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Photometric Depth Super-Resolution –
Supplementary Material

Bjoern Haefner∗, Songyou Peng∗, Alok Verma∗, Yvain Quéau, and Daniel Cremers

Abstract—This supplementary material explores the three proposed approaches of the paper “Photometric Depth Super-Resolution”
in more detail towards experimental evaluation on self-generated and publicly available synthetic and real-world datasets. Also, a more
thorough discussion on the theoretical aspects of the RGB image formation model and the problems arising in depth super-resolution
and shape-from-shading are drawn. A unified comparison on a publicly available photometric stereo benchmark eventually highlights
the pros and cons of each proposed method.
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1 ORGANIZATION OF THE DOCUMENT

This document is structured as follows. Section 2 contains
general comments on photometric 3D-reconstruction and
depth super-resolution: the derivation of the RGB image
formation model used through the paper, a visual descrip-
tion of the ambiguities arising in depth super-resolution
and in shape-from-shading, and some general information
regarding the reflectance learning-based approach. The rest
of the document is devoted to the individual experimental
evaluation of each of the proposed methods: Section 3
contains the shape-from-shading experiments, Section 4
the reflectance learning ones, and Section 5 evaluates the
uncalibrated photometric stereo-based approach. Section 6
eventually concludes the document by presenting a unified
comparison of the results obtained with the three proposed
methods.

2 GENERALITIES

2.1 Derivation of the RGB image formation model

This subsection is devoted to the derivation of the RGB
image formation model (Eq. (3) in the main paper), which
relates the irradiance measurements and the surface nor-
mals. The following derivation is adapted from [1, Sect. 2.2],
with an extension of the model to RGB images and spherical
harmonics lighting.

We first assume that the surface is Lambertian, i.e. its
appearance is independent from the viewing angle. A conse-
quence of this assumption is that the surface’s reflectance ρ
at a surface point is a simple scalar quantity called the
albedo, which is independent from the incident light direc-
tion.

Next, we assume that the surface is lit by a single,
infinitely distant light source represented by a direction ω
on the visible hemisphere. The spectral radiance at a surface
point is thus given by

L(λ, ω) = φ(λ, ω)
ρ(λ)

π
max{0, s(ω)>nz,∇z}, (1)
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with λ the wavelength, φ(·, ω) the spectrum of the source
associated with direction ω, ρ(·) the spectral reflectance
of the surface point, s(ω) the unit-length vector pointing
towards the light source associated with direction ω, and
nz,∇z the outer unit-length surface normal.

Now, let us assume that the surface is observed under
natural illumination, rather than lit by one single light
source. Let us represent natural illumination by a collection
of infinitely distant point light sources, each of them being
represented by a direction ω. The total spectral radiance
of a surface point is obtained by summing the individual
contributions from each source, i.e. by integrating (1) over
the visible hemisphere:

L(λ) =
ρ(λ)

π

∫
S2
φ(λ, ω) max{0, s(ω)>nz,∇z} dω. (2)

We further assume that the sensor’s response is linear,
and that the RGB camera is focused on the surface. Then,
the sensor’s spectral irradiance, in the pixel conjugate to the
surface point, is given by

E(λ) = β cos4 αL(λ), (3)

where β depends on the sensor’s aperture and magnifica-
tion, and where α is the angle between the viewing angle
and the optical axis (the cos4 α factor is thus responsible for
darkening at the periphery of images).

The intensity recorded by the camera in channel ?,
? ∈ {R,G,B}, is proportional to the sum of all spectral
sensor’s irradiances, weighted by the camera’s transmission
spectrum. Denoting by γ this proportionality coefficient, this
writes as

I? = γ

∫
R+

c?(λ)E(λ) dλ, (4)

with c?(λ) the transmission spectrum of camera’s channel ?.
We further assume that all the light sources are achro-

matic, i.e. that
φ(λ, ω) = φ(ω) (5)

(this assumption implies that color will be interpreted in
terms of surface’s reflectance by our algorithms, rather than
in terms of lighting).
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Plugging Equations (2), (3) and (5) into (4) yields

I? = ρ?

∫
S2
φ(ω)max{0, s(ω)>nz,∇z}dω, (6)

with

ρ? :=
γβ cos4 α

π

∫
R+

c?(λ)ρ(λ) dλ (7)

the “albedo”, relatively to channel ? (note that ρ? does not
characterize the surface, since it depends upon the sensor’s
response, its aperture and magnification, etc.).

Next, we approximate the integral in (6) using spherical
harmonics [2], [3]. In this work we consider the first-order
case, which already captures more than 85% of natural
illumination [4], and leave the extension to second-order
spherical harmonics as future work. The spherical harmon-
ics approximation reads∫

S2
φ(ω)max{0, s(ω)>nz,∇z} dω ≈ l>mz,∇z (8)

with l ∈ R4 the achromatic “light vector” (which is the same
for all pixels), and

mz,∇z :=

[
nz,∇z

1

]
(9)

a geometric vector depending upon the surface normals.
Plugging (8) into (6), we obtain

I? = ρ? l
>mz,∇z, ? ∈ {R,G,B}. (10)

Denoting

I :=

IRIG
IB

 and ρ :=

ρRρG
ρB

 , (11)

and assuming that (10) is satisfied up to additive noise, we
eventually obtain the RGB image formation model (Eq. (3) in
the paper) by plugging together the three equations in (10):

I = l>mz,∇z ρ+ ηI, (12)

with ηI the realisation of a stochastic process.

2.2 Ambiguities in Depth Super-resolution and Shape-
from-shading

This subsection illustrates the ambiguities arising in depth
super-resolution and in photometric 3D-reconstruction, in
order to visually motivate the choice of their joint solv-
ing. As can be seen in Figure 1, in super-resolution high-
frequency geometric clues are missing and thus there exist
infinitely many ways to interpolate between low-resolution
samples. On the contrary, shape-from-shading suffers from
the concave / convex ambiguity: though the surface orien-
tation is unambiguous in critical points (arrows in Figure 2),
two such singular points may be connected either by “going
up” or by “going down”. Therefore, it seems reasonable to
rely on high-frequency photometric clues to disambiguate
depth super-resolution, and on low-frequency geometric
clues to disambiguate photometric 3D-reconstruction.

Fig. 1: There exist infinitely many ways (dashed lines) to
interpolate between low-resolution depth samples (rectan-
gles). Our disambiguation strategy builds upon shape-from-
shading applied to the companion high-resolution color
image (cf. Figure 2), in order to resurrect the fine-scale
geometric details of the genuine surface (solid line).

Fig. 2: Shape-from-shading suffers from the concave / con-
vex ambiguity: the genuine surface (solid line) and both the
surfaces depicted by dashed lines produce the same image,
if lit and viewed from above. We put forward low-resolution
depth clues (cf. Figure 1) for disambiguation.

2.3 Generalities on Reflectance Learning-based Depth
Super-resolution

We now illustrate the creation of the training dataset and
the network’s architecture, and justify why we focused on a
particular class of objects in the learning-based approach.

Figure 3 illustrates the generation of training data. We
consider ground truth geometry and reflectance of various
human faces from the ICT-3DRFE database [5]. A rendering
software is used to generate multiple images of these faces
under different viewing and lighting scenarios. Lighting
variations are created by turning off and on several ex-
tended sources, emulating usual indoor lighting conditions.

