional, as we will show in the following subsec-
tion. For the regularizers presented in the remainder of this section, relaxations have
previously been proposed for the case of a one-dimensional label space in [9, 26, 27, 35].
However, the framework presented here is more general and allows to combine them
freely in the different label dimensions.

5.3. Linear (TV) and truncated linear. For many applications, it is useful
to penalize the difference between two label values λ and µ only up to a certain
threshold, reasoning that once they are that different, it does not matter anymore
how different exactly they are. This means that if |λ − µ| becomes greater than a
certain value t, jumps from λ to µ are still penalized, but only by the constant t.
Using linear penalization for small values this leads to the robust truncated linear
regularizer [9]

Jk(uk) =

∫
Ω\Suk

|∇uk|2 dx +

∫
Suk

min
(
t,
∣∣u+
k − u

−
k

∣∣) dHn−1(s). (5.10)

The constraint set (4.4) for this case is

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;Rn × R) such that for all λ, µ ∈ Λk,

∣∣∂λpλ∣∣2 ≤ 1,
∣∣pλ − pµ∣∣

2
≤ t, b = 0

}
.

(5.11)

The second constraint needs to be imposed only if |λ− µ| ≥ t, since otherwise it
is already implied by the first constraint. In particular, the standard linear (TV)
penalizer can be implemented by letting t→∞ and only using the first constraint.
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5.4. Cyclic penalizer, TV-S1. Some applications have a cyclic or circular set
of labels, for example regularization in the hue component in HSV or HSL color space.
In this case, the distance between the last and first label is the same as between
any other subsequent pair of labels. This form of regularization was discussed in
the functional lifting setting in the recent work [35], and can be expressed in our
framework by setting

Jk(uk) =

∫
Ω\Suk

|∇uk|2 dx +

∫
Suk

min
(
u+
k − u

−
k , 1− (u+

k − u
−
k )
)
dHn−1(s) (5.12)

for functions uk with range Λk := [0, 1). The corresponding constraint set in its
discretized form is given by

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;Rn × R) such that for all λ ∈ Λk,

∣∣pλ − pλ+1
∣∣
2
≤ 1, b ≡ 0

}
,

(5.13)

where the circularly ordered label space Λk is represented by integers {0, . . . , Nk − 1}
with addition modulo Nk.

5.5. Huber-TV. The TV regularization is known to produce staircasing effects
in the reconstruction, i.e. the solution will be piecewise constant. While this is
natural in case of a discrete label space, for continuous label spaces it impedes smooth
variations of the solution. A remedy for this is replacing the norm |∇uk|2 of the
gradient by hα(∇uk) with the Huber function

hα(z) :=

{
1

2α |z|
2
2 if |z|2 < α,

|z|2 −
α
2 else

(5.14)

for some α > 0, which smooths out the kink at the origin. The Huber-TV regularizer
is then defined by

Jk(uk) =

∫
Ω

hα(∇uk)dx +

∫
Suk

∣∣u+
k − u

−
k

∣∣ dHn−1(s) (5.15)

The limiting case α = 0 leads to the usual TV regularization. Theorem (4.1) gives a
convex representation for Jk, see also [27]. The constraint set in (4.4) is found to be

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;Rn × R) such that for all λ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ∣∣22, ∣∣∂λpλ∣∣2 ≤ 1

}
.

(5.16)

5.6. Piecewise smooth Mumford-Shah model. The celebrated Mumford-
Shah regularizer [2, 26]

Jk(uk) =

∫
Ω\Suk

1

2α
|∇uk|22 dx + νHn−1(Suk) (5.17)
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with parameters α, ν > 0 allows to estimate a denoised image uk which is piecewise
smooth. Parameter ν can be used to easily control the total length of the jump
set Suk . Bigger values of ν lead to a smaller jump set, i.e. the solution will be smooth
on wider subregions of Ω. The constraint set in the convex representation of Theorem
4.1 becomes

Ck =

{
(p, b) ∈ C1

c (Ω× Λk;Rn × R) such that for all λ, µ ∈ Λk,

bλ ≥ α

2

∣∣∂λpλ∣∣22, ∣∣pλ − pµ∣∣
2
≤ ν

}
.

(5.18)

The limiting case α = 0 gives the piecewise constant Mumford-Shah regularizer (also
called Potts regularizer), which can also be obtained from Proposition 5.2 by setting
dk(λ, µ) = ν for all λ 6= µ. Compared to (5.3), this alternative yields a tighter, but
more memory intensive relaxation for the Potts regularizer [9, 25].

6. Implementation.

6.1. Final relaxation to a convex problem. In order to transform the multil-
abel problem into the final form which we are going to solve, we formulate it in terms of
the indicator functions vλk on the discretized label space using the representation (4.3)
for the regularizer and the relaxation (4.10) of the data term. Discretization of the
label space is necessary now to arrive at a well-posed problem. Let us briefly summa-
rize and review the objects we are dealing with in the final problem. The minimizer
we are looking for is a vector v = (vk)k=1..d of functions vk ∈ L2(Ω, co (∆k)), which
means that we are looking for a minimizer in a convex set D,

v ∈ D :=
{
v ∈ L2(Ω,RN1+...+Nd) such that for all x ∈ Ω, v(x) ∈ co (∆×) ,

with ∆× = ∆1 × . . .×∆d

}
.

(6.1)

In the convex hull co (∆×) = co (∆1)× . . .×co (∆d) each co (∆k) is given by the same
expression as in (3.3) but with the set {0, 1} replaced by [0, 1].

Let us now turn to the regularizer, which is defined via the relaxation in The-
orem 4.1. The key ingredients are the convex sets Ck which depend on the kind
of regularization we want to use—possible options were detailed in the last section.
Let C := C1 × . . . × Cd denote the convex set of all regularizer dual variables, and
define the linear operator K : C → L2(Ω,RN1+...+Nd) via

K(p, b) :=
(
−div(pλk)− bλk

)
k=1..d,λ∈Λk

. (6.2)

Then Theorem 4.1 in fact shows that the regularizer can be written in terms of v in
the simple form

J(v) = sup
(p,b)∈C

{〈K(p, b),v〉} , (6.3)

where 〈·, ·〉 denotes the inner product on L2(Ω,RN1+...+Nd). The fully relaxed problem
we are going to solve can now be written as

argmin
v∈D

{J(v) +Rdata(v)} , (6.4)
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using the relaxation Rdata of the data term defined in (4.10). It is straightforward to
prove the existence of solutions.

