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Abstract

Humans are able to look at a large number of images,
find similarities and group images together by an abstract
understanding of the content. Researchers have been try-
ing to implement such unsupervised learning schemes for a
long time: Given a dataset, e.g. images, find a rule to as-
sign each example to one of k clusters. We propose a novel
training schedule for neural networks that facilitates fully
unsupervised end-to-end clustering that is direct, i.e. out-
puts a probability distribution over cluster memberships.

A neural network maps images to embeddings. We in-
troduce centroid variables that have the same shape as im-
age embeddings. These variables are jointly trained with
the network’s parameters. This is achieved by a cost func-
tion that associates the centroid variables with the embed-
dings of input images. Finally, an additional layer maps
embeddings to logits allowing for the direct estimation of
the respective cluster membership. Unlike other methods,
this does not require any additional classifier to be trained
on the embeddings in a separate step.

The proposed approach achieves state-of-the-art results
in unsupervised classification and we provide an extensive
ablation study to demonstrate its capabilities.

1. Introduction

1.1. Towards direct deep clustering

Deep neural networks have shown impressive potential
on a multitude of computer vision challenges [37, 8, 38,
36, 6, 28]. A fundamental limitation in many applications
is that they traditionally require huge amounts of labeled
training data. To circumvent this problem, a plethora of
semi-supervised and unsupervised training schemes have
been proposed [5, 7, 24, 18]. They all aim at reducing the
number of labeled data while leveraging large quantities of
unlabeled data.

Figure 1: Associative deep clustering. Images (xi) and
transformations of them (τ(xj)) are sent through a CNN
in order to obtain embeddings z. We introduce k centroid
variables µk that have the same dimensionality as the em-
beddings. Our proposed loss function simultaneously trains
these centroids and the network’s parameters along with a
mapping from embedding space to a cluster membership
distribution.

It is an intriguing idea to train a neural network without
any labeled data at all by automatically discovering struc-
ture in data given as minimal prior knowledge the number of
classes. In many real-world applications beyond the scope
of academic research, it is desired to discover structures in
large unlabeled data sets. When the goal is to separate date
into groups, this maneuver is called clustering. Deep neu-
ral networks are the model of choice when it comes to im-
age understanding. In the past, however, deep neural net-
works have rarely been trained for clustering directly. A
more common approach is feature learning. Here, a proxy
task is designed to generate a loss signal that can be used
to update the model parameters in an entirely unsupervised
manner. An exhaustive comparison of previous works is
collected in Section 1.2. All these approaches aim at trans-
forming an input image xi to a representation or embedding
zi that allows for clustering the data. In order to perform
this last step, a mapping from embedding space to clusters
is necessary, e.g. by training an additional classifier on the
features, such as k-means [27] or an SVM [35] in a separate
step.

A common problem in unsupervised learning is that
there is no signal that tells the network to cluster different
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examples from the same class together although they look
very different in pixel space. We call this the blue sky prob-
lem with the pictures of a flying bird and a flying airplane
in mind, both of which will contain many blue pixels but
just a few others that make the actual distinction. In partic-
ular auto-encoder approaches suffer from the blue sky prob-
lem as their cost function usually penalizes reconstruction
in pixel space and hence favors the encoding of potentially
unnecessary information such as the color of the sky.

1.2. Related work

Classical clustering approaches are limited to the orig-
inal data space and are thus not very effective in high-
dimensional spaces with complicated data distributions,
such as images. Early deep-learning-based clustering meth-
ods first train a feature extractor, and in a separate step apply
a clustering algorithm to the features [9, 31, 33].

Well-clusterable deep representations are characterized
by high within-cluster similarities of points compared to
low across-cluster similarities. Some loss functions opti-
mize only one of these two aspects. Particularly, methods
that do not encourage across-cluster dissimilarities are at
risk of producing worse (or theoretically even trivial) repre-
sentations/results [41], but some of them nonetheless work
well in practice. Other methods avoid trivial representa-
tions by using additional techniques unrelated to clustering,
such as autoencoder reconstruction loss during pre-training
or entire training [19, 40, 41, 25].

Deep Embedded Clustering (DEC) [40] model simulta-
neously learns feature representations and cluster assign-
ments. To get a good initialization, DEC needs auto-
encoder pretraining. Also, the approach has some issues
scaling to larger datasets such as STL-10.

Variational Deep Embedding (VaDE) [43] is a genera-
tive clustering approach based on variational autoencoders.
It achieves significantly more accurate results on small
datasets, but does not scale to larger, higher-resolution
datasets. For STL-10, it uses a network pretrained on the
dramatically larger Imagenet dataset.

Joint Unsupervised Learning (JULE) of representations
and clusters [42] is based on agglomerative clustering. In
contrast to our method, JULE’s network training proce-
dure alternates between cluster updates and network train-
ing. JULE achieves very good results on several datasets.
However, its computational and memory requirements are
relatively high as indicated by [16].