Figure 4 illustrates the architecture of the neural net-
work. It is a U-Net architecture comprising an initial con-
volution layer of kernel size 4, stride 2 and padding 1;
after which there are repeated blocks of 8 ReLU-Conv-
BatchNorm layers. This results in downsampling of a
512x512 resolution image to a 1x512 vector at the bottle-
neck of the “U”. Then, the 1D array is upsampled to in-
put resolution with multiple ReLU-Transpose Convolution-
BatchNorm layers. Dropout is also used in a few layers to
allow for randomness while learning the mapping from in-
put images to albedo maps. Finally, the L1 loss is considered,
which favors sharper output compared to the L2 loss.
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Fig. 3: Rendering of synthetic faces for generating training
data. The white planes represent switchable extended light
sources, which are independently controlled to create mul-
tiple illumination conditions. Multiple images can then be
captured under different illumination and viewing angles.

Fig. 4: The U-Net Architecture used for albedo estimation.
The top two layers are the input and output, respectively.
The arrows’ color represent the operations of the other
hidden layers. Skip connections (dotted lines) concatenate
the left and right layers.

Eventually, Figure 5 illustrates the lack of inter-class
generalisation which is inherent to learning-based methods.
For instance, the approach of [6] (trained on Sintel [7] and
MIT [8] datasets) performs well on the MIT object but
poorly on the ShapeNet car image, because such an object
was not present in the learning database. For the same
reason, the alternative approach of [9] (trained on ShapeNet
objects [10]) performs well on the ShapeNet car but fails on
the MIT object, and both approaches fail on the face image
since the latter resembles none of the training data. Due to
this lack of inter-class generalisation, we choose to focus in
our approach on the specific class of human faces.

Input Image [6] [9]

Fig. 5: Learning-based albedo estimation applied to an
object from the MIT database (first row), a car from the
ShapeNet dataset (second row), and two images of human
faces we generated with a renderer using the ICT-3DRFE
database [5]. This illustrates the lack of inter-class general-
isation inherent to learning-based techniques: the approach
from [6], trained on the MIT dataset, fails on the ShapeNet
car and on faces, and the one from [9], trained on the
ShapeNet dataset, fails on the MIT object and on faces: in
both cases albedo estimation is not satisfactory since the
objects do not resemble the training data.
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Lucy [11] Thai Statue [11] Armadillo [11] Joyful Yell [12]

I

“voronoi” albedo “voronoi” albedo “rectcircle” albedo “bar” albedo

z0

Fig. 6: Illustration of synthetic data used for evaluation of the single-shot approach based on shape-from-shading. High-
resolution RGB images I, of size 480× 640, are generated using high-resolution ground truth depth and reflectance maps,
and adding noise. Low-resolution depth maps z0 are created by downsampling the ground truth depth maps with scaling
factors of 8, 4 and 2 (the second row shows the low-resolution depth maps with a scaling factor of 2), and adding noise.

3 EVALUATION OF THE SINGLE-SHOT APPROACH
BASED ON SHAPE-FROM-SHADING

3.1 Creation of the Synthetic Data

Figure 6 illustrates the synthetic data used for evaluation,
which is generated using four different 3D-shapes (“Lucy”,
“Thai Statue”, “Armadillo” and “Joyful Yell”), each of them
rendered using three different albedo maps (“voronoi”,
“rectcircle” and “bar”) and three different scaling factors
(2, 4 and 8) for the low-resolution depth image. To this end,
3D-meshes are rendered into high-resolution ground truth
depth maps of size 480×640, which are then downsampled.
Then, additive zero-mean Gaussian noise with standard
deviation 10−4 times the squared original depth value (con-
sistently with real-world measurements from [13]) is added
to the low-resolution depth maps, which are eventually
quantised. High-resolution RGB images are rendered from
the ground truth depth map using the first-order spherical
harmonics model with l = [0, 0,−1, 0.2]> using the three
different high-resolution reflectance maps, and an additive
zero-mean Gaussian noise with standard deviation 1% the
maximum intensity is eventually added to the RGB images.

3.2 Tuning the Hyper-parameters

In Figure 7, we use the “Joyful Yell” dataset from Figure 6
in order to determine appropriate values for the hyper-
parameters (µ, ν, λ). For quantitative evaluation, we con-
sider the root mean squared error (RMSE) on the estimated
depth and reflectance maps, and the mean angular error
(MAE) on surface normals. To select an appropriate set of
values for them, we initially set µ = 0.5, ν = 0.01 and λ = 1.
We then evaluate the impact of each parameter by varying
it while keeping the remaining two fixed. As could be
expected, large values of µ force the depth map to keep close
to the noisy input, while small values make the depth prior
less important so not capable of disambiguating shape-
from-shading. Inbetween, the range µ ∈ [10−1, 10] seems to
provide appropriate results. As for ν, large values produce
over-smoothed results and small ones result in slightly
noisier depth estimates, although the albedo estimate seems
unaffected by this choice. Overall, the range ν ∈ [0.5, 102]
seems appropriate. The parameter λ strongly impacts both
the resulting albedo and depth: too small (resp., high) values
for λ result in over (resp., under)-segmentation problems,
and in both cases shading information gets propagated to
the albedo. We found λ ∈ [10−1, 10] to be a reasonable
choice. Overall, we opted for (µ, ν, λ) = (0.1, 0.7, 1).
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Fig. 7: Impact of the parameters (µ, ν, λ) on the accuracy of the albedo and depth estimates. The accuracy of the albedo is
evaluated by the root mean square error (RMSE), and that of the depth by the RMSE and the mean angular error (MAE).
Based on these experiments, the set of hyper-parameters (µ, ν, λ) = (0.1, 0.7, 1) is selected.

3.3 Comparison against the State-of-the-art on the
Synthetic Dataset

Next, we compare the results obtained by our single-
shot approach against the state-of-the-art, on the synthetic
dataset from Figure 6. We consider two alternative depth
super-resolution methods: the image-based one from [14],
and the learning-based one from [15] (since the authors
only provide trained data for a factor of 4, this method was
evaluated only for this factor). To emphasise the interest of
joint shape-from-shading and depth super-resolution over
shading-based depth refinement using downsampled im-
ages, we also consider [16]. Qualitative results are presented
in Figure 8, and quantitative ones in Table 1. As can be seen,
our method systematically overcomes the competitors in
terms of MAE, which indicates that high-frequency geomet-
ric details are better recovered. The RMSE on depth rather
evaluates the overall (low-frequency) fit to ground truth,
and for this metric our results are comparable with [14],
which achieves the best results.

Interestingly, for scaling factors of 4 and 8, our approach
seems less accurate than [14] in terms of RMSE. However,
Figure 8 clearly shows that our results are significantly
better: we thus believe that only the order of magnitude of
the RMSE is meaningful, yet comparison using this metric
might not really indicate which method is the best, and
MAE should be preferred for this purpose. A more thorough
discussion on the relevance of RMSE for evaluation can be
found in [17].