Proposition 6.1. Problem (6.4) always has a minimizer v̂ ∈ D.
Note that because of the relaxation, the solution might not be binary. If it already

has values in ∆k, we have found the global optimum of the original problem (1.1),
otherwise we have to project the result back to the smaller set of binary valued
functions. For this, let v̂ be a minimizer of the final relaxation (6.4). Thus, the
functions v̂λk might have values inbetween 0 and 1. In order to obtain a feasible
solution to the original problem (1.1), we just project back to the space of allowed
functions. The function û ∈ L2(Ω,Γ) closest to v̂ is given by setting

û(x) = argmax
γ∈Γ

{v̂γ11 (x) · . . . · v̂γdd (x)} , (6.5)

i.e. we choose the label where the combined indicator functions have the highest value.
This is the same as choosing the label by maximizing each component vk separately:

û(x) = γ with γk = argmax
λ∈Λk

{
v̂λk (x)

}
for all 1 ≤ k ≤ d. (6.6)

We cannot guarantee that the solution û is indeed a global optimum of the original
problem (1.1), since there is nothing equivalent to the thresholding theorem [23] known
for this kind of relaxation. However, we still can give a bound how close we are to
the global optimum. Indeed, the energy of the optimal solution of (1.1) must lie
somewhere between the energies of v̂ and û, as previously explained in the beginning
of Section 4.

6.2. Numerical method. Using the representation (6.3) for J , and the defini-
tion (4.10) for the relaxation Rdata, we can transform the final formulation (6.4) of
the multilabel problem into the saddle point problem

min
v∈D

max
(p,b)∈C
q∈Q

{〈K(p, b) + q,v〉} . (6.7)

We minimize the energy (6.7) with a recent general fast primal-dual algorithm in [10],
which is designed for this type of problems. The algorithm is essentially a gradient
descent in the primal variable v and gradient ascent in the dual variables p, b and q,
with a subsequent application of proximation operators, which act as generalized
reprojections. In our case, these are just the usual orthogonal projections onto the
respective constraint sets D, C and Q. The algorithm update equations for our case
can be derived in a straightforward manner from the general “Algorithm 1” presented
in [10]. The remaining question is therefore only how to compute the projections
onto the constraint sets after each algorithm iteration. Since these sets are defined by
numerous non-local constraints, a direct projection is quite costly.

Therefore, we suggest to implement as many constraints as possible using La-
grange multipliers by adding specific additional terms to the energy. This comes at
the cost of having more terms in the final overall energy and that the optimization is
done also over additional variables, the Lagrange multipliers. However, in the end less
of the explicit constraints remain, so that the projections become easier to calculate.
Also, the algorithm complexity remains the same since the update equations are still
straightforward.
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First, the simplex constraint v ∈ D, i.e. vk ∈ co (∆k) with ∆k in (3.3) for
1 ≤ k ≤ d, is enforced by adding the Lagrange multiplier terms

sup
σ

d∑
k=1

∫
Ω

σk(x)

( ∑
λ∈Λk

vλk (x)− 1

)
dx (6.8)

to the energy (6.7), optimizing over σ : Ω → Rd in addition to the other variables.
This leaves just the simple condition v ≥ 0 for the indicator variables v. We note
that it is also possible to implement the simplex constraint explicitly by the iterative
algorithm [22]. However, in the end this increases the computation time per iteration
many times over since the projection then requires O(N1 + . . . + Nd) steps in the
worst case. Also, the explicit projection only slightly reduces the number of iterations
needed to compute a minimizer of (6.7) to a certain precision. Therefore, overall the
Lagrange multiplier approach turns out to be faster and is also easier to implement.

Next, we enforce the constraints (p, b) ∈ C on the dual variables of the regularizer
by introducing new variables

dλk = ∂λp
λ
k or dλµk = pλk − p

µ
k , (6.9)

depending on the kind of constraints in Ck. To enforce these equalities, we add the
corresponding Lagrange multiplier terms

inf
η

∫
Ω

ηλk
(
∂γp

λ
k − dλk

)
dx or inf

η

∫
Ω

ηλ,µk
(
pλk − p

µ
k − d

λµ
k

)
dx (6.10)

for each 1 ≤ k ≤ d and λ ∈ Γk, respectively λ, µ ∈ Γk to the energy. Instead of
computing the projection of (p, b) in each step, we can then perform the projection
of the new variables (dk, bk) on a corresponding constraint set. The advantage is
that the overall projection decouples into independent projections of dλk or dλµk and
bλk onto simple convex sets, which are easy to implement. Alternatively, constraints
of the form

∣∣pλk − pµk ∣∣2 ≤ m as used in (5.8), (5.11) and (5.18) can be enforced using
convex duality, by adding the terms

inf
η

∫
Ω

ηλ,µk
(
pλk − p

µ
k

)
+m

∣∣ηλ,µk ∣∣
2
dx (6.11)

to the energy instead of (6.10). We used this way in our implementation, as it turns
out to be much faster in practice. The optimization (6.7) is now performed over the
primals v, d, η and the duals p, b, q, σ.

Finally, the projection of a q̃ onto Q consists of solving

argmin
q∈Q

{
d∑
k=1

∑
λ∈Λk

(
qλk − q̃λk

)2} (6.12)

pointwise for each x ∈ Ω. The number of constraints in Q, as defined in (4.11), equals
the total number of labels in the product space Γ = Λ1 × · · · × Λd. Unfortunately,
implementing these constraints by adding Lagrange multiplier terms

inf
µ≥0
−
∫

Ω

∑
γ∈Γ

µγ(x)
(
qγ11 (x) + . . .+ qγdd (x)− cγ(x)

)
dx (6.13)
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to the global problem (6.7), i.e. for each x ∈ Ω, is not possible for larger problems
since it requires too many additional variables µ to be memory efficient.

Thus, for larger problems, the projection needs to be computed explicitly after
each outer iteration as a subproblem by solving (6.12), which increases the run time,
see Figure 6.1. To make sure that q lies in Q we add the corresponding Lagrange
multiplier terms to the local energy (6.12). This results in another saddle point
problem to be optimized over now unconstrained q and µ ≥ 0, which we again solve
using the algorithm in [10]. Specifically, since the q-only terms are uniformly convex,
we use the “Algorithm 2” of [10] with the accelerated O( 1

N2
iter

) convergence rate. Since
there is only a small change in the variables q per outer iteration, only a small number
of inner iterations is required. In our experiments, we used 10 inner iterations.

