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1 ILL-POSEDNESS IN DEPTH SUPER-RESOLUTION
AND SHAPE-FROM-SHADING (SECT. 2)
Figure 1 illustrates the ambiguities of depth super-
resolution, and Figure 2 those of shape-from-shading.

Fig. 1: There exist infinitely many ways (dashed lines) to
interpolate between low-resolution depth samples (rectan-
gles). Our disambiguation strategy builds upon shape-from-
shading applied to the companion high-resolution color
image (c.f. Figure 2), in order to resurrect the fine-scale
geometric details of the genuine surface (solid line).

Fig. 2: Shape-from-shading suffers from the concave / con-
vex ambiguity: the genuine surface (solid line) and both the
surfaces depicted by dashed lines produce the same image,
if lit and viewed from above. We put forward low-resolution
depth clues (c.f. Figure 1) for disambiguation.

∗ Those authors contributed equally

2 SINGLE SHOT DEPTH SUPER-RESOLUTION US-
ING SHAPE-FROM-SHADING (SECT. 3)

Figure 3 illustrates the synthetic datasets used for evalua-
tion, which were generated using four different 3D-shapes
(“Lucy”, “Thai Statue”, “Armadillo” and “Joyful Yell”),
each of them rendered using three different albedo maps
(“voronoi”, “rectcircle” and “bar”) and three different scal-
ing factors (2, 4 and 8) for the low-resolution depth image.

Figure 4 illustrates the effect of each hyper-parameter on
shape and reflectance estimation (these experiments were
conducted on the “Joyful Yell” dataset, with the three pro-
posed albedo maps and three different scaling factors).

Table 1 presents the quantitative results on all synthetic
datasets, in comparison with other state-of-the-art methods.

Figure 5 presents insightful qualitative comparisons on
four synthetic datasets. Note that in this visualisation we
only show super-resolution using a scaling factor of 4 to
make comparisons fair, as [4] only provides code to perform
super-resolution at such an upsampling rate.

Figure 6 shows the qualitative comparison on real-world
data captured with a RealSense D415 Camera. The input
images I are shown in the main paper in Figure 2. Note
that [3] seems to give good depth estimates whereever the
underlying assumption (an edge in the RGB image coincides
with an edge in the depth ime) is met, cf. “Rucksack”
dataset, but fails to result in detail preserving depth maps
where reflectance is uniform or changes only slightly, as it
only uses a sparse set of information from the RGB data to
improve geometry, cf. “Android” and “Minion” dataset. [4]
can not hallucinate surface details since it does not use the
color image. [5] does a much better job at improving ge-
ometry, but it is largely overcome by shading-based super-
resolution, as it uses information from a high-resolution
RGB image.

Figure 7 shows four qualitative comparisons with state-
of-the-art multi-view approaches on the publicly available
datasets [6], [7]. “Augustus”, “Lucy” and “Relief” in column
four are the results of [8], where data is captured using a
PrimeSense RGB-D camera. “Gate” in the fourth column is
the result of [9], where data is acquired using a Structure
Sensor for an iPad. “Augustus”, “Relief” and “Gate” use
an upsampling factor of 2, whereas “Lucy” provides RGB-
D of [640 × 480 px2] for both I and z0. Although our
approach needs significantly less data compared to multi-
view approaches, we are still able to recover fine geometry
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Fig. 3: Illustration of synthetic data used for quantitative evaluation. z0 with a scaling factor of 2 is shown here.

µ ν λ

R
M

SE
(d

ep
th

)

10 -4 10 -2 10 0 10 2
0.04

0.06

0.08

0.1

0.12

0.14

0.16
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
0.04

0.06

0.08

0.1

0.12

0.14

0.16
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
0.04

0.06

0.08

0.1

0.12

0.14
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

M
A

E
(d

ep
th

)

10 -4 10 -2 10 0 10 2
10

20

30

40

50

60

70
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
10

15

20

25

30

35

40

45

50
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
10

20

30

40

50

60

70

bar
rectcircle
voronoi
SF 8
SF 4
SF 2

R
M

SE
(a

lb
ed

o)

10 -4 10 -2 10 0 10 2
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

10 -4 10 -2 10 0 10 2 10 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
bar
rectcircle
voronoi
SF 8
SF 4
SF 2