Clustering convolutional neural networks (CCNN) [16]
predict clustering assignments at the last layer, and a
clustering-friendly representation at an intermediate layer.
The training loss is the difference between the clustering
predictions and the results of k-means applied to the learned
representation. Interestingly, CCNN yields good results in
practice, despite both the clustering features and the clus-

ter predictions being initialized in random and contradictory
ways. CCNN requires running k-means in each iteration.

Deep Embedded Regularized Clustering (DEPICT) [4] is
similar to DEC in that feature representations and cluster as-
signments are simultaneously learned using a deep network.
An additional regularization term is used to balance the
cluster assignment probabilities allowing to get rid of the
pretraining step. This method achieved a performance com-
parable to ours on MNIST and FGRC. However, it requires
pre-training using the autoencoder reconstruction loss.

In Categorical Generative Adversarial Networks (Cat-
GANs) [34], unlike standard GANs, the discriminator
learns to separate the data into k categories instead of
learning a binary discriminative function. Results on large
datasets are not reported. Another approach based on GANs
is [30].

Information-Maximizing Self-Augmented Training (IM-
SAT) [17] is based on Regularized Information Maximiza-
tion (RIM) [21], which learns a probabilistic classifier that
maximizes the mutual information between the input and
the class assignment. In IMSAT this mutual information is
represented by the difference between the marginal and con-
ditional distribution of those values. IMSAT also introduces
regularization via self-augmentation. This is achieved via
an additional term to the cost function which assures that
the generated data point and the original are similarly as-
signed. For large datasets, IMSAT uses fixed pre-trained
network layers.

Several other methods with various quality of results ex-
ist [2, 26, 39, 1, 32, 14].

In summary, previous methods either do not scale well to
large datasets [40, 43, 34], have high computational and/or
memory cost [42], require a clustering algorithm to be run
during or after the training (most methods, e.g. [42, 16]), are
at risk of producing trivial representations, and/or require
some labeled data [17] or clustering-unrelated losses (for
example additional autoencoder loss [19, 40, 41, 25, 43, 4])
to (pre-)train (parts of) the network. In particular recon-
struction losses tend to overestimate the importance of low
level features such as colors.

In order to solve these problems, it is desirable to develop
new training schemes that tackle the clustering problem as
a direct end-to-end training of a neural network.

1.3. Contribution

In this paper, we propose Associative Deep Clustering as
an end-to-end framework that allows to train a neural net-
work directly for clustering. In particular, we introduce cen-
troid embeddings: variables that look like embeddings of
images but are actually part of the model. They can be opti-
mized and they are used to learn a projection from embed-
ding space to the desired dimensionality, e.g. logits ∈ Rk

where k is the number of classes. The intuition is that the



centroid variables carry over high-level information about
the data structure (i.e. cluster centroid embeddings) from it-
eration to iteration. It makes sense to train a neural network
directly for a clustering task, rather than a proxy task (such
as reconstruction from embeddings) since the ultimate goal
is actually clustering.

To facilitate this, we introduce a cost function consist-
ing of multiple terms which cause clusters to separate while
associating similar images. Associations [12] are made be-
tween centroids and image embeddings, and between em-
beddings of images and their transformations. Unlike pre-
vious methods, we use clustering-specific loss terms that
allow to directly learn the assignment of an image to a clus-
ter. There is no need for a subsequent training procedure
on the embeddings. The output of the network is a clus-
ter membership distribution for a given input image. We
demonstrate that this approach is useful for clustering im-
ages without any prior knowledge other than the number of
classes.

The resulting learned cluster assignments are so good
that subsequently re-running a clustering algorithm on the
learned embeddings does not further improve the results
(unlike e.g. [42]).

To the best of our knowledge, we are the first to introduce
a training scheme for direct clustering jointly with network
training, as opposed to feature learning approaches where
the obtained features need to be clustered by a second algo-
rithm such as k-means (as in most methods), or to methods
where the clustering is directly learned but parts of the net-
work are pre-trained and fixed [17].

Moreover, unlike most methods, we use only clustering-
specific and invariance-imposing losses and no clustering-
unrelated losses such as autoencoder reconstruction or
classification-based pre-training.

In summary, our contributions are:

• We introduce centroid variables that are jointly trained
with the network’s weights.

• This is facilitated by our clustering cost function that
makes associations between cluster centroids and im-
age embeddings. No labels are needed at any time. In
particular, there is no subsequent clustering step nec-
essary such as k-means.

• We conducted an extensive ablation study demonstrat-
ing the effects of our proposed training schedule.

• Our method outperforms the current state of the art on
a number of datasets.

• All code is available as an open-source implementation
in TensorFlow1.

1The code will be made available upon publication of this paper.

2. Associative Deep Clustering
In this section, we describe our setup and the cost func-

tion. Figure 2 depicts an overall schematic which will be
referenced in the following.