6.3. Memory requirements. When the domain Ω is discretized into P pixels,
the primal and dual variables are represented as matrices. There are essentialy two
types of data. The first type is relatively cheap to store, since memory requirements
scale with the sum N1 + . . . + Nd of the independent dimensions. The second type
is expensive, since it scales with N1 · · ·Nd. The variables and constants appearing in
the energy are classified in the following table, where n = dim Ω is the dimension of
the image domain Ω.

Variable or constant Floating point numbers
σ P · d
v, q P · (N1 + . . .+Nd)
p nP · (N1 + . . .+Nd)
µ, c P · (N1 · · ·Nd)

The relaxation of the regularizer incurs additional costs per label space dimension,
depending on the type of regularizer. This is summarized in the following table.

Regularizer Additional variables Additional floating point numbers
Potts using (5.3) – –
TV or cyclic TV ηλk , d

λ
k 2nP ·Nk

Huber TV ηλk , d
λ
k , b

λ
k (2n+ 1)P ·Nk

Truncated linear ηλ,µk nP ·Nk(Nk − 1)/2

Potts using (5.18), α = 0 ηλ,µk nP ·Nk(Nk − 1)/2

Piecewise smooth ηλ,µk , ηλk , d
λ
k , b

λ
k nP ·Nk(Nk − 1)/2 + (2n+ 1)P ·Nk

Obviously, truncated linear and piecewise smooth regularization can require a lot
of additional memory if the dimensions of the factors are large. They seem therefore
practically feasible only when the label space consists of many small factors. However,
the projections onto the regularizer constraints can also be solved locally in each
iteration for each dimension separately. This removes the need to store these variables
globally at the cost of additional computation time.

The most expensive variable is µ, appearing in the global problem (6.13) or local
problem (6.12), respectively. If we have enough memory to store it, it is more efficient
to solve the global problem. However, it is also possible here to trade off computation
time for a reduction in memory requirements by solving the local problem (6.12) in
each iteration. For this, note that (6.12) can be separated into independent subprob-
lems for each x ∈ Ω and can be solved in chunks of points x in parallel. The size
of the chunks can be chosen to fit into the available memory, ideally we choose it as
large as possible for maximum parallelization.
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# of Pixels # Labels Memory [Mb] Run time [s]
P = Px × Py N1 ×N2 Previous Proposed (g/p) Previous Proposed (g/p)

320× 240 8× 8 112 112 / 102 31 26 / 140

320× 240 16× 16 450 337 / 168 125 80 / 488

320× 240 32× 32 1800 1124 / 330 503 215 / 1953

320× 240 50× 50 4394 2548 / 504 2110 950 / 5188

320× 240 64× 64 7200 4050 / 657 - 1100 / 8090

640× 480 8× 8 448 521 / 413 127 102 / 560

640× 480 16× 16 1800 1351 / 676 539 295 / 1945

640× 480 32× 32 7200 4502 / 1327 - 1290 / 7795

640× 480 50× 50 17578 10197 / 2017 - - / 32887

640× 480 64× 64 28800 16202 / 2627 - - / 48583

Fig. 6.1: The table shows the total amount of memory required for the implementations
of the previous and proposed methods depending on the size of the problem (using TV
regularization). For the proposed method, the projection (6.12) of the data term dual
variables can be implemented either globally (g), or slower but more memory efficient
as a sub-problem of the proximation operator (p), here using N1/5 chunks. Also
shown is the total run time for 5000 iterations, which usually suffices for convergence.
Numbers in red indicate a memory requirement larger than what fits on the largest
currently available CUDA capable devices (6 GB). Note that the proposed framework
can still handle all problem sizes above.

Finally, note that the data term c is an expensive constant to store. If there is
not enough GPU memory for it, it is possible to e.g. hold it in main memory and
transfer separate layers of it during computation of the primal prox operator to the
GPU. This increases computation time by a factor of 5-10, so it is usually much more
efficient to compute the data term on the fly on the GPU if it is of a simple form.

In summary, with the above reduction techniques it is possible to get rid of all
memory expensive variables and constants at the cost of more computation time. To
give an idea about the final requirements, they are compared for the case of a 2D
label space and TV penalization in Figure 6.1. Note that the memory requirements
for the original method without using the reduction are (n+ 2)P · (N1 · · ·Nd) to store
all primal and dual variables even for the most simple regularizer, while all regularizer
costs scale with N = N1 · · ·Nd according to the table on the previous page. Statistics
for a 3D label space with different regularizers can be found in Figure 7.3. Clearly,
large scale problems can only be solved using the proposed reduction technique.

7. Experiments. We demonstrate the correctness and usability of our method
on several examples. Different regularizers are used in the examples. In the cases
where the regularizer can be simulated with the previous relaxation [14], we com-
pared the resulting optimality bounds. On average, our bounds were approximately
three times better (3− 5% with the proposed framework compared to 10− 15% with
the previous relaxation). All experiments were performed with a parallel CUDA im-
plementation running on a NVIDIA GTX 680 GPU for section 7.1, respectively on a
TESLA C2070 for all other experiments. The time steps for the algorithm are chosen
automatically using the recent preconditioned version [24] of [10]. The number of
iterations in each experiment is chosen appropriately so that visually the solution re-
mains stable and does not change anymore (usually 1000-5000 depending on problem
size).
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Input RGB 6× 6× 6 HSL 8× 5× 5 L∗a∗b∗ 8× 5× 5

Fig. 7.1: Segmentation using different three-dimensional spaces of equidistant color
labels. The perceptually uniform color space CIELAB gives the visually most com-
pelling results with the most natural looking color reproduction. Linear penalizer in
all channels, except for the H channel, which requires cyclic regularization. Less than
two minutes run-time and less than 3% from global optimum for all results.

7.1. Segmentation. Multi-dimensional label spaces occur naturally in the prob-
lem of image segmentation, where a multi-channel input image f is segmented accord-
ing to a local cost equal to the squared distance to the labels,

cγ(x) =

d∑
k=1

(fk(x)− γk)2. (7.1)

Typical multi-channel images are of course color images with various color spaces
which are usually three-dimensional, see Figure 7.1 for some segmentation examples.

We choose this archetypical problem for an extensive comparison of our method
to different labeling approaches. We first compare our proposed scheme for vectorial
multi-label problems (VML) to the similar continuous method for a scalar label space
(SML) [21]. For comparisons with discrete approaches, we used the MRF software
accompanying the comparative study in [38]2. We compare to the α-expansion (α-
EXP) and α-β-swap (SWAP) algorithms based on the maxflow library [6, 5, 20] using
the newest updated implementation for [12]3. We also compare to two message-passing
methods, max-product belief propagation (BP) [39] and sequential tree-reweighted
message passing (TRW-S) [40, 18].