Fig. 4: Impact of the parameters (µ, ν, λ) on the accuracy of the albedo and depth estimates.
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Albedo 3D-shape SF [3] [4] [5] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

bar

2 0.043643 38.6274 – – 0.41993 67.2643 0.034655 16.7496
Armadillo 4 0.051558 42.2277 0.17865 45.6972 0.45139 66.2117 0.054679 19.0314

8 0.072466 43.5649 – – 0.58837 69.3262 0.091263 20.8836
2 0.05089 29.1719 – – 0.1721 47.4836 0.050694 16.7414

Joyful Yell 4 0.066517 33.0843 0.084094 42.611 0.22867 32.9784 0.079271 19.0695
8 0.10212 36.565 – – 0.37923 31.2894 0.128 21.9886
2 0.057987 39.4714 – – 0.21309 66.5525 0.053989 25.0955

Lucy 4 0.068502 42.7169 0.50472 47.605 0.34091 69.2566 0.081005 28.3044
8 0.098713 46.4775 – – 0.43619 59.5434 0.1195 30.1058
2 0.040821 42.8976 – – 0.12948 63.06 0.035736 23.9147

Thai Statue 4 0.050296 47.1017 0.22363 49.9553 0.15489 54.6139 0.057313 28.492
8 0.066515 49.8604 – – 0.22835 56.4247 0.087054 31.65

rectcircle

2 0.044026 39.108 – – 0.34323 70.8526 0.03494 18.4909
Armadillo 4 0.052115 43.3175 0.17782 45.6324 0.2338 50.6919 0.056727 18.8487

8 0.069467 45.4735 – – 0.61917 70.9363 0.09155 21.9959
2 0.051296 30.7886 – – 0.14841 41.5424 0.05226 17.134

Joyful Yell 4 0.066911 33.3 0.10328 42.7531 0.28311 51.0665 0.080387 19.8717
8 0.10201 36.2961 – – 0.39518 35.4817 0.1281 22.8027
2 0.058495 39.7374 – – 0.19546 64.8212 0.054383 24.8427

Lucy 4 0.069893 43.9016 0.50464 48.1068 0.23235 53.2901 0.082547 28.7517
8 0.099402 46.3739 – – 0.39583 64.3269 0.12283 29.1531
2 0.039821 40.6144 – – 0.11355 58.2254 0.036845 23.9036

Thai Statue 4 0.04973 46.1154 0.20894 49.4124 0.16749 52.9663 0.05866 28.155
8 0.067799 50.6515 – – 0.21058 50.9074 0.094688 33.5308

voronoi

2 0.043635 38.9089 – – 0.33005 69.3157 0.034751 17.6873
Armadillo 4 0.051989 41.57 0.17182 45.5833 0.4407 65.5811 0.056032 20.168

8 0.07077 43.1987 – – 0.50548 63.8618 0.090708 22.2767
2 0.052002 28.7903 – – 0.16893 47.72 0.052429 17.0453

Joyful Yell 4 0.066557 32.3448 0.086394 43.1744 0.24753 39.6569 0.079888 19.6512
8 0.10238 35.8017 – – 0.47694 47.4707 0.12916 21.6663
2 0.058222 36.2327 – – 0.29164 72.9002 0.054442 26.1333

Lucy 4 0.068253 40.8878 0.5066 48.0387 0.32955 71.1042 0.079877 28.4506
8 0.099838 43.7671 – – 0.37839 57.6856 0.11877 29.6331
2 0.039872 39.6508 – – 0.13261 65.8352 0.037607 25.6126

Thai Statue 4 0.049783 45.7178 0.22688 49.4132 0.16533 58.3933 0.058957 28.6314
8 0.065577 48.7962 – – 0.21927 49.6711 0.091959 32.0347
2 0.047458 39.0085 – – 0.18378 65.3282 0.044151 21.1973

Median 4 0.059316 42.4723 0.19379 46.6511 0.24067 53.952 0.069114 24.1615
8 0.085589 44.6203 – – 0.3955 57.0551 0.10673 25.9779
2 0.048392 36.9999 – – 0.22154 61.2978 0.044394 21.1126

Mean 4 0.059342 41.0238 0.24812 46.4986 0.27298 55.4842 0.068779 23.9521
8 0.084754 43.9022 – – 0.40275 54.7438 0.1078 26.4768

TABLE 1: Quantitative comparison between our results and three state-of-the-art methods, on all the synthetic datasets.

close to the degree of detail of [6], [7]. Even with more
complex lighting, cf. “Gate”, our approach can result in
high-resolution depth maps with fine scale details and the
depth does not seem to deteriorate.

