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A. Details on importance sampling (Section
3.4.2)

This section discusses the technical implementation de-
tails on an efficient sampling strategy to evaluate

Ind (p;ϕ,ψ) :=

∫
H2

fnd (x, ω, ωo;ϕ,ψ)L (x, ω) 〈ω,n〉dω.

(1)

Importance sampling is a powerful tool to estimate the inte-
gral in (1) and we refer the interested reader to [9], Chapter
13 for the mathematical reasoning behind it. The Monte-
Carlo estimator used for Eqn. (1) using the non-diffuse part
of the simplified Disney BRDF is the finite sum of the form,

Ind(p;ϕ,ψ)=
1

N

N∑
j=1

fnd(x,Ωj ,ωo;ϕ,ψ)L(x,Ωj)〈Ωj ,n〉
p(Ωj)

,

(2)

where the random variables Ωj are samples drawn from the
probability density function p(ω). We expect, i.e. given
enough samples N ,

E [Ind (p;ϕ,ψ)] = Ind (p;ϕ,ψ) , ∀p, ϕ, ψ. (3)

The probability density function used in our approach is

p (ω) =
1

2

|〈ω,n〉|
π

+
1

2

D (ϕ) |〈h,n〉|
4 |〈ωo, h〉|

. (4)

To evaluate (2), we need to be able to sample random vari-
ables Ωj from p(ω) and we realize this the following way:
Given the j-th observation of random variables following a
uniform distribution over [0, 1), Xj

0 , X
j
1 , X

j
2 ∼ U(0, 1), we

calculate a sample of incident direction as

Ωj =

{
TsH2(Xj

1 , X
j
2), Xj

0 <
1
2 ,

R(ωo, Ths(X
j
1 , X

j
2)), else,

(5)

where R(ωo, h) = 2 〈ωo, h〉h−ωo resembles the reflection
of ωo on h, and T := (t1, t2, t3) ∈ R3×3 is an orthonormal
basis transform in the normal’s coordinate system, aligning
the north pole ofH2 with the normal n,

t1 = t2 × t3 (6)

t2 =


(−ny,nx,0)

>

‖(−ny,nx,0)‖ , |nx| > |nz| ,
(0,−nz,ny)

>

‖(0,−nz,ny)‖ , else,
(7)

t3 = n. (8)

To sample the diffuse lobe of the BRDF (the case when
Xj

0 < 1
2 in (5)), we generate random samples on the up-

per hemisphereH2 using sH2 : [0, 1)2 → H2,

sH2(x1, x2) =

 s1
s2√

max (0, 1− s21 − s22)

 , (9)

with s1 :=
√
x1 cos (2πx2) and s2 :=

√
x1 sin (2πx2).

The non-diffuse lobe of the BRDF (the case when Xj
0 ≥ 1

2
in (5)) is sampled using hs : [0, 1)2 → H2,

hs(x1, x2) =

sin (θ) cos (2πx1)
sin (θ) sin (2πx1)

cos (θ)

 , (10)

with θ := cos−1
(√

1−x2

1+(ϕ̂2−1)x2

)
.

B. Details on capturing process (Section 4)
We perform two full scans of a room sized environment,

where camera poses are recovered using SLAM [2, 7], ge-
ometry is reconstructed with [8]. In a post-processing step
we fill larges holes manually or using Poisson reconstruc-
tion [4, 5] and repair any remaining issues automatically
using [3]. Object segmentation is carried out in a manual
step.



C. Further quantitative results on albedo and
shading estimation validation (Section 4.1)

Additional qualitative results of the albedo and shading
estimation applied to real-world data sets are shown in Fig-
ure 1.

D. Further quantitative results on specular
appearance estimation validation (Section
4.2)

This section discusses further quantitative results of
the specular appearance estimation for novel views. The
main paper depicts quantitative results as well as a quali-
tative visualization of notable peaks in the corresponding
graph on the “Office 1” sequence of [11]. For full in-
sight, we show the results on the remaining sequences of
the Replica datasets [11], cp. Figure 2 for insight in the
“Office” sequences using the L2 metric, Figure 3 for in-
sight in the “Office” sequences using the FLIP evaluator [1],
Figure 4 for insight in the “Room” sequences using the L2

metric, and Figure 5 for insight in the “Room” sequences
using the FLIP evaluator [1].
Figures 2 and 3 show results on the “Office” sequences
of [11], they consist of 1293, 2117, 2459, and 2101 frames,
which include 24, 38, 43, and 31 target frames, respectively,
thus incorporating 1269, 2079, 2416, and 2070 novel, un-
seen viewpoints. The “Office 0”, “Office 2”, “Office 3”,
and “Office 4” sequences have their largest improvement
and deterioration for the L2 error at frames (1264, 243),
(629, 910), (1799, 2319), and (1899, 1903), respectively
and are visualized for qualitative inspection in Figure 2. The
same sequences have their largest improvement and deteri-
oration for the FLIP evaluator [1] at frames (1263, 163),
(1801, 1107), (1799, 637), and (1899, 1929), respectively
and are visualized for qualitative inspection in Figure 3.