Table 7.3 shows detailed statistics of memory requirements, run time and error
bounds. Throughout all experiments, we used a fixed number of iterations to keep
results comparable, tuned to be sufficient for convergence on intermediate-sized label
spaces. For VML and SML, we used 1000 iterations, 50 iterations for TRW-S and
BP, and 5 iterations for α-EXP and SWAP.

Memory requirements and largest problem size. Our method can deal with much
larger problems than any of the other algorithms. On a high-end workstation with
64 GiB of main memory, the generic implementation of TRW-S already stops working
at 123 labels for the Potts model. However, the implementation is extremely gen-
eral and requirements could probably be reduced by more specialized code. About
the largest problem which can be solved with α-EXP has 153 labels, after which the

2MRF 2.1, http://vision.middlebury.edu/MRF/code/
3gco-v3 library, http://vision.csd.uwo.ca/code/
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VML EXP SWAP BP TRW-S

VML TRW-S

Fig. 7.2: Closeups of 4 × 4 × 4 RGB label segmentations (top) using different algo-
rithms reveal a typical problem of discrete approaches: they exhibit a preference for
horizontal and vertical region boundaries since they penalize an L1-distance instead
of the correct Euclidean length [17, 42]. The error can be reduced by increasing the
neighbourhood connectivity, but only at extremely high costs of memory and computa-
tion time. Overall, these metrication errors lead to blocky and visually less pleasing
segmentation results (bottom).

reference implementation segfaults - this hints at a hidden limitation of the imple-
mentation, memory-wise it should be able to cope with about 173.

In contrast, the GPU has only 4 GiB of memory, and our method can still handle
problems up to 313 (almost 30000 labels), albeit with high run-time requirements. The
table below shows limit cases at an image resolution of 640 × 950—note that GPU
memory shown is the theoretical minimum amount required, but we leverage all the
remaining GPU memory to minimize the number of chunks for the local projections.

VML α-EXP
label space GPU mem [MiB] runtime [min] CPU mem [MiB] runtime [min]
15× 15× 15 550 79 18120 31
23× 23× 23 836 485 > 64 GiB (est. 480)
31× 31× 31 1123 1179 > 64 GiB (est. 7680)

Performance. For smaller problems when we can use the global implementation of the
constraints, our method outperforms the others in terms of run time, while attaining
comparable optimality bounds. When the problems become larger, we need to switch
to local projections per iteration, which increases run time five-fold and makes the
other methods faster across a certain range of problem sizes. However, note that the
run-time of our algorithm scales better, so that at problem size 233 the algorithm is
about to break even with the estimated computation times of α-EXP again, the latter
approximately doubling its computation time every time the dimension of each factor
is increased by 2, see Figure 7.3.
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Potts regularizer (using (5.3) for the continuous methods)
4 × 4 × 4 6 × 6 × 6

Algorithm mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 367 15.25 0.46 998 42.83 0.72
SML 607 16.81 1.43 > 4 GiB – –
α-EXP 677 25.13 0.204 1369 88.90 0.544

SWAP 677 29.84 0.285 1369 137.57 0.815

BP 1368 36.63 6.945 4256 119.43 11.565
TRW-S 1368 40.06 0.16 4256 129.52 0.80

8 × 8 × 8 10 × 10 × 10
mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 2173 94.59 1.03 21856 209.346 0.80
α-EXP 2746 173.64 0.904 5020 343.67 1.014

SWAP 2746 461.48 1.345 5020 1472.45 1.625

BP 8667 254.08 16.295 16610 496.12 17.735
TRW-S 8667 287.30 1.95 16610 539.51 2.70

Linear (TV) regularizer
4 × 4 × 4 6 × 6 × 6

Algorithm mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 401 18.67 1.50 1055 48.09 1.67
α-EXP 677 18.04 0.064 1369 82.70 –4

SWAP 677 23.67 0.165 1369 139.90 –5

BP 510008 740.498 5.875 > 64 GiB – –
TRW-S 510008 746.008 0.04 > 64 GiB – –

8 × 8 × 8 10 × 10 × 10
mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 2253 101.75 2.27 22876 217.666 3.10
α-EXP 2746 201.05 –4 5020 408.93 –4

SWAP 2746 504.47 –5 5020 1576.32 –5

Truncated linear regularizer
4 × 4 × 4 6 × 6 × 6

Algorithm mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 435 20.77 0.95 1168 55.01 1.83
α-EXP 677 18.13 0.094 1369 82.78 –4

SWAP 677 23.68 0.185 1369 139.30 –5

BP 510008 750.368 4.495 > 64 GiB – –
TRW-S 510008 741.808 0.04 > 64 GiB – –

8 × 8 × 8 10 × 10 × 10
mem [MiB]1 time [s]2 bound [%]3 mem [MiB]1 time [s]2 bound [%]3

VML 15236 132.336 3.24 8056,7 13046,7 3.50
α-EXP 2746 200.11 –4 5020 408.73 –4

SWAP 2746 507 –5 5020 1578.29 –5

1: GPU memory for VML and SML, otherwise CPU memory (measured with valgrind memory profiler).
2: Intel Core i7-3820 CPU @ 3.8 GHz with 64 GB of RAM, nVidia GTX 680 GPU with 4 GB of RAM.
3: Optimality bound in percent of the lower bound to solution provided by the algorithm.
4: No lower bound provided by algorithm, a theoretical (far from tight) a-priori bound is known to

be ≥100% [6, 12]. Bound was computed with lower bound returned by TRW-S, if any is given.
5: No lower bound provided by algorithm, no theoretical bound known as far as we know. See also 4.
6: Data term computed on the fly (saves GPU storage, minimal runtime increase).
7: Data term relaxation reprojection computed in each iteration, reduces GPU memory usage by 2

GiB, but increases computation time by a factor of 5.
8: Requires general regularizer implementation, which is inefficient according to the author of the

code. Unfortunately, no specialized implementation is available for 3D regularizers.