Figure 8 shows additional qualitative comparison on
data we captured with an Asus Xtion Pro Live camera
and a scaling factor of 4, i.e. depth maps were acquired in
[320× 240 px2] resolution.
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Fig. 5: Qualitative comparison of our results against state-
of-the-art methods on four synthetic datasets using a scaling
factor of 4.
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Fig. 6: Qualitative comparison with with other state-of-the-
art methods on four real-world datasets captured with a
RealSense D415 camera.
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Fig. 7: Qualitative comparison against state-of-the-art multi-
view approaches. The publicly available dataset [6] was cap-
tured with a PrimeSense camera, whereas [7] was acquired
with a Structure Sensor for the iPad.
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Fig. 8: Qualitative comparison of state-of-the-art single-view approaches on five real-world datasets captured with an Asus
Xtion Pro Live camera at resolution [1280× 960 px2] for the RGB images and [320× 240 px2] for the low-resolution depth.
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3 DEPTH SUPER-RESOLUTION USING SHAPE-
FROM-SHADING AND REFLECTANCE LEARNING
(SECT. 4)
Figure 9 illustrates the lack of inter-class generalisation
in learning-based methods: the approach of [11] (trained
on Sintel [12] and MIT [13] datasets) performs poorly on
the car image, because such an object was not present in
the learning database. For the same reason, the alternative
approach of [14] (trained on ShapeNet objects [15]) fails on
the MIT object, and both approaches fail on the face image.

Input Image [11] [14]

Fig. 9: CNN-based albedo estimation applied to an object
from the MIT database (first row), a car from the ShapeNet
dataset (second row), and two images of human faces we
generated with a renderer using ICT-3DRFE [16] database

Figure 10 shows an example of a failure case for end-
to-end learning approaches which simultaneously estimate
reflectance and geometry. As soon as the scene to analyse
contains unexpected deviation from the learned model,
artifacts appear.

Input Image Estimated Normal from [17]

Fig. 10: Reconstruction results from SfSNet [17], which is an
end-to-end deep learning based approach. It fails to account
for small departures from usual face images, here fingers for
example, and provides an erroneous normal estimation.

Figure 11 illustrates the rendering of synthetic human
faces with extended non-directional light sources, emulating
usual indoor light conditions. Geometry and reflectance are
obtained from ICT-3DRFE database [16].

Fig. 11: Light sources used for rendering human faces.

Figure 12, illustrates the U-Net architecture used for
albedo estimation. It essentially comprises of an initial
convolution layer of kernel size 4, stride 2 and padding
1; after which there are repeated blocks of 8 ReLU-Conv-
BatchNorm layers. This results in downsampling of a
512x512 resolution image to a 1x512 vector at the bottleneck
of the “U”. Further, the 1D array is upsampled to in-
put resolution with multiple ReLU-Transpose Convolution-
BatchNorm layers. Dropout is also used in a few layers
to allow for randomness while learning the mapping from
input images to albedo maps. Finally, for the loss function
we use the L1 loss, which favors sharper output compared
to the L2 loss.

Figure 13 and Table 2 show several results of our ap-
proach on synthetic datasets, in comparison with two other
state-of-the-art methods. We choose to compare against
SIRFS [18] and Pix2Vertex [19], because the former is a com-
pletely prior-based approach with minimal learning while
the latter is a deep neural networks-based approach. Our
approach, which stands inbetween, inherits the strengths of
both approaches. It reconstructs fine-scale details without
extensive smoothing, and it can also easily reconstruct new
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Fig. 12: The U-Net Architecture used for albedo estimation.
The top two layers on the extreme left and right are the input
and output respectively. The rest hidden layers are obtained
by performing the operations mentioned for every color of
arrow. The skip connections are shown as dotted lines which
implies that the layers on the left are concatenated to the
layers on the right.

geometries which were not present in the training database.
Figure 14 presents the qualitative comparison on real-

world results with [18] and [17]. [18] attempts to provides
reflectance which has minimal shading effects, but due
to large number of priors on smoothness, parsimony and
absolute color, the reflectance estimate is deceiving. [17]
performs better than the pure prior-based approach, but is
limited by the resolution [128 × 128 px2] and thus misses
small-scale details. Our method provides high-resolution
realistic albedo and depth maps directly out of the box.
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Subject (S) Expression (E) SF [18] [17] Ours
RMSE MAE RMSE MAE RMSE MAE