Lucy
“voronoi”

Thai Statue
“voronoi”

Armadillo
“rectcircle”

Joyful Yell
“bar”

[14]

[15]

[16]

O
ur

s

Fig. 8: Qualitative comparison between our single-shot re-
sults and state-of-the-art’s ones (the scaling factor is 4).
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Albedo 3D-shape SF [14] [15] [16] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

bar

2 0.043643 38.6274 – – 0.41993 67.2643 0.034655 16.7496
Armadillo 4 0.051558 42.2277 0.17865 45.6972 0.45139 66.2117 0.054679 19.0314

8 0.072466 43.5649 – – 0.58837 69.3262 0.091263 20.8836
2 0.05089 29.1719 – – 0.1721 47.4836 0.050694 16.7414

Joyful Yell 4 0.066517 33.0843 0.084094 42.611 0.22867 32.9784 0.079271 19.0695
8 0.10212 36.565 – – 0.37923 31.2894 0.128 21.9886
2 0.057987 39.4714 – – 0.21309 66.5525 0.053989 25.0955

Lucy 4 0.068502 42.7169 0.50472 47.605 0.34091 69.2566 0.081005 28.3044
8 0.098713 46.4775 – – 0.43619 59.5434 0.1195 30.1058
2 0.040821 42.8976 – – 0.12948 63.06 0.035736 23.9147

Thai Statue 4 0.050296 47.1017 0.22363 49.9553 0.15489 54.6139 0.057313 28.492
8 0.066515 49.8604 – – 0.22835 56.4247 0.087054 31.65

rectcircle

2 0.044026 39.108 – – 0.34323 70.8526 0.03494 18.4909
Armadillo 4 0.052115 43.3175 0.17782 45.6324 0.2338 50.6919 0.056727 18.8487

8 0.069467 45.4735 – – 0.61917 70.9363 0.09155 21.9959
2 0.051296 30.7886 – – 0.14841 41.5424 0.05226 17.134

Joyful Yell 4 0.066911 33.3 0.10328 42.7531 0.28311 51.0665 0.080387 19.8717
8 0.10201 36.2961 – – 0.39518 35.4817 0.1281 22.8027
2 0.058495 39.7374 – – 0.19546 64.8212 0.054383 24.8427

Lucy 4 0.069893 43.9016 0.50464 48.1068 0.23235 53.2901 0.082547 28.7517
8 0.099402 46.3739 – – 0.39583 64.3269 0.12283 29.1531
2 0.039821 40.6144 – – 0.11355 58.2254 0.036845 23.9036

Thai Statue 4 0.04973 46.1154 0.20894 49.4124 0.16749 52.9663 0.05866 28.155
8 0.067799 50.6515 – – 0.21058 50.9074 0.094688 33.5308

voronoi

2 0.043635 38.9089 – – 0.33005 69.3157 0.034751 17.6873
Armadillo 4 0.051989 41.57 0.17182 45.5833 0.4407 65.5811 0.056032 20.168

8 0.07077 43.1987 – – 0.50548 63.8618 0.090708 22.2767
2 0.052002 28.7903 – – 0.16893 47.72 0.052429 17.0453

Joyful Yell 4 0.066557 32.3448 0.086394 43.1744 0.24753 39.6569 0.079888 19.6512
8 0.10238 35.8017 – – 0.47694 47.4707 0.12916 21.6663
2 0.058222 36.2327 – – 0.29164 72.9002 0.054442 26.1333

Lucy 4 0.068253 40.8878 0.5066 48.0387 0.32955 71.1042 0.079877 28.4506
8 0.099838 43.7671 – – 0.37839 57.6856 0.11877 29.6331
2 0.039872 39.6508 – – 0.13261 65.8352 0.037607 25.6126

Thai Statue 4 0.049783 45.7178 0.22688 49.4132 0.16533 58.3933 0.058957 28.6314
8 0.065577 48.7962 – – 0.21927 49.6711 0.091959 32.0347
2 0.047458 39.0085 – – 0.18378 65.3282 0.044151 21.1973

Median 4 0.059316 42.4723 0.19379 46.6511 0.24067 53.952 0.069114 24.1615
8 0.085589 44.6203 – – 0.3955 57.0551 0.10673 25.9779
2 0.048392 36.9999 – – 0.22154 61.2978 0.044394 21.1126

Mean 4 0.059342 41.0238 0.24812 46.4986 0.27298 55.4842 0.068779 23.9521
8 0.084754 43.9022 – – 0.40275 54.7438 0.1078 26.4768

TABLE 1: Quantitative comparison between our single-shot results and three state-of-the-art methods, on all the synthetic
datasets. Our results are always superior in terms of mean angular error (MAE) and in terms of root mean square error
(RMSE) when the scaling factor is 2. For larger synthetic factors our RMSE values are slightly higher than those from [14],
but Figure 8 shows that our results are actually of better quality than the latter, so the RMSE values might not be as relevant
as the MAE ones.

3.4 Comparison against the State-of-the-art on a Public
Real-world Dataset

In Figure 9, we qualitatively compare our single-shot results
against the state-of-the-art, using the real-world DiLiGenT
photometric stereo dataset [18] (only one out the 96 images
of each object was used). To create noisy low-resolution
input depths with a scaling factor of 2, 4 and 8, the ground
truth depth is downsampled and Gaussian noise is then
added, as in the previous subsection.

On objects which match our assumption of a Lamber-
tian surface with piecewise-constant albedo (e.g., “bear”
and “pot1”), we obtain very satisfactory results. However,
the strong dependency of our approach on the piecewise-
constant albedo assumption is clearly visible in the “cat”
results, which are not as satisfactory: the dark structures in
the image are too thin to be appropriately interpreted as
piecewise-constant albedo areas and this creates artifacts in
the geometry.

Besides, the “cow”, “pot2” and “reading” results demon-
strate that our approach also strongly depends upon the
Lambertian assumption: the specular highlights in the im-
ages get propagated into the estimated depth. A natural
future extension of our method would thus be to cope with
such non-Lambertian effects, either by resorting to robust
estimation techniques [19], or by adapting our approach to
a non-Lambertian image formation model [20].

Nevertheless, and despite these important limitations,
our results remain qualitatively superior to those of the
state-of-the-art in all the experiments. This can also be
observed in the quantitative evaluation of Table 2, which
confirms the conclusions of the synthetic quantitative eval-
uation from Table 1.
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Fig. 9: Qualitative comparison between our single-shot results and those from the state-of-the-art, on the DiLiGenT
dataset [18] (the scaling factor is 4). Our approach outperforms the state-of-the-art in all the experiments.
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3D-shape SF [14] [15] [16] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

2 0.0066575 17.2655 – – 0.014616 27.9357 0.0047136 12.8781
bear 4 0.0065535 19.5072 0.8825 31.5392 0.028849 31.8918 0.0085904 14.8113

8 0.97126 76.4581 – – 0.055159 31.0276 0.018022 20.341
2 0.0099968 37.3338 – – 0.02972 69.0274 0.0080152 26.6017

buddha 4 0.0099935 39.1319 0.86352 36.8237 0.038584 68.6713 0.012027 31.0774
8 1.3683 71.2403 – – 0.047353 57.6881 0.019676 39.0075
2 0.0085294 23.3362 – – 0.028382 44.6708 0.0084811 18.8204

cat 4 0.0096136 27.826 0.80869 30.7428 0.042872 54.1746 0.01353 21.4786
8 0.015137 30.8242 – – 0.065853 53.4602 0.023393 25.3616
2 0.0086552 32.7633 – – 0.037772 59.2638 0.0049385 14.806

cow 4 0.0090334 33.8093 0.84557 33.7576 0.055621 55.3108 0.0089681 16.9767
8 0.010392 31.6684 – – 0.059261 53.5979 0.017596 21.03
2 0.01019 30.2473 – – 0.032588 59.1553 0.011007 23.0414

goblet 4 0.011121 31.1036 1.3435 34.0517 0.048727 56.7471 0.017208 24.2692
8 0.015451 36.2801 – – 0.084675 51.7091 0.031125 25.7217
2 0.014169 33.9026 – – 0.041792 66.3635 0.01594 31.1557

harvest 4 2.651 63.9349 0.75973 37.0383 0.05696 66.5893 0.023588 33.6957
8 115.5837 79.2204 – – 0.074651 50.9501 0.037176 35.9762
2 0.0077563 22.6961 – – 0.020767 48.3748 0.007147 16.9523

pot1 4 0.0086358 26.2298 0.72979 31.8426 0.03114 39.7103 0.010863 17.6975
8 0.013278 29.6214 – – 0.05537 38.9525 0.019307 19.9866
2 0.0081729 28.8295 – – 0.021455 50.4214 0.0055283 18.0749

pot2 4 0.0088839 32.7579 0.90388 33.4448 0.028528 28.5455 0.0088442 19.2421
8 0.014079 35.288 – – 0.054661 47.9005 0.01623 22.4169
2 0.011767 28.7648 – – 0.030566 53.4663 0.0097283 19.2611

reading 4 0.011428 30.4347 0.93384 31.764 0.047677 53.7065 0.015536 22.91
8 0.01607 32.2913 – – 0.071794 52.5448 0.028808 29.0107
2 0.0086552 28.8295 – – 0.02972 53.4663 0.0080152 18.8204