Fig. 7.3: Performance comparison of several continuous and discrete multilabel algo-
rithms on the segmentation problem using a 3D label space and different regularizers.
Results are averaged over 10 different images with average resolution of 0.7 Megapix-
els. See section 7.1 for a discussion.
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Input, spatially varying noise Denoised image and reconstructed standard deviation

Fig. 7.4: The algorithm allows to jointly recover the unknown standard deviation σ of
the noise as well as the intensity of a denoised image by solving a single optimization
problem. Ground truth: Within rectangle Gaussian noise with standard deviation σ =
0.25, outside σ = 0.02; image intensity within ellipsoid u = 0.7, outside u = 0.3.
Image resolution is 256× 256 using 32× 32 labels. Computation time is 4.4 minutes.

Input, textured object Simultaneous piecewise smooth approximation
of intensity (left) and standard deviation (right)

Fig. 7.5: A piecewise smooth image approximation of both intensity and noise standard
deviation using (7.2) and the Mumford-Shah regularizer for both u and σ. This model
allows to separate textured objects in a natural way by jointly estimating the mean
and standard deviation of image intensities. The amount of smoothing is stronger in
region of larger standard deviation. Image resolution is 320×214 using 32×32 labels,
leading to a run time of 10.3 minutes.

From a theoretical point of view, the move-making schemes α-EXP and SWAP
solve the problem by iterating binary decisions instead of dealing with the whole
problem at once, which explains their efficiency. However, as a result they cannot give
reasonable optimality bounds, see remarks in Figure 7.3. As an additional drawback,
all discrete methods suffer from metrication errors [17, 42], as detailed in Figure 7.2.

7.2. Adaptive denoising. As a novel application of a multi-dimensional label
space, we present adaptive denoising, where we jointly estimate a noise level and a
denoised image by solving a single minimization problem. Note that here we require
the continuous label space to represent the image intensity range.

The Mumford-Shah energy can be interpreted as a denoising model which yields
the maximum a posteriori estimate for the original image under the assumption that
the input image f was distorted with Gaussian noise of standard deviation σ. An
interesting generalization of this model is when the standard deviation of the noise is
not constant but rather varies over the image. Viewing it as an additional unknown,



26 B. GOLDLUECKE, E. STREKALOVSKIY AND D. CREMERS

Fig. 7.6: The proposed method can be employed to simultaneously optimize for a dis-
placement and an occlusion map. This problem is also too large to be solved by al-
ternative relaxation methods on current GPUs. From left to right: Left and right
input image IL and IR, and computed disparity and occlusion map; red areas denote
occluded pixels.

the label space becomes two-dimensional, with one dimension representing the un-
known intensity u of the original image, and the second dimension representing the
unknown standard deviation σ of the noise. The data term of the energy can then be
written as [7] ∫

Ω

(u− f)2

2σ2
+

1

2
log(2πσ2) dx. (7.2)

Results of the optimization can be observed in Figure 7.4 and Figure 7.5. For the
regularizer, we used piecewise constant Mumford-Shah for both σ and u in Figure 7.4,
and piecewise smooth Mumford-Shah in Figure 7.5. In the real world example Fig-
ure 7.5, the solution can be interpreted as a uniformly smooth approximation, where
all regions attain a similar smoothness level regardless of the amount of texture in the
input.

7.3. Depth and Occlusion map. In this test, we simultaneously compute a
depth map and an occlusion map for a stereo pair of two color input images IL, IR :
Ω → R3. The occlusion map shall be a binary map denoting whether a pixel in the
left image has a matching pixel in the right image. Thus, the space of labels is two-
dimensional with Λ1 consisting of the disparity values and a binary Λ2 = {0, 1} for
the occlusion map. We use the TV smoothness penalty on the disparity values. The
Potts regularizer is imposed for the occlusion map. The distance on the label space
thus becomes

d(γ, χ) = s1 |γ1 − χ1|+ s2 |γ2 − χ2| , (7.3)

with suitable weights s1, s2 > 0. We penalize an occluded pixel with a constant
cost cocc > 0, which corresponds to a threshold for the similarity measure above
which we believe that a pixel is not matched correctly anymore. The cost associated
with a label γ at (x, y) ∈ Ω is then defined as

cγ(x, y) =

{
cocc if γ2 = 1,

|IL(x, y)− IR(x− γ1, y)|2 otherwise.
(7.4)

The result for the “Moebius” test pair from the Middlebury benchmark is shown
in Figure 7.6. The input image resolution was scaled to 640 × 512, requiring 128
disparity labels, which resulted in a total memory consumption which was slightly
too big for previous methods, but still in reach of the proposed algorithm. Total
computation time required was 1170 seconds.
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Dataset VML VML-ECCV [14] TV-L1 [43]
size ∆ aep aan bound [%] aep aan bound [%] aep aan
Venus

420× 380 10 0.39 4.25 0.21 0.81 5.44 5.88 0.44 7.74
Dimetrodon

584× 388 5 0.22 4.58 6.12 0.62 6.38 7.87 0.22 3.94
Hydrangea

584× 388 12 0.42 4.06 2.64 0.81 5.60 9.26 0.22 2.64
RubberWhale
584× 388 5 0.18 5.73 2.36 0.29 6.12 8.60 0.20 6.29

Grove2
640× 480 5 0.34 4.54 5.01 0.55 6.16 13.25 0.22 3.12

Grove3
640× 480 15 1.06 12.02 9.22 2.01 14.49 10.50 0.76 7.41

Urban2
640× 480 22 0.81 9.31 1.07 0.97 8.15 6.32 0.47 3.51

Urban3
640× 480 18 1.38 8.95 1.05 1.65 10.82 4.99 0.90 8.02

Fig. 7.7: Accuracy comparison on Middlebury data sets. Maximum displacement (∆)
and average endpoint error (aep) are measured in pixels, average angular error (aan)
in degrees. Not surprisingly, accuracy for the vectorial multi-label (VML) method is
strongly correlated with the amount of labels per pixel, and thus decreases with larger
maximum displacement. On data sets with small maximum displacement, the accuracy
using 35× 35 labels is comparable to TV-L1 optical flow, while other data sets would
require either coarse-to-fine schemes or a greater number of labels for the method to
remain competitive. The proposed new relaxation outperformes the previous one [14]
in all respects.