11

0 2 0.1069 11.2811 - - 0.1874 5.8277
4 0.5148 41.7036 1.1023 12.2877 0.1217 7.0191

1 2 0.1110 12.1757 - - 0.1774 5.9840
4 0.6776 51.5362 1.2368 11.3087 0.1186 7.0827

2 2 0.1371 17.6559 - - 0.1885 7.4410
4 0.9092 58.2719 0.8175 19.8059 0.1463 9.7861

3 2 0.1200 13.1908 - - 0.1935 6.2763
4 0.7650 53.3137 1.2194 13.6341 0.1308 7.6617

4 2 0.1106 12.0300 - - 0.1909 6.7654
4 0.5584 49.2738 0.9065 13.1894 0.1354 8.0273

5 2 0.1964 14.5500 - - 0.2068 7.3362
4 0.6844 53.0044 1.0657 15.0912 0.1909 8.9047

6 2 0.1206 13.2598 - - 0.1883 6.8373
4 0.7318 57.4497 0.7211 14.3706 0.1398 8.3742

7 2 0.3674 15.1031 - - 0.2287 7.2632
4 0.6998 47.2498 1.0601 18.9270 0.2642 9.7440

8 2 0.1094 15.9824 - - 0.1813 9.3954
4 0.5888 55.8985 0.8822 13.4861 0.1147 9.8121

9 2 0.1118 12.3690 - - 0.1714 6.7411
4 0.5300 47.9372 0.9714 13.0998 0.1267 7.8888

10 2 0.1225 14.4960 - - 0.1955 7.9537
4 1.0062 55.9198 0.8631 17.9839 0.1417 8.9901

11 2 0.1159 12.4566 - - 0.1890 6.6804
4 0.6296 49.2944 1.0929 12.4240 0.1563 7.7767

12 2 0.1092 11.8244 - - 0.1886 6.0235
4 0.7968 51.1406 0.8824 11.0540 0.1207 7.2522

13 2 0.1113 12.4305 - - 0.1870 6.1529
4 0.7014 52.5077 0.5021 10.0072 0.1322 7.3263

14 2 0.1091 11.9522 - - 0.1828 6.2014
4 0.6463 49.8636 0.7394 11.3868 0.1212 7.3132

4

0 2 0.2281 23.4415 - - 0.1908 5.9752
4 0.6488 49.1959 0.4741 13.9368 0.1117 6.8132

1 2 0.2854 30.5486 - - 0.1849 6.9702
4 0.5953 47.9548 1.0130 14.7240 0.1127 7.6400

2 2 0.2528 29.8795 - - 0.1776 8.2012
4 0.6011 55.0417 1.0439 18.9314 0.1284 9.7949

3 2 0.1888 19.0886 - - 0.1927 7.7149
4 0.6380 51.7959 0.6933 16.3201 0.1223 8.9794

4 2 0.2837 30.3095 - - 0.1817 7.4706
4 0.5122 45.8693 0.5258 15.4585 0.1138 8.5289

5 2 0.3609 35.5668 - - 0.2028 9.1059
4 0.6447 54.1181 0.9701 19.2865 0.1970 11.2153

6 2 0.2205 27.0965 - - 0.1995 8.0220
4 0.5927 51.2974 1.0100 19.4058 0.1542 9.6648

7 2 0.2369 24.9252 - - 0.2087 8.6590
4 0.6050 49.9729 0.8597 20.1422 0.1941 9.5206

8 2 0.2145 26.4886 - - 0.1827 8.0033
4 0.5710 53.4401 0.7588 14.0183 0.1075 8.2670

9 2 0.1859 22.4924 - - 0.1892 7.2511
4 0.5734 50.5616 0.5135 14.7545 0.1169 8.5230

10 2 0.2744 28.8505 - - 0.1877 7.0955
4 0.6009 53.1664 0.5744 17.2112 0.1117 7.7747

11 2 0.1044 12.7931 - - 0.1961 7.1938
4 0.6136 52.9554 1.0092 14.1251 0.1115 7.6181

12 2 0.1814 21.9536 - - 0.2034 6.8525
4 0.6190 50.8171 0.6188 14.5414 0.1293 7.7816

13 2 0.1151 13.6560 - - 0.1866 6.6517
4 0.5817 51.1208 1.1871 14.8568 0.1115 7.7797