Median 4 0.0096136 31.1036 0.86352 33.4448 0.042872 54.1746 0.012027 21.4786
8 0.015451 35.288 – – 0.059261 51.7091 0.019676 25.3616
2 0.0095439 28.3488 – – 0.028629 53.1865 0.0083887 20.1769

Mean 4 0.30292 33.8595 0.89678 33.4449 0.042106 50.5941 0.013239 22.4621
8 13.112 46.988 – – 0.063197 48.6479 0.023481 26.5391

TABLE 2: Quantitative comparison between our single-shot results and those from the state-of-the-art, on the DiliGenT
dataset [18]. Our approach systematically outperforms the state-of-the-art, consistently with the conclusions from the
synthetic experiments drawn in Table 1.

3.5 Comparison against State-of-the-art Multi-view
Techniques on Publicly Available Real-world Datasets

Figure 10 shows four qualitative comparisons with
state-of-the-art multi-view approaches on publicly avail-
able datasets. The “Augustus”, “Lucy” and “Relief”
datasets [21] were created using a PrimeSense camera,
whereas “Gate” [22] was acquired using a Structure Sensor
for the iPad. The scaling factor for “Augustus”, “Relief” and
“Gate” is 2, whereas it is 1 for “Lucy” (in this case, our
approach only performs shading-based depth refinement
without super-resolution). Although our approach needs
significantly less data (a single RGB-D image) compared
to multi-view approaches, we are still able to recover fine
geometry close to the degree of detail of [21], [23]. Even
under more complex lighting, as for instance in the “Gate”
experiment, our approach can result in high-resolution
depth maps with fine-scale details.

3.6 Additional Comparison against State-of-the-art
Single-shot Techniques on Real-world Datasets we Cap-
tured Ourselves

Figure 11 shows additional qualitative comparison of single-
shot results, on data we captured using an Asus Xtion Pro
Live camera (scaling factor of 4). Once again, our approach
outperforms the state-of-the-art, even though under- or
over-segmentation of the reflectance may happen.

I ρ z0 [21]/ [23] Ours
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Fig. 10: Qualitative comparison against state-of-the-art
multi-view approaches. Although it uses a single RGB-D
frame, our approach results in depth maps whose quality is
comparable with those obtained using multi-view data.
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Fig. 11: Qualitative comparison of state-of-the-art single-view approaches on five real-world datasets captured with an
Asus Xtion Pro Live camera at resolution 1280× 960 for the RGB images and 320× 240 for the low-resolution depth.

The “Clothes” experiment illustrates a case where over-
segmentation of reflectance happens, but interestingly this
does not seem to impact depth recovery. Whenever color
gets saturated (some of the balls of “Wool”) or too low
(black areas in the “Blanket”), then minimal surface drives
super-resolution: the areas where brightness is not infor-
mative are simply smoothed out, which adds robustness.
Our method only fails when reflectance does not fit the

Potts prior, as shown in the “Failure” experiment. In this
case of an object with smoothly-varying reflectance, under-
segmentation of reflectance happens, and all the thin bright-
ness variations are interpreted in terms of geometry. Two
alternative strategies are investigated in this work to cope
with this issue: estimate reflectance without a piecewise-
constant prior (learning-based strategy), or actively control
lighting (photometric stereo-based strategy).
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Fig. 12: Qualitative comparison between our single-shot results and those from the state-of-the-art, on the datasets from
Figure 3 in the main paper. Our approach systematically outperforms the state-of-the-art. The rightest column shows 1D
depth profiles corresponding to the lines drawn on the 3D-shapes: although the depth estimated using all the methods
overall fit well together, ours is the only which provides reasonable fine-scale details.

Eventually, Figure 12 presents another qualitative com-
parison on the real-world data from Figure 3 in the main
paper (captured using a RealSense D415 camera). Note
that [14] seems to give good depth estimates whenever the
underlying assumption (an edge in the RGB image coincides
with an edge in the depth image) is met, cf. “Rucksack”
experiment, but it fails to provide detail-preserving depth
maps when reflectance is uniform or changes only slightly
(“Android” and “Minion” experiments), since it uses only
a sparse set of information from the RGB data. Unsur-

prisingly, the method from [15] cannot hallucinate surface
details, since it does not use the color image. The shading-
based depth refinement method of [16] does a much better
job at improving geometry, but it is largely overcome by the
proposed shading-based depth super-resolution approach,
because the latter uses information from a higher-resolution
RGB image.
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4 EVALUATION OF THE REFLECTANCE LEARNING-
BASED APPROACH

4.1 Creation of the Synthetic Data
Let us first recall that the reflectance learning-based ap-
proach was trained on data extracted from the ICT-3DRFE
Database [5]. In order to evaluate this approach, we consid-
ered two subjects from this database as well, each one en-
acting 10 different facial expressions. Of course, in order to
avoid any bias, these subjects were not used when training
the neural network.

The high-resolution RGB and low-resolution depth im-
ages were created in a similar manner as in the previous
section: high-resolution RGB images of the faces were ren-
dered at 512× 512 resolution from the ground truth albedo
and depth under first-order spherical harmonics lighting
l = [0, 0,−1, 0.2]>; and the low-resolution depth maps
were created by downsampling the ground truth depth by a
scaling factor of 2, 4 and 8. Zero-mean Gaussian noise with
standard deviation 1% the maximum RGB intensity was
then added to the RGB images, and zero-mean Gaussian
noise with standard deviation 10−4 the squared original
depth value (consistently with the real-world measurements
from [13]) was added to the low-resolution depth maps,
before quantisation.

These synthetic faces were then used for quantitative
evaluation of the proposed reflectance learning-based ap-
proach against the state-of-the-art and against the proposed
fully variational solution, as discussed in the next subsec-
tion.

4.2 Comparison against the State-of-the-art on the
Synthetic Dataset
We next evaluate our method, which first estimates re-
flectance using deep learning and then achieves variational
depth super-resolution using the RGB image, in compari-
son with end-to-end deep learning solutions for geometry
estimation.

For comparison, we first consider the method intro-
duced in [24], which is an end-to-end depth super-resolution
technique based on low-resolution depth data and high-
resolution RGB image, i.e. the same inputs as our methods.
It can be seen in Figure 13 that this end-to-end solution
fails to recover surface details which are visible in the RGB
image.

In order to evaluate the ability of deep networks to
reconstruct geometry from a single RGB image, similarly
to shape-from-shading techniques, we also show the results
of SfSNet [25], which is a deep learning-based method
estimating albedo and surface normals (which we further
integrated into a depth map using the quadratic integation
method discussed in [26]) out of a single RGB image.
SfSNet is limited to RGB images of size 128 × 128, so it
was evaluated only for a scaling factor of 4 and, since it
does not perform depth super-resolution, the ground truth
depth was downsampled for the quantitative evaluation
of this method. Figure 13 shows that reasonable results
can be expected using SfSNet, yet geometry is slightly
oversmoothed in comparison with what can be obtained
using the proposed combination of machine learning and
variational approaches.