7.4. Optic Flow. In this experiment, we compute optic flow between two color
input images I0, I1 : Ω→ R3 taken at two different time instants. The space of labels
is again two-dimensional, with Λ1 = Λ2 denoting the possible components of flow
vectors in x and y-direction, respectively. We regularize both directions with either
TV or a truncated linear penalty on the component distance, i.e.

d(γ, χ) = smin(t, |γ1 − χ1|) + smin(t, |γ2 − χ2|) , (7.5)

with a suitable manually chosen weight s > 0 and threshold t > 0. Note that we can
provide a tight relaxation of the exact penalizer, which was only coarsely approximated
in the previous approaches [14, 21]. The cost function just compares pointwise pixel
colors in the images, i.e.

cγ(x, y) = |I0(x, y)− I1(x+ γ1, y + γ2)|2 . (7.6)

Results can be observed in Figures 1.1, 7.8, 7.9 and 8.1. See Figure 7.9 for the color
code of the flow vectors. In all examples, the number of labels is so high that this
problem is currently impossible to solve with previous convex relaxation techniques
by a large margin, see Figure 6.1.

Compared to the relaxation proposed in the original conference publication [14],
total computation time was reduced dramatically, see Figure 7.8. The large compu-
tation time for the TV relaxation of [14] is caused by an overly restrictive constraint
on the time steps due to the structure of the embedding matrix Ak in (5.3). Using
N1 = N2 := N labels in each direction of the 2-dimensional optic flow label space, the
time steps can be seen to be proportional to N−3/2. In contrast, the proposed TV
relaxation in Section 5.3 allows larger time steps proportional to N−1/2 and thus leads
to a substantially lower number of iterations. We suggest to use the preconditioning
variant of the algorithm [10] where the time steps are chosen adaptively.
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First image I0 Second image I1

Previous relaxation Proposed relaxation
(25 minutes run time) (2 minutes run time)

Fig. 7.8: Optical flow fields with 32× 32 labels computed on an image with resolution
320 × 240 using TV regularization. With the new relaxation of the regularizers, we
achieve optimality bounds which are on average three times lower than with previous
relaxations from [14, 21], using the proposed data term relaxation (4.10) for both
cases. The result in the lower left is computed with the TV relaxation from [21].
Since the scaling of the regularity term is not directly comparable, we chose optimal
parameters for both algorithms manually. The large time difference results from a
narrow constraint on the time step, see Section 7.4.

Due to the global optimization of a convex energy, we can successfully capture
large displacements without having to implement a coarse-to-fine scheme, see Fig-
ure 7.9. Figure 7.7 shows detailed numeric results of our method on the data sets
of the Middlebury benchmark with public ground truth available. We compare our
current method with a linear regularizer using 35×35 labels to our old relaxation [14]
and TV-L1 optic flow [43], which utilizes a very similar energy which is optimized with
a coarse-to-fine scheme and quadratic relaxation of the linearized functional. Results
show that we get reasonable optimality bounds for the energy and are in most cases
within 5% of the global optimum, while accuracy of the actual optical flow results de-
pends on how fine the discretization is compared to the maximum displacement. The
new method is obviously superior to the old relaxation in all respects—the previous
one is only provided for reference, and we strongly recommend to use the new one
proposed in this work. For a method which is competitive on the Middlebury bench-
mark, we would need to further increase the amount of labels by e.g. implementing a
coarse-to-fine scheme, and fine-tune our data terms. This is however out of the scope
of this paper, since our focus is to provide an efficient optimization framework.
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First image I0 Second image I1 Flow field and color code

Fig. 7.9: When employed for optic flow, the proposed method can successfully capture
large displacements without the need for coarse-to-fine approaches, since a global op-
timization is performed over all labels. In contrast to existing methods, our solution
is within a known bound of the global optimum.

First image I0 Second image I1 Flow field

Fig. 8.1: Example with a larger image resolution of 640×480 pixels, which requires 32×
32 labels. Regularizer is the total variation in each component. Computation time is
21.6 minutes.

8. Conclusion. We have introduced a continuous convex relaxation for multi-
label problems where the label space has a product structure and the regularizer is
separable. Such labeling problems are plentiful in computer vision. The proposed re-
duction method improves on previous methods in that it requires orders of magnitude
less memory and computation time, while retaining the advantages: a very flexible
choice of regularizer on the label space, a globally optimal solution of the relaxed
problem and an efficient parallel GPU implementation with guaranteed convergence.

The proposed framework combines the advantages of the efficient multi-dimen-
sional data term relaxation [36] with the tight relaxation of the regularizers in [9]. It
allows for a very general class of continuous regularizers on multi-dimensional label
spaces and can thus solve a significant range of problems efficiently. For example,
we can explicitly encourage the solution to be smooth in certain regions, and can
represent Huber-TV and truncated linear regularization by an exact and tight relax-
ation. The regularizers can be arbitrarily mixed, in the sense that each dimension of
the label space can have its own type of regularity. Because of the reduced memory
requirements, we can successfully handle specific problems with very large number of
labels, which could not be done with previous labeling methods. A systematic experi-
mental comparison with respective discrete algorithms (α-EXP, SWAP, BP, TRW-S)
shows a good performance and often improved results.
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Appendix: proofs of propositions and theorems in the main paper.

8.1. Proof of proposition 3.1. In order to proof the proposition, we show that
the mapping induces a pointwise bijection from ∆× onto ∆. We first show it is onto:
for u(x) in ∆, there exists exactly one γ ∈ Γ with uγ(x) = 1. Set vλk (x) = 1 if λ = γk,
and vλk (x) = 0 otherwise. Then equation (3.5) is satisfied as desired, see Figure 3.1.
To see that the map is one-to-one, we just count the elements in ∆×. Since ∆k

contains Nk elements, the number of elements in ∆× is N1 · . . . · Nd = N , the same
as in ∆.

8.2. Proof of theorem 4.1. Since derivatives of indicator functions do not exist
in ordinary sense, the integral in (4.1) is meant to be a convenient notation for∫

Ω×Λk

(φ1, φ2) · νΓuk
dHn(x, λ) (8.1)

where

Γuk :=
{

(x, u(x))
∣∣x ∈ Ω \ Suk

}
∪
{

(x, s)
∣∣x ∈ Suk , s ∈ [u−k , u

+
k ]
}

(8.2)

is the extended graph of u, and νΓuk
is the normal on Γuk pointing “downwards”.

Intuitively, ∇1hyp(uk) in (4.1) is nonzero only on Γuk , and equals νΓuk
up to a delta

function factor. For a fixed φ denote the integral (8.1) by Jφ. It is equal to [2, lemma
2.8]

Jφ =

∫
Ω\Suk

(
φ1(x, uk) · ∇uk − φ2(x, uk)

)
dx

+

∫
Suk

(∫ u+
k

u−
k

φ1(x, s)ds
)
· νuk dHn−1(x).