14 2 0.1810 21.5087 - - 0.1906 6.8284
4 0.5812 49.7192 0.7939 14.3981 0.1111 7.6929

Median 2 0.1590 15.5428 - - 0.1888 7.0328
4 0.6163 51.2190 0.8823 14.4698 0.1245 7.9581

Mean 2 0.1791 18.9786 - - 0.1911 7.1625
4 0.6473 51.3797 0.8703 15.0056 0.1365 8.3518

TABLE 2: Quantitative comparison between our method combining variational methods with machine learning, and two
other state-of-the-art methods on two subjects from 3DRFE Dataset [20].
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Fig. 13: Reconstruction results of the state-of-the-art and our combined variational and machine learning approach. SIRFS
[18] (third column) provides smoothed out faces. Results of SfSNet [17] (fourth column) are shown as depth maps here,
after integrating the output normals. Our method directly provides depth and is reliably able to do super-resolution and
reconstruction of fine wrinkles of the face without any false enhancements.



10

Input SIRFS [18] SfSNet [17] Ours
z0 I z ρ z ρ z ρ

Fig. 14: Qualitative comparison of our results against state-of-the-art methods, on four real-world subjects faces captured
from Intel RealSense D415 camera.



11

4 MULTI-SHOT DEPTH SUPER-RESOLUTION US-
ING PHOTOMETRIC STEREO (SECT. 5)
Figure 15 illustrates the synthetic datasets used for evalua-
tion. Same as the the experiments for shape-from-shading,
four objects (“Lucy”, “Thai Statue”, “Armadillo” and “Joy-
ful Yell”) are used to render with three different albedo maps
(“ebsd”1, “mandala”2 and “rectcircle”) and three different
scaling factors (2,4 and 8).

Figure 16 shows the impact of the number of images n
on the accuracy of the albedo and depth estimates, as well
as the runtime using our multi-shot photometric approach
(γ = 0.01). These experiments were conducted on the Joyful
Yell dataset, with three different scaling factors and three
different albedos.

Figure 17 illustrates the effect of the hyper-parameter
γ on shape and reflectance estimation (n = 10). Same as
Figure 16, these experiments were conducted on the Joyful
Yell dataset, with three different scaling factors and three
different albedos.

Table 3 quantitatively compares various methods includ-
ing ours (n = 20). For [5], we randomly select one image out
of 20. γ = 0.01 is used for ours in all experiments.

Figure 18 presents qualitative comparisons against three
other methods on synthetic datasets shown in Figure 15.

Figure 19 shows four qualitative comparisons on real-
world data captured with an Asus Xtion Pro Live camera
against three other state-of-the-art methods. It can be seen
that image-based depth super-resolution approach hallu-
cinates reflectance information as geometric information,
since the underlying concept assumes to allow for larger
depth variations where strong image gradients are present.
Clearly, [21] suffers from the GBR problem, as geometry
deteriorates in the uncalibrated photometric stereo setup
with a data-free depth prior, cf. “Tablet Case” and “Vase”.
[5] provides better depth estimates, as it takes into account
depth images from a depth sensor, but it mistakenly hallu-
cinates albedo information, as it uses only a single image.
This clearly shows the advantages of acquiring multiple
images under different illumination to separate reflectance
and geometry in a regularisation free-manner.
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Fig. 15: Illustration of synthetic data used for quantitative evaluation in multi-shot depth super-resolution setup.
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Fig. 16: Impact of the number of images n on the accuracy of the albedo and depth estimates using our multi-shot
photometric approach (γ = 0.01).
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approach (n = 10).
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Albedo 3D-shape SF Image Based depth SR [21] [5] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

mandala

2 0.031468 46.4149 0.51996 17.4225 0.4320 69.7311 0.023266 2.883
Armadillo 4 0.042467 43.5403 0.5472 18.5244 0.3948 63.7382 0.037789 2.8391

8 0.088849 42.6184 0.52598 17.6553 0.5961 83.7853 0.073928 2.9196
2 0.043889 46.4903 0.37197 15.7192 0.4755 84.6189 0.036334 3.5842

Lucy 4 0.065857 44.0677 1.9302 79.8752 0.4951 82.0516 0.051316 3.6142
8 0.12668 42.8905 0.93938 15.9988 0.5231 64.7317 0.084713 4.7864
2 0.048887 45.0552 1.0735 14.2243 0.3757 70.2724 0.044198 3.3143