Eventually, we compare this combined approach with
the fully variational one from the previous section. The latter
does not completely fail at recovering a reasonable geom-
etry, but since the estimated albedo is piecewise-constant
and departs significantly from the ground truth, artifacts
and noise are propagated to the estimated geometry. This is
confirmed by the quantitative evaluation in Table 3, which
clearly indicates that the proposed combination of machine
learning and variational methods is more efficient than both
end-to-end learning solutions from the state-of-the-art and
the proposed fully variational approach.

4.3 Qualitative Comparison against the State-of-the-art
on Real-world Datasets we Captured Ourselves

In Figure 14, we show additional qualitative comparisons
of our results against those from the state-of-the-art, on
the dataset from Fig. 5 in the main paper. This dataset
consists of RGB-D frames of human faces which we acquired
ourselves using an Intel Realsense D415 camera (the scaling
factor between the high-resolution RGB image and the low-
resolution depth map is 4).

This qualitative comparison validates the conclusions
from the synthetic experiment in the previous subsection:
combining variational and machine learning techniques
yields more detailed 3D-reconstructions than end-to-end
learning solutions based on neural networks for solving the
shape-from-shading [25] or the depth super-resolution [24]
problems.

4.4 Comparison against the State-of-the-art on a Public
Real-world Dataset

Eventually, we compare qualitatively in Figure 15, and
quantitatively in Table 4, the results of the proposed re-
flectance learning-based approach against those of the state-
of-the-art, on data extracted from the DiLiGenT dataset [18].
Note that the datasets are exactly the same as the ones used
for the evaluation of the fully variational solution in Figure 9
and Table 2, so that the results of the fully variational
solution and those of the combined approach can also be
compared.

Let us emphasize that the proposed reflectance learning-
based solution was trained on a faces dataset, while none
of the objects in this experiment resembles a face. Therefore,
this test is rather intended as a test of robustness, and we are
not expecting to overcome the results of the fully variational
solution.

Indeed, the results obtained with the combined approach
are both qualitatively and quantitatively less satisfactory on
this dataset than those obtained with the fully variational
solution. However, they remain surprisingly competitive, in
comparison with the state-of-the-art.

Obviously, such a combination of machine learning and
variational methods could still be improved by increasing
the size of the training database using multiple classes
of objects, but the present results already demonstrate its
potential.
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Fig. 13: Qualitative comparison of the results obtained using the deep learning-based depth super-resolution technique
from [24], the deep learning-based shape-from-shading approach from [25], the proposed variational approach to
shape-from-shading (denoted by SfS), and the proposed combination of deep learning and variational methods. The latter
seems the most effective, and this is confirmed by the quantitative evaluation provided in Table 3.
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Subject (S) Expression (E) SF [24] [25] Ours (SfS) Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

4

2 0.1572 48.3553 – – 0.1613 14.1551 0.1355 9.9354
0 4 0.13284 36.9774 0.6071 13.4647 0.10629 11.6301 0.086867 8.5443

8 0.63 38.0244 – – 0.24354 14.2278 0.19869 11.0617
2 0.15451 48.4316 – – 0.15824 15.2649 0.13413 10.6932

1 4 0.13069 36.4169 0.7185 14.3254 0.10972 12.8361 0.087058 9.5301
8 0.61295 35.7076 – – 0.25859 15.2818 0.20735 12.0648
2 0.15358 49.0454 – – 0.14589 14.516 0.14005 14.221

2 4 0.13266 37.1973 0.8821 18.5108 0.12322 13.9566 0.10993 13.2265
8 0.97825 38.8272 – – 0.27613 17.4243 0.25379 16.0565
2 0.15657 48.4417 – – 0.1614 14.776 0.14468 11.1379

3 4 0.13335 37.0725 0.8554 16.0271 0.11759 13.165 0.09558 10.604
8 0.95333 38.6755 – – 0.26179 15.8035 0.21567 13.0665
2 0.15155 48.3665 – – 0.14914 14.5008 0.13132 11.1096

4 4 0.13093 37.2093 0.6301 15.0882 0.1108 12.6113 0.091216 10.0432
8 0.81628 37.4412 – – 0.24872 15.1804 0.18053 12.4699
2 0.15404 47.7565 – – 0.17 15.3645 0.16346 13.0845

5 4 0.17413 37.2071 0.9004 18.8166 0.187 15.0677 0.16933 13.3297
8 0.81401 37.1801 – – 0.35861 18.885 0.31589 16.5856
2 0.15457 47.8468 – – 0.16725 14.4807 0.15373 12.0069

6 4 0.13863 36.681 0.8684 19.1934 0.14573 13.5136 0.12169 11.3427
8 0.49746 36.8001 – – 0.31234 17.0774 0.26064 14.4585
2 0.15476 48.4094 – – 0.17713 15.3454 0.1602 12.6357

7 4 0.18215 36.0914 0.8460 19.8673 0.18528 14.1876 0.15723 11.8129
8 0.82718 38.4132 – – 0.34986 17.1481 0.29932 14.3226
2 0.15437 48.3719 – – 0.15093 15.9026 0.13533 12.1738

8 4 0.13062 37.3586 0.4986 13.6524 0.107 13.3844 0.085065 10.5078
8 0.71791 37.543 – – 0.23366 15.5826 0.19305 12.6953
2 0.15989 49.2317 – – 0.15939 13.879 0.13843 11.097

9 4 0.13373 38.022 0.6107 14.3473 0.11108 12.4866 0.091548 9.9358
8 0.53732 36.8758 – – 0.25022 15.1722 0.20378 12.7385

11

2 0.16035 48.3088 – – 0.15248 15.1914 0.13971 9.7571
0 4 0.13743 36.6588 1.0125 11.8150 0.11775 12.5609 0.10129 8.6988

8 0.51743 32.4395 – – 0.26081 14.6577 0.22472 11.6671
2 0.15231 48.2292 – – 0.14523 15.381 0.13328 9.9593

1 4 0.12957 35.6881 0.8798 10.8757 0.11237 12.7309 0.097136 8.5511
8 0.52279 32.5115 – – 0.25173 14.7836 0.20387 11.6099
2 0.15548 47.5781 – – 0.15421 15.7925 0.14821 12.0207

2 4 0.1393 36.4907 0.9789 19.5521 0.13943 14.875 0.12114 11.8059
8 0.66616 36.1001 – – 0.30543 18.2869 0.26649 15.2768
2 0.16131 48.4766 – – 0.15472 15.3901 0.14409 10.0102

3 4 0.13652 36.0848 1.2922 13.2403 0.12219 13.3513 0.10614 8.9464
8 0.94169 37.7036 – – 0.27622 16.4698 0.2266 12.5186
2 0.15879 48.3293 – – 0.15457 15.0479 0.14001 10.8615

4 4 0.13926 36.8105 0.8897 12.7579 0.12404 13.557 0.10533 9.5906
8 0.72556 35.9876 – – 0.27086 15.786 0.22974 12.7579
2 0.16252 47.6152 – – 0.16964 17.0446 0.15787 10.6522

5 4 0.15556 36.695 1.1557 14.7778 0.17783 15.3102 0.15392 10.6452
8 0.81958 35.1608 – – 0.32727 18.6277 0.28649 14.4657
2 0.15936 48.2603 – – 0.15054 15.5422 0.14255 10.4559

6 4 0.13906 36.2701 0.7581 13.9221 0.13145 13.7609 0.1157 9.8813
8 0.68759 35.3423 – – 0.29362 18.0689 0.25192 14.3041
2 0.15783 46.3708 – – 0.19123 16.3544 0.17274 10.4441