(8.3)

Define p : Ω× Λk → Rn and b : Ω× Λk → R by

p(x, λ) :=

∫ λ

λ0

φ1(x, s) ds, b(x, λ) := φ2(x, λ) (8.4)

for some λ0 ∈ Λk. Since φ ∈ C1
c (Ω × Λk;Rn × R), also (p, b) ∈ C1

c (Ω × Λk;Rn × R).
With these new variables we have

Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx

+

∫
Suk

(
p(x, u+

k )− p(x, u−k )
)
· νuk dHn−1(x).

(8.5)

By the divergence theorem,∫
Ω\Suk

div
(
p(x, uk)

)
dx =

∫
Suk

(
p(x, u+

k ) · (−νuk) + p(x, u−k ) · νuk
)
dHn−1(x)

+

∫
∂Ω

p(x, uk) · ν∂Ω dHn−1(x).

(8.6)

In the integrand of the first integral on the right hand side there are two addends for
each point of Suk , because the integration on the left hand side is performed on both
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sides of Suk . The outer normal for the u−k side is νuk by definition, and for the u+
k

side it is just the opposite. The last integral on the right hand side is zero because φ
and therefore also p has compact support in Ω. Using (8.6) in (8.5) we obtain

Jφ =

∫
Ω\Suk

(
∂λp(x, uk) · ∇uk − b(x, uk)

)
dx−

∫
Ω\Suk

div
(
p(x, uk)

)
dx (8.7)

By the chain rule,

div
(
p(x, uk)

)
= (divp)(x, uk) + ∂λp(x, uk) · ∇uk. (8.8)

Thus, the expression (8.7) simplifies to

Jφ =

∫
Ω\Suk

(
− (divp)(x, uk)− b(x, uk)

)
dx =

∫
Ω×Λk

(−divp− b) vk d(x, λ). (8.9)

The last equality is simply the definition of how the distribution vk(x, λ) = δ(uk−λ),
defined for uk ∈ SBV(Ω), acts on functions. Now, the claim of the proposition follows
directly from (4.1) and (8.9).

8.3. Proof of proposition 4.2. Since at each point x ∈ Ω, γ(x) is the label
indicated by v(x), by the defining property (3.8) we have vλk (x) = 1 for λ = γk(x)
and vλk (x) = 0 for all λ ∈ Λk with λ 6= γk(x). Thus, for all q ∈ Q,

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) =

d∑
k=1

q
γk(x)
k ≤ cγ(x)(x). (8.10)

This shows that at least Rdata(v) ≤
∫

Ω
cγ(x)(x) dx = Edata(v). To prove equality, first

observe that we can safely interchange the supremum over q ∈ Q with the integration
over Ω since the constraints in Q on q are pointwise in x. This means that we only
need to show the pointwise equality, i.e. that for each fixed x ∈ Ω the integrand
in (4.10) yields cγ(x) when taking the supremum over q ∈ Q. We use Lagrange
multipliers µ to write the constraints in (4.11) as additional energy terms:

Rdata(v) = sup
q∈Q

d∑
k=1

∑
λ∈Λk

qλkv
λ
k

= sup
q

inf
µγ̂≥0

d∑
k=1

∑
λ∈Λk

qλkv
λ
k −

∑
γ̂∈Γ

µγ̂
(
qγ̂11 + . . .+ qγ̂dd − c

γ̂
)

= inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ + sup
q

d∑
k=1

∑
λ∈Λk

qλk

(
vλk −

∑
γ̂∈Γ: γ̂k=λ

µγ̂
)
,

(8.11)

interchanging the ordering of supq and infµ. Evaluating the supremum over q leads
to constraints on the variables µγ̂ and we obtain

Rdata(v) = inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ (8.12)

with µγ̂ such that additionally∑
γ̂∈Γ: γ̂k=λ

µγ̂ = vλk for all 1 ≤ k ≤ d and λ ∈ Λk. (8.13)
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First, for any fixed 1 ≤ k ≤ d and any λ ∈ Λk with λ 6= γk, by assumption we have
vλk = 0. Since µγ̂ ≥ 0, (8.13) then gives µγ̂ = 0 for all γ̂ ∈ Γ with γ̂k 6= γk. Combining
this for all 1 ≤ k ≤ d we get µγ̂ = 0 for all γ̂ 6= γ. Next, plug λ = γk for some k into
(8.13). Since any other addend µγ̂ is zero, the sum is just µγ , while the right hand
side is vγkk = 1.

Therefore, the constraints (8.13) ensure that µγ̂ = 0 for all γ̂ 6= γ and µγ = 1, so
that (8.12) gives Rdata(v) = cγ .

8.4. Proof of theorem 4.3. Let v ∈ L2(Ω, co (∆×)) be arbitrary, and set
qλk (x) := ĉ(x)/d. Then

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) =

d∑
k=1

ĉ(x)

d

∑
λ∈Λk

vλk (x) =

d∑
k=1

ĉ(x)

d
= ĉ(x), (8.14)

and
∑
k q

γk
k (x) = ĉ(x) ≤ cγ(x) for all γ ∈ Γ and x ∈ Ω, so q ∈ Q. This shows

that Rdata(v) ≥
∫

Ω
ĉ(x)dx, which is the minimum of Edata for binary functions.

8.5. Proof of proposition 4.4. By convex duality [30], the convex envelope of
Edata is given by the Legendre-Fenchel bi-conjugate E∗∗data. The first convex conjugate
E∗data of Edata is given as

E∗data(q) = sup
v

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) dx − Edata(v). (8.15)

Since Edata is finite only for binary v, i.e. if vλk (x) = χλ=γk(x) for some γ : Ω → Γ,
this reduces to

F (q) := E∗data(q) = sup
γ:Ω→Γ

∫
Ω

( d∑
k=1

q
γk(x)
k (x)− cγ(x)(x)

)
dx. (8.16)

The bi-conjugate is then

E∗∗data(v) = sup
q

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x)dx − F (q). (8.17)

For q ∈ L2(Ω,RN1+...+Nd) and a ∈ L2(Ω,R) define qa ∈ L2(Ω,RN1+...+Nd) by
(qa)λk(x) := qλk (x) + ak(x). Then obviously

F (qa) = F (q) +

∫
Ω

d∑
k=1

ak(x) dx (8.18)

Inserting qa for q in (8.17) we obtain

E∗∗data(v) = sup
q, a

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x)dx − F (q) +

∫
Ω

d∑
k=1

ak(x)

( ∑
λ∈Λk

vλk (x)− 1

)
dx

(8.19)
Holding a q fixed and taking the supremum over a we see that in order for E∗∗data(v)
to be finite, we necessarily must have∑

λ∈Λk

vλk (x) = 1 for all 1 ≤ k ≤ d, for a.e. x ∈ Ω. (8.20)
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We assume these equalities from now on, i.e. that v ∈ S with S as defined in the
proposition.