Figure 4 shows results on the “Room” sequences of [11],
they consist of 2642, 1828, and 1789 frames, which in-
clude 51, 33, and 34 target frames, respectively, thus incor-
porating 2591, 1795, and 1755 novel, unseen viewpoints.
The “Room 0”, “Room 1”, and “Room 2” sequences have
their largest improvement and deterioration for the L2 er-
ror at frames (1856, 1203), (31, 114), and (604, 118), re-
spectively and are visualized for qualitative inspection in
Figure 4. The same sequences have their largest improve-
ment and deterioration for the FLIP evaluator [1] at frames
(1552, 1204), (31, 83), and (656, 118), respectively and are
visualized for qualitative inspection in Figure 5.

Overall, the average reconstruction error decreases for
all experiments and validates our findings described in Sec-
tion 4.2.1 on a larger scale. This can also be seen qualita-
tively; note the overall increase of realism, for the improve-
ments, due to view-dependent effects, while the deteriora-
tions seem to be only slightly worse than the baseline, but

still visually pleasing to the human eye – an effect desired
in AR/VR/MR applications.

Further quantitative results on the Room sequences
of [11] are shown in Figure 6. For specular highlights that
seem too wide such as the vase in “Room 0” our reconstruc-
tions still look more faithful compared to a purely diffuse
one. Notice that the anisotropic BRDF of the window blinds
in “Room 2” is difficult to recover with our approach as we
do not model this effect. Instead, we estimate an isotropic
approximation of it, which still looks realistic.

Robustness against inaccurate geometry can affect the
final reconstruction in accuracy and realism. Figure 3 “Of-
fice 3” shows how specularities are misplaced and BRDF
estimates too rough, if the geometry (clock) is inaccurate
at the location of reflection. Figure 4 and 5 “Room 1” and
Figure 6 “Room 0” and “Room 1” show results were differ-
ent levels of deteriorated geometry affects the non-diffuse
BRDF estimate. While the vase in “Room 1” is almost dif-
fuse, the vase in “Room 0” shows specular reflections, al-
though not as strong as the capture. The reason for both
failures are caused by an estimated specular highlight hav-
ing no overlap with the genuine reflection, cp. the error
maps in Figure 6 “Room 0”, the specular reflections are not
perfectly superimposed.

E. Further Relighting results (Section 4.3)

Further renderings under novel lighting with artificially
placed objects are shown in Figure 7.

F. Attached video file

The video file attached to the supplementary material
shows a number of video renderings of our results as well
as comparisons to the baseline. This video is encoded with
the H.264 codec in an MP4 container. Some of the images
shown in the video will have a somewhat grainy appearance
- this is caused by the relatively simple path tracer we im-
plemented for visualizing the results of our approach, rather
than being an intrinsic part of the estimated appearance.
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K. Åström, and M. D. Fairchild. Flip: a difference eval-
uator for alternating images. Proceedings of the ACM on
Computer Graphics and Interactive Techniques (HPG 2020),
3(2), 2020. 2, 5, 7, 8

[2] J. Engel, V. Koltun, and D. Cremers. Direct sparse odometry.
IEEE transactions on pattern analysis and machine intelli-
gence, 40(3):611–625, 2017. 1

[3] W. Jakob, M. Tarini, D. Panozzo, and O. Sorkine-
Hornung. Instant field-aligned meshes. ACM Trans. Graph.,
34(6):189–1, 2015. 1



R
oo

m
0

R
oo

m
1

R
oo

m
2

Input Albedo estimate Shading estimate
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Figure 2. Overall Mean L2 error across the “Office” datasets of [11] along with the largest improvement, deterioration and the correspond-
ing L2 error maps.
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Figure 3. Overall Mean FLIP [1] error across the “Office” datasets of [11] along with the largest improvement, deterioration and the
corresponding FLIP error maps.
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Figure 4. Overall Mean L2 error across the “Room” datasets of [11] along with the largest improvement, deterioration and the correspond-
ing L2 error maps.
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Figure 5. Overall Mean FLIP [1] error across the “Room” datasets of [11] along with the largest improvement, deterioration and the
corresponding FLIP error maps.
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Figure 6. Side-by-side comparisons between the diffuse and the proposed reconstruction along with the ground truth and the corresponding
L2 errors and FLIP evaluator [1]. Adding the proposed specular appearance estimate makes reconstructions more realistic.

Figure 7. Complete synthetic relighting of different data sets (Office 0, Room 0 and Room 1 [11]) with additional virtually placed ob-
jects [10, 6].