7 4 0.20118 35.1363 1.2066 18.6458 0.23771 16.3544 0.20955 11.5822
8 0.73165 35.5369 – – 0.41273 19.1395 0.36912 14.8272
2 0.1601 48.3084 – – 0.14637 18.5782 0.12985 13.3089

8 4 0.13852 37.6211 0.7112 13.2194 0.11509 15.9898 0.095155 11.6081
8 0.78491 37.1651 – – 0.25296 18.0263 0.20633 14.3745
2 0.15292 48.2978 – – 0.13997 14.5447 0.12648 10.2274

9 4 0.13424 36.6469 0.9484 12.6980 0.11997 13.0994 0.10137 9.4048
8 0.63803 34.7198 – – 0.26044 15.9719 0.21383 12.7267

Median
2 0.15693 48.3609 – – 0.15494 15.1423 0.14043 11.0633
4 0.13568 36.769 0.8741 14.3363 0.11767 13.1322 0.10094 9.9086
8 0.72174 36.838 – – 0.26285 15.7971 0.22566 12.7326

Mean
2 0.15694 48.2983 – – 0.15773 15.3515 0.1432 11.1919
4 0.14095 36.7644 0.8625 15.2399 0.12908 13.4354 0.10935 10.1732
8 0.72675 36.4789 – – 0.27802 16.2705 0.23276 13.117

TABLE 3: Quantitative comparison between two state-of-the-art methods, the proposed fully variational approach based
on shape-from-shading (denoted by SfS), and the proposed combination of deep learning and variational methods, on the
synthetic dataset. The combined solution is the most effective.
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Fig. 14: Qualitative comparison of our reflectance learning-based results against state-of-the-art methods, on six RGB-
D frames of human faces which we captured using an Intel RealSense D415 camera (scaling factor of 4). Our method
provides the most detailed 3D-reconstructions.
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Fig. 15: Qualitative comparison between our method combining deep learning and variational methods, and state-of-the-
art deep learning-based methods, on the DiLiGenT dataset [18] (the scaling factor is 4). Our approach outperforms the
state-of-the-art in all the experiments.
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3D-shape SF [24] [25] Ours
RMSE MAE RMSE MAE RMSE MAE

2 0.010946 62.708 – – 0.0046569 22.5961
bear 4 0.010609 49.8753 0.1096 41.9262 0.0086235 23.2417

8 0.012821 36.8812 – – 0.018246 30.7021
2 0.011778 63.0557 – – 0.0082909 29.6526

buddha 4 0.012539 52.2028 0.0518 40.1120 0.011945 33.5974
8 0.015423 45.132 – – 0.019568 41.0636
2 0.013194 62.903 – – 0.008389 15.1466

cat 4 0.0137 50.278 0.0647 36.9720 0.013534 19.1494
8 0.015258 38.3265 – – 0.023363 26.7149
2 0.011679 64.5302 – – 0.0053628 17.6086

cow 4 0.011237 50.6826 0.0562 39.3336 0.0092811 18.8318
8 0.014157 42.9122 – – 0.017689 21.1007
2 0.013153 61.8508 – – 0.011713 30.1888

goblet 4 0.01379 48.7097 0.1414 36.4712 0.017615 29.6286
8 0.016659 36.6476 – – 0.03133 28.7208
2 0.0167 64.113 – – 0.016649 39.602

harvest 4 0.019409 53.9958 0.1757 54.1461 0.024208 41.0901
8 0.028625 44.4953 – – 0.037441 41.1994
2 0.011218 61.9779 – – 0.0070793 18.4819

pot1 4 0.011597 50.0199 0.1051 35.0139 0.010794 18.6248
8 0.01495 40.4749 – – 0.019198 20.5408
2 0.010693 61.9083 – – 0.0057831 20.0908

pot2 4 0.011123 50.5484 0.0575 32.0884 0.0090011 20.7887
8 0.014105 40.3902 – – 0.016243 23.1403
2 0.012058 61.2583 – – 0.0098101 20.5263

reading 4 0.012927 49.0756 0.0817 55.4988 0.015531 24.2634
8 0.017714 41.0243 – – 0.028793 28.8291
2 0.011778 62.708 – – 0.0082909 20.5263

Median 4 0.012539 50.278 0.0732 38.1528 0.011945 23.2417
8 0.015258 40.4749 – – 0.019568 28.7208
2 0.01238 62.7006 – – 0.0086371 23.766

Mean 4 0.012992 50.5987 0.0918 41.2045 0.013392 25.4684
8 0.016635 40.6982 – – 0.023541 29.1124

TABLE 4: Quantitative comparison between other state-of-the-art methods and our method combining machine learning
and variational methods. Although the results are not as accurate as the fully variational solution (cf. Table 2), since none
of the objects here resembles the faces from the training database, they remain superior to the state-of-the-art.

5 EVALUATION OF THE MULTI-SHOT APPROACH
BASED ON PHOTOMETRIC STEREO

5.1 Creation of the Synthetic Data

In order to quantitatively evaluate the proposed photo-
metric stereo-based solution, we consider the same four
3D-shapes as in the shape-from-shading experiments, i.e.
“Lucy”, “Thai Statue”, “Armadillo” and “Joyful Yell”.
However, this time we consider much more complex
albedo maps since the multi-shot approach is not lim-
ited to piecewise-constant albedos. The albedo maps we
consider are “ebsd”1, “mandala”2 and “rectcircle”. The
rest of the process for creating the dataset (rendering the
high-resolution RGB and low-resolution depth images, and
adding noise) is exactly the same as for shape-from-shading,
except that multiple RGB images are acquired under ran-
domly varying lighting. Three RGB images of each dataset
under three different illumination conditions are presented
in Figure 16, and the corresponding depth maps are those
from Figure 6.

1. https://mtex-toolbox.github.io/files/doc/EBSDSpatialPlots.html
2. http://www.cleverpedia.com/mandala-coloring-books-20-

coloring-books-with-brilliant-kaleidoscope-designs/

5.2 Selecting the Number of Images and Tuning the
Hyper-parameters

Figure 17 illustrates the effect of the hyper-parameter γ
on shape and reflectance estimation. For this purpose, we
consider sets of n = 10 images from the Joyful Yell dataset,
and evaluate the RMSE and MAE on depth, as well as
the RMSE on albedo, as functions of the number of input
images. As can be seen, when γ → 0 the estimated depth
map sticks to the noisy input, thus results are deceiving.
But as soon as γ is large enough, photometric stereo drives
super-resolution and the accuracy dramatically increases.
Interestingly, results remain stable even when λ → ∞. This
tends to indicate that the ambiguities of uncalibrated pho-
tometric stereo vanish as soon as a depth prior is available:
it is not necessary to seek a compromise between the depth
prior and the photometric 3D-reconstruction, only to plug
the information from the former into the latter.

Next, we evaluate the number n of input RGB im-
ages which would result in the best compromise between
accuracy of the 3D-reconstruction and runtime. For this
purpose, we consider once again the Joyful Yell synthetic
dataset, and evaluate the RMSE and MAE on depth, the
RMSE on albedo and the total runtime required to attain
convergence, as functions of n. As can be seen in Figure 18,
the accuracy of the estimation very quickly increases with
n, while the runtime increases linearly with n. Overall, the
choice n ∈ [10, 30] seems to represent a good compromise.

https://mtex-toolbox.github.io/files/doc/EBSDSpatialPlots.html
http://www.cleverpedia.com/mandala-coloring-books-20-coloring-books-with-brilliant-kaleidoscope-designs/
http://www.cleverpedia.com/mandala-coloring-books-20-coloring-books-with-brilliant-kaleidoscope-designs/
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Lucy [11] Thai Statue [11] Armadillo [11] Joyful Yell [12]
“ebsd” albedo “ebsd” albedo “mandala” albedo “rectcircle” albedo

Fig. 16: Illustration of the synthetic RGB data used for quantitatively evaluating the multi-shot depth super-resolution
approach based on photometric stereo. Each row represents a different illumination condition. Remark that much more
complex albedo maps are considered, in comparison with the ones used in the single-shot approach, cf. Figure 6.
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Fig. 17: Impact of the parameter γ on the accuracy of the albedo and depth estimates using our multi-shot photometric
stereo approach (n = 10 in this experiment). Based on these results, the value γ = 0.01 was retained.
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Fig. 18: Impact of the number of images n on the accuracy of the albedo and depth estimates using our multi-shot
photometric stereo approach (γ = 0.01 in this experiment). The range n ∈ [10, 30] represents a reasonable compromise
between accuracy and runtime.