By the same way as we arrived at (8.19) we see that given (8.20) the expression
in (8.17), over which the supremum is taken, does not change if we replace q by qa
for some a. Also, (8.18) shows that for each q and any fixed α ∈ R we can find an a
with F (qa) = α. This combined, we obtain

E∗∗data(v) = sup
q:F (q)=α

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) dx − α. (8.21)

Bringing α on the left hand side and taking the supremum over all α ≤ 0 we get

E∗∗data(v) = sup
q:F (q)≤0

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) dx. (8.22)

This is almost the expression (4.10) for Rdata(v). We only need to replace the integral
constraints on q in F (q) ≤ 0, with F in (8.16), with pointwise constraints. For this,
note that in (8.16) the supremum over γ may be safely put inside the integral over Ω
since the label space Γ is finite (after the assumed discretization). Therefore, F (q) ≤ 0
is equivalent to ∫

Ω

sup
γ∈Γ

( d∑
k=1

qγkk (x)− cγ(x)

)
dx ≤ 0. (8.23)

Denoting the integrand by a(x), this becomes equivalent to

∃ a : Ω→ R :

∫
Ω

a(x) dx ≤ 0,

d∑
k=1

qγkk (x)− cγ(x) ≤ a(x) ∀γ ∈ Γ, x ∈ Ω. (8.24)

Given a q satisfying these constraints for some a, define q̂ by q̂λk (x) := qλk (x)−a(x)/d.
Then q̂ satisfies (8.24) with a ≡ 0, i.e. q̂ ∈ Q with the constraint set Q in (4.11).
Furthermore,∫

Ω

d∑
k=1

∑
λ∈Λk

q̂λk (x)vλk (x) dx =

∫
Ω

d∑
k=1

∑
λ∈Λk

(
qλk (x)− a(x)

d

)
vλk (x)dx

=

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) dx −
∫

Ω

a(x) dx

≥
∫

Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x) dx

(8.25)

using first (8.20) and then
∫

Ω
a(x) ≤ 0. Thus, among all q with F (q) ≤ 0 or,

equivalenty, with (8.24) the expression in the supremum (8.22) will be largest if we
choose a ≡ 0 in (8.24). Hence,

E∗∗data(v) = sup
q∈Q

∫
Ω

d∑
k=1

∑
λ∈Λk

qλk (x)vλk (x)dx = Rdata(v) (8.26)

for v ∈ S.
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8.6. Proof of proposition 5.2. We can enforce a piecewise constant labeling
uk, if we enforce the approximate gradient ∇uk to be constant zero. In (3.12), this
can be achieved by setting hk(x, uk(x),∇uk(x)) = c |∇uk| with a constant c > 0,
and then letting c → ∞ to enforce ∇uk ≡ 0 on Ω \ Suk . Inserting the convex
conjugate h∗k(x, λ, q) = δ{|q|≤c}, we find that the conditions in (4.4) now reduce to

bλ ≥ 0,
∣∣∂λpλ∣∣2 ≤ c, ∣∣pλ − pµ∣∣2 ≤ dk(λ, µ). (8.27)

The supremum over bλ ≥ 0 is easily eliminated from (4.3) since vλk ≥ 0, i.e. −bλvλk ≤ 0
with 0 being the maximum possible value. The second constraint in (8.27) follows
from the third if we choose c ≥ maxλ>µ

dk(λ,µ)
|λ−µ| . Thus we arrive at (5.7) with the set

Ck as claimed in the proposition.

8.7. Proof of proposition 5.3. The claim follows from our general formulation
(5.7) with a special choice of the dual variables p together with additional relaxations
of the equations in Ck. The special form for pλ we choose is

pλ =

Mk∑
i=1

aλk,iqi, (8.28)

with q : Ω × {1, . . . ,Mk} → Rn such that |q|2 ≤ 1 and the vectors aλk ∈ RMk which
define the Euclidean representation of dk, see equation (5.1). This is only a subset of
possible p ∈ Ck in Proposition 5.3. The constraint on p in (5.7) is satisfied, since by
the Cauchy-Schwarz inequality and the definition of the representation,

∣∣pλ − pµ∣∣
2

=

∣∣∣∣∣
Mk∑
i=1

(aλk,i − a
µ
k,i)qi

∣∣∣∣∣
2

≤

√√√√Mk∑
i=1

(aλk,i − a
µ
k,i)

2 ·

√√√√Mk∑
i=1

|qi|22

=
∣∣Akeλ −Akeµ∣∣2 ∣∣q∣∣2 ≤ dk(λ, µ).

(8.29)

Plugging (8.28) into (5.7) we obtain the desired result

Jk(vk) ≥ sup
|q|2≤1

{∑
λ∈Λk

∫
Ω

(
Mk∑
i=1

aλk,iqi

)
· ∇vλk dx

}

= sup
|q|2≤1

{∫
Ω

Mk∑
i=1

qi · ∇

(∑
λ∈Λk

aλk,iv
λ
k

)
dx

}

= sup
|q|2≤1

{∫
Ω

Mk∑
i=1

qi · ∇(Akvk)i dx

}
= TVv(Akvk).

(8.30)

The inequality in the first step is a consequence of choosing the special form of p’s,
thus reducing the set over which the supremum is taken.
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8.8. Proof of proposition 6.1. Both J and Rdata are support functionals of
convex sets in the Hilbert space L := L2(Ω,RN1+...+Nd): equation (6.3) shows that the
regularizer J is the support functional of K(C), while we can see from definition (4.10)
that the data term Rdata is the support functional of Q. It follows that both J
and Rdata are lower semicontinuous and convex on L. The set D is closed, thus its
indicator function δD is also convex and closed, furthermore δD is coercive since D is
bounded. From the above, it follows that the functional

v 7→ J(v) +Rdata(v) + δD(v) (8.31)

is closed and coercive. Since being closed is equivalent to being lower semicontinuous
in the Hilbert space topology of L, these properties imply the existence of a minimizer
in L, see theorems 3.2.5 and 3.3.3 in [3], which must necessarily lie in D. Since neither
functional is strictly convex, the solution is in general not unique.