Joyful Yell 4 0.069088 42.644 1.0524 13.9289 0.2985 55.6927 0.063392 3.6407
8 0.13103 40.0426 1.0625 14.0809 0.4240 44.2549 0.1046 3.753
2 0.032432 47.8575 0.37738 13.372 0.4615 70.3271 0.022446 3.579

Thai Statue 4 0.053061 45.5618 0.37775 13.6733 0.4211 90.2134 0.036245 3.6985
8 0.094911 43.838 0.39766 14.0079 0.3371 53.2791 0.049733 4.1133

rectcircle

2 0.028459 41.506 0.52582 18.0902 0.2844 55.3096 0.020885 2.0047
Armadillo 4 0.038966 38.7345 0.5264 18.0104 0.3031 48.1000 0.035145 1.9458

8 0.11182 36.3801 0.52504 17.8218 0.5805 80.4625 0.073139 2.1436
2 0.040635 42.3051 0.32285 13.6126 0.4868 85.9076 0.026858 1.8617

Lucy 4 0.062747 39.0783 0.32295 13.5222 0.4685 75.9166 0.041968 2.2851
8 0.12325 37.956 0.32509 13.7086 0.3767 56.5020 0.075311 3.8793
2 0.045765 39.9946 0.84162 11.4847 0.2012 41.3053 0.038698 2.7879

Joyful Yell 4 0.064537 37.1175 0.84386 11.4906 0.3189 37.2107 0.053871 3.1022
8 0.09492 34.7218 0.83033 11.424 0.4432 36.3990 0.084381 3.2463
2 0.030859 44.4276 0.38981 13.3935 0.2625 66.0562 0.018374 2.1086

Thai Statue 4 0.045516 41.7235 0.36671 12.8741 0.3151 85.4734 0.028457 2.2876
8 0.10507 39.7697 0.37632 12.9615 0.2389 55.0568 0.041552 3.0519

ebsd

2 0.031939 46.9515 0.49466 16.3427 0.3473 65.4823 0.021037 2.0398
Armadillo 4 0.04424 44.2571 0.50255 16.2739 0.5933 58.6932 0.036102 2.0035

8 0.10062 42.2539 0.57469 17.7183 0.6453 81.5187 0.073138 1.8159
2 0.04299 47.5844 0.32989 13.0463 0.4141 84.9623 0.028555 1.9483

Lucy 4 0.072388 44.5851 0.32774 12.9568 0.4541 75.3771 0.04325 2.1771
8 0.16385 42.4252 0.33182 13.1555 0.6460 74.8618 0.079427 3.6839
2 0.049515 46.0065 1.0052 13.1767 0.2645 55.3462 0.034162 2.1722

Joyful Yell 4 0.069491 43.4654 0.99844 13.0798 0.2770 42.4242 0.04818 2.3335
8 0.11255 40.9818 1.0032 13.1334 0.4589 38.8507 0.073515 2.5774
2 0.03307 48.7666 0.30254 12.0112 0.2371 69.6653 0.019305 2.3639

Thai Statue 4 0.046843 45.6104 0.30597 12.0833 0.2792 77.7622 0.029185 2.4529
8 0.089646 43.7591 0.31316 12.4814 0.2847 64.3520 0.041307 2.9642
2 0.036853 46.2107 0.44223 13.503 0.12186 45.0229 0.025062 2.2681

Median 4 0.057904 43.5029 0.51448 13.5977 0.18929 41.3767 0.039879 2.3932
8 0.10844 41.6178 0.52551 13.8582 0.31159 41.3102 0.073722 3.1491
2 0.038326 45.28 0.54626 14.3246 0.11516 42.7392 0.027843 2.554

Mean 4 0.056267 42.5321 0.67519 19.6911 0.18488 40.6331 0.042075 2.6984
8 0.11193 40.6364 0.60043 14.5123 0.29819 40.1205 0.071228 3.2446

TABLE 3: Comparison results on the various multi-shot depth super-resolution methods. n = 20 are used for this task. For
[5], we randomly select one image out of 20. γ = 0.01 is used for Ours in all experiments.
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Fig. 18: Qualitative comparison of our UPS results against state-of-the-art methods on four synthetic datasets using a
scaling factor of 4.
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Fig. 19: Comparison between the proposed multi-shot method and 3 state-of-the-art methods, on real-world datasets. These
results confirm the conclusion of the synthetic experiments in Figure 19.
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