5.3 Comparison against the State-of-the-art on the
Synthetic Dataset

Next, we compare our multi-shot approach against the state-
of-the-art, on all the synthetic datasets (consistently with the
results from the previous subsection, n = 20 images are
considered for each dataset, and γ = 0.01 in all the exper-
iments). Our results are expected to overcome both pure
depth super-resolution and pure uncalibrated photometric
stereo, as well as single-shot depth refinement methods
acting on low-resolution data.

To highlight the interest of an explicit photometric
model, we first compare our results against an image-
based multi-shot depth super-resolution approach adapted
from [27], [28]. It is a personal combination of these papers
which achieves variational depth super-resolution by fusing
the n low-resolution depth maps, while regularising the
gradient of the estimated high-resolution depth map in
an anisotropic manner. Here, the anisotropy coefficient is
derived from the gradients of the RGB image. This approach
is thus a “pure depth super-resolution” one, which uses
RGB clues but without any explicit photometric model.

In contrast, we also consider the “pure” uncalibrated
photometric stereo method from [29], which estimates light-
ing, albedo and high-resolution geometry from the n high-
resolution RGB images. In this method, an explicit photo-
metric model is used, as in ours, yet no low-resolution depth
clue is considered hence the underlying bas-relief ambiguity
may affect the quality of the results.

As in the evaluation of the shape-from-shading-based
approach from Section 3, we also show the results of RGB-D
refinement [16] applied to the low-resolution RGB-D frame,
selecting one image out of n.

The qualitative comparison in Figure 19, and the quanti-
tative ones in Table 5, show that our methods result in much
more satisfactory high-resolution geometry, in comparison
with these methods. This proves that using an explicit
model for driving image-based depth super-resolution, and
using low-resolution depth clues to disambiguate uncali-
brated photometric stereo, both are worthwile.
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Fig. 19: Qualitative comparison of our multi-shot approach against state-of-the-art methods, on four synthetic datasets
(scaling factor of 4). Image-based depth super-resolution adapted from [27], [28] results in noisy geometry, uncalibrated
photometric stereo results from [29] are slightly flattened due to the underlying bas-relief ambiguity, and RGB-D fusion [16]
of the low-resolution data is not really successful here. In comparison, the results of the proposed method are extremely
satisfactory.
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Albedo 3D-shape SF Image Based depth SR [29]∗ [16] Ours
RMSE MAE RMSE MAE RMSE MAE RMSE MAE

mandala

2 0.031468 46.4149 0.51996 17.4225 0.4320 69.7311 0.023266 2.883
Armadillo 4 0.042467 43.5403 – – 0.3948 63.7382 0.037789 2.8391

8 0.088849 42.6184 – – 0.5961 83.7853 0.073928 2.9196
2 0.043889 46.4903 0.37197 15.7192 0.4755 84.6189 0.036334 3.5842

Lucy 4 0.065857 44.0677 – – 0.4951 82.0516 0.051316 3.6142
8 0.12668 42.8905 – – 0.5231 64.7317 0.084713 4.7864
2 0.048887 45.0552 1.0735 14.2243 0.3757 70.2724 0.044198 3.3143

Joyful Yell 4 0.069088 42.644 – – 0.2985 55.6927 0.063392 3.6407
8 0.13103 40.0426 – – 0.4240 44.2549 0.1046 3.753
2 0.032432 47.8575 0.37738 13.372 0.4615 70.3271 0.022446 3.579

Thai Statue 4 0.053061 45.5618 – – 0.4211 90.2134 0.036245 3.6985
8 0.094911 43.838 – – 0.3371 53.2791 0.049733 4.1133

rectcircle

2 0.028459 41.506 0.52582 18.0902 0.2844 55.3096 0.020885 2.0047
Armadillo 4 0.038966 38.7345 – – 0.3031 48.1000 0.035145 1.9458

8 0.11182 36.3801 – – 0.5805 80.4625 0.073139 2.1436
2 0.040635 42.3051 0.32285 13.6126 0.4868 85.9076 0.026858 1.8617

Lucy 4 0.062747 39.0783 – – 0.4685 75.9166 0.041968 2.2851
8 0.12325 37.956 – – 0.3767 56.5020 0.075311 3.8793
2 0.045765 39.9946 0.84162 11.4847 0.2012 41.3053 0.038698 2.7879

Joyful Yell 4 0.064537 37.1175 – – 0.3189 37.2107 0.053871 3.1022
8 0.09492 34.7218 – – 0.4432 36.3990 0.084381 3.2463
2 0.030859 44.4276 0.38981 13.3935 0.2625 66.0562 0.018374 2.1086

Thai Statue 4 0.045516 41.7235 – – 0.3151 85.4734 0.028457 2.2876
8 0.10507 39.7697 – – 0.2389 55.0568 0.041552 3.0519

ebsd

2 0.031939 46.9515 0.49466 16.3427 0.3473 65.4823 0.021037 2.0398
Armadillo 4 0.04424 44.2571 – – 0.5933 58.6932 0.036102 2.0035

8 0.10062 42.2539 – – 0.6453 81.5187 0.073138 1.8159
2 0.04299 47.5844 0.32989 13.0463 0.4141 84.9623 0.028555 1.9483

Lucy 4 0.072388 44.5851 – – 0.4541 75.3771 0.04325 2.1771
8 0.16385 42.4252 – – 0.6460 74.8618 0.079427 3.6839
2 0.049515 46.0065 1.0052 13.1767 0.2645 55.3462 0.034162 2.1722

Joyful Yell 4 0.069491 43.4654 – – 0.2770 42.4242 0.04818 2.3335
8 0.11255 40.9818 – – 0.4589 38.8507 0.073515 2.5774
2 0.03307 48.7666 0.30254 12.0112 0.2371 69.6653 0.019305 2.3639

Thai Statue 4 0.046843 45.6104 – – 0.2792 77.7622 0.029185 2.4529
8 0.089646 43.7591 – – 0.2847 64.3520 0.041307 2.9642
2 0.036853 46.2107 0.44223 13.503 0.12186 45.0229 0.025062 2.2681

Median 4 0.057904 43.5029 – – 0.18929 41.3767 0.039879 2.3932
8 0.10844 41.6178 – – 0.31159 41.3102 0.073722 3.1491
2 0.038326 45.28 0.54626 14.3246 0.11516 42.7392 0.027843 2.554

Mean 4 0.056267 42.5321 – – 0.18488 40.6331 0.042075 2.6984
8 0.11193 40.6364 – – 0.29819 40.1205 0.071228 3.2446

TABLE 5: Quantitative comparison of the results attained with the proposed multi-shot approach and the state-of-the-art (∗:
to make the comparison fair, we run the algorithm of [29] on the high resolution RGB images, as it performs uncalibrated
photometric stereo on the RGB images without super-resolution – the scaling factor is thus actually 1 in this case). Our
approach overcomes the state-of-the-art in all the experiments.

5.4 Qualitative Comparison against the State-of-the-art
on Real-world Datasets we Captured Ourselves

Figure 20 shows four qualitative comparisons against the
state-of-the-art, on real-world data from Figures 1 and 6 in
the main paper, which was captured with an Asus Xtion Pro
Live camera (scaling factor of 4).

It can be seen that image-based depth super-resolution
approach hallucinates reflectance information as geometric
information, since the underlying concept allows larger
depth variations where strong image gradients are present.
The uncalibrated photometric stereo results from [29] con-
tain much more relevant details, but the approach clearly
suffers from a low-frequency bias due to the underlying bas-
relief ambiguity, cf. “Tablet Case” and “Vase”. In these ex-
periments the RGB-D fusion results from [16] are reasonable,
but not as accurate as the ones obtained with the proposed
multi-shot approach.

5.5 Comparison against the State-of-the-art on a Public
Real-world Dataset

Eventually, we compare our results against the state-of-the-
art on the DiLiGenT dataset [18]. Qualitative results are
presented in Figure 21, and quantitative ones in Table 6.
Once again, our method most of the times overcomes the
state-of-the art in terms of surface details recovery. It is also
interesting to compare these results with the corresponding
ones in the previous sections: this comparison clearly shows
that resorting to a multi-shot strategy based on photometric
stereo is the only way to cope with general reflectance.

Still, it can be observed that even with redundant data,
some results such as the “harvest” one remain somewhat
disappointing: this is because the proposed method explic-
itly builds upon the Lambertian assumption, which is not
met in this example. Future extensions could thus include
coping with non-Lambertian phenomena.
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Fig. 20: Comparison between the proposed multi-shot method and the state-of-the-art, on real-world datasets captured
using an Asus Xtion Pro Live camera. These results confirm the conclusion of the synthetic experiments in Figure 19.
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Fig. 21: Qualitative comparison of our uncalibrated photometric stereo-based approach against state-of-the-art methods,
on the DiLiGenT dataset [18] (the scaling factor is 2). Our method overcomes the state-of-the-art in all the experiments.
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3D-shape SF [27], [28] [29]∗ Ours
RMSE MAE RMSE MAE RMSE MAE

2 0.0077882 23.2799 0.029124 8.65 0.0064907 7.056
bear 4 0.0077919 19.6628 – – 0.0083983 7.2645

8 0.0079796 23.8495 – – 0.013453 7.0708
2 0.0077863 31.0075 0.041827 18.0718 0.0066078 12.7816

buddha 4 0.0078303 28.5663 – – 0.0077671 13.0276
8 0.0076309 20.1206 – – 0.012959 13.6987
2 0.0078205 24.5162 0.039112 11.0118 0.008108 6.1952

cat 4 0.0076492 20.6365 – – 0.010542 6.5739
8 0.0078364 21.2045 – – 0.015403 7.3812
2 0.0078497 31.5175 0.030244 18.1343 0.0055052 10.4445

cow 4 0.007844 26.7532 – – 0.0083455 11.3151
8 0.0085472 17.225 – – 0.015231 12.7818
2 0.0078938 32.2235 0.13005 71.5669 0.010771 11.16

goblet 4 0.0078725 29.261 – – 0.015434 11.6484
8 0.008322 24.9651 – – 0.030694 13.9542
2 0.0078757 32.6288 0.06847 29.3081 0.024211 30.4736

harvest 4 0.0078363 30.6866 – – 0.029344 31.9109
8 0.0077605 33.427 – – 0.040837 33.5636
2 0.0078648 25.4586 0.01869 10.3055 0.0063032 7.3048

pot1 4 0.0078397 22.6612 – – 0.0080599 7.514
8 0.0079306 30.9277 – – 0.014455 7.9022
2 0.0077881 29.7433 0.022896 14.5031 0.0048177 9.4492

pot2 4 0.0080123 26.261 – – 0.0066391 9.5829
8 0.0076366 21.8009 – – 0.012587 10.0768
2 0.0077277 29.1401 0.069057 25.0014 0.0098433 16.7382

reading 4 0.0076277 26.4486 – – 0.014885 19.6366
8 0.0078612 18.6829 – – 0.027963 23.2138
2 0.0078205 29.7433 0.039112 18.0718 0.0066078 10.4445

Median 4 0.0078363 26.4486 – – 0.0083983 11.3151
8 0.0078612 21.8009 – – 0.015231 12.7818
2 0.0078216 28.835 0.049941 22.9503 0.0091842 12.4004

Mean 4 0.0078115 25.6597 – – 0.012157 13.1638
8 0.007945 23.5781 – – 0.020398 14.4048

TABLE 6: Quantitative Comparison between other state-of-the-art methods and our multi-shot approach based on
photometric stereo (∗: to make the comparison fair, we run the algorithm of [29] on the high resolution RGB images,
as it performs uncalibrated photometric stereo on the RGB images without super-resolution – the scaling factor is thus
actually equal to 1 in this case). Our approach overcomes the state-of-the-art in terms of the level of geometric details
which can be recovered, while being only slightly less accurate in terms of overall RMSE fit.

6 UNIFIED COMPARISON OF OUR RESULTS ON A
PUBLIC REAL-WORLD DATASET

Eventually, we present in Figure 22 a unified qualitative
comparison of the results obtained with the three proposed
methods, on the 9 objects of the DiLiGenT dataset [18].
This dataset illustrates well the cases where the single-shot
approach can be used (when reflectance is uniform, as for
instance in the “bear” example) and when it completely
fails because the piecewise-constant albedo assumption is
not satisfied (e.g., “Cat”). This method could thus still be
improved by designing a more general reflectance prior.
The multi-shot approach based on uncalibrated photomet-
ric stereo estimates a much more reasonable albedo map,
and thus a much more satisfactory depth map, because
it does not rely on any assumption regarding piecewise-
constantness. Yet, it could still be improved in order to
reduce artifacts due to specularirites (e.g., “reading”). Even-
tually, the albedo estimated by deep learning is sometimes
reasonable (e.g., “buddha”), but most of the times it is
not really satisfactory. This is because the objects do not
resemble the training set, which consists only of faces: to
cope with a wider variety of objects, the training dataset
should contain a broader range of object classes.

7 CONCLUSION

We evaluated in depth the applicability of photometric tech-
niques to resolve depth super-resolution in the context of
RGB-D sensing. Multiple self-captured real-world, publicly
available real-world and self-generated synthetic datasets
were used in order to qualitatively and quantitatively com-
pare the three proposed strageties against state-of-the-art
variational, optimization-based and deep learning methods.
It appeared that each of the three proposed methods beats
the corresponding state-of-the-art ones, which provides an
empirical evidence for the soundness of considering pho-
tometry as a valuable clue for depth super-resolution in
RGB-D sensing.

In order to have at hand a unified comparison of the
three methods presented in this work, we also considered a
publicly available real-world photometric stereo benchmark
across all experimental sections. This permitted us to clearly
highlight the respective strengths and weaknesses of each
method. They could still be improved towards, respectively,
a more general reflectance prior (single-shot strategy), a
broader training dataset (reflectance learning), and the han-
dling of specularities (uncalibrated photometric stereo).
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Fig. 22: Comparison of the albedo and high-resolution depth maps estimated by the proposed variational approach to
shape-from-shading (SfS), the combination of SfS and deep reflectance learning, and the uncalibrated photometric stereo
(UPS)-based approach, on the DiLiGenT dataset [18]. For quantitative evaluation, we refer the reader to Tables 2, 4 and 6.
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