2.1. Associative learning

Recent works have shown that associations in embed-
ding space can be used for semi-supervised training and
domain adaptation [12, 11]. Both applications require an
amount of labeled training data which is fed through a neu-
ral network along with unlabeled data. Then, an imaginary
walker is sent from embeddings of labeled examples to em-
beddings of unlabeled examples and back. From this idea,
a cost function is constructed that encourages consistent as-
sociation cycles, meaning that two labeled examples are as-
sociated via an unlabeled example with a high probability
if the labels match and with a low probability otherwise.
More formally: Let Ai and Bj be embeddings of labeled
and unlabeled data, respectively. Then a similarity matrix
Mij

..= Ai · Bj can be defined. These similarities can now
be transformed into a transition probability matrix by soft-
maxing M over columns:

P ab
ij = P (Bj |Ai) ..=(softmaxcols(M))ij (1)

=exp(Mij)/
∑
j′

exp(Mij′)

Analogously, the transition probabilities in the other direc-
tion (P ba) are obtained by replacing M with MT . Finally,
the metric of interest is the probability of an association cy-
cle from A to B to A:

P aba
ij

..=(P abP ba)ij (2)

=
∑
k

P ab
ik P

ba
kj

Since the labels of A are known, it is possible to define
a target distribution where inconsistent association cycles
(where labels mismatch) have zero probability:

Tij ..=

{
1/#class(Ai) class(Ai) = class(Aj)
0 else

(3)

Now, the associative loss function becomes
Lassoc(A,B) ..= crossentropy(Tij ;P

ab
ij ). For more

details, the reader is kindly referred to [12].

2.2. Clustering loss function

In this work, we further develop this setup since there is
no labeled batch A. In its stead, we introduce centroid vari-
ables µk that have the same dimensionality as the embed-
dings and that have surrogate labels 0, 1, . . . , k − 1. With



them and embeddings of (augmented) images, we can de-
fine clustering associations.

We define two associative loss terms:

• Lassoc,c
..= Lassoc(µk; zi) where associations are

made between (labeled) centroid variables µk (instead
of A) and (unlabeled) image embeddings zi

• Lassoc,aug
..= Lassoc(zi; f(τ(xj))) where we apply 4

random transformations τ to each image xj resulting
in 4 “augmented” embeddings zj that share the same
surrogate label. The “labeled” batch A then consists
of all augmented images, the “unlabeled” batch B of
embeddings of the unaugmented images xi.

For simplicity, we imply a sum over all examples xi and
xj in the batch. The loss is then divided by the number of
summands.

The transformation τ randomly applies cropping and
flipping, Gaussian noise, small rotations and changes in
brightness, saturation and hue.

All embeddings and centroids are regularized with an L2
loss Lnorm to have norm 1. We chose this value empirically
to avoid too small numbers in the 128-dimensional embed-
ding vectors.

A fully-connected layer W projects embeddings (µk, zi
and zj) to logits ok,i,j ∈ Rk. After a softmax operation,
each logit vector entry can be interpreted as the probabil-
ity of membership in the respective cluster. W is opti-
mized through a standard cross-entropy classification loss
Lclassification where the inputs are µk and the desired out-
puts are the surrogate labels of the centroids.

Finally, we define a transformation loss

Ltrafo
..= |1− f(xi)T f(τ(xj))− crossentropy(oi, oj)|

(4)

Here, we apply τ once and set it once to the identity such
that the “augmented” batch contains each image and a trans-
formed version of it. This formulation can be interpreted as
a trick to obtain weak labels for examples since the log-
its yield an estimate for the class membership “to the best
knowledge of the network so far”. Particularly, this loss
serves multiple purposes:

• The logit oi of an image xi and the logit oj of the trans-
formed version τ(xj) should be similar for i = j.

• Images that the network thinks belong to the same
cluster (i.e. their centroid distribution o is similar)
should also have similar embeddings, regardless of
whether τ was applied.

• Embeddings of one image and a different image are al-
lowed to be similar if the centroid membership is sim-
ilar.

• Embeddings are forced to be dissimilar if they do not
belong to the same cluster.

The final cost function now becomes

L = αLassoc,c (5)
+ βLassoc,aug (6)
+ γLnorm (7)
+ δLtrafo (8)

with the loss weights α, β, γ, δ.
In the remainder of this paper, we present an ablation

study to demonstrate that the loss terms do in fact support
the clustering performance. From this study, we conclude
on a set of hyper parameters to be held fixed for all datasets.
With these fixed parameters, we finally report clustering
scores on various datasets along with a qualitative analysis
of the clustering results.

Figure 2: Schematic of the framework and the losses. Green boxes are trainable variables. Yellow boxes are representations
of the input. Red lines connect the losses with their inputs. Please find the definitions in Section 2.2



MNIST FRGC SVHN CIFAR-10 STL-10
k-means on pixels 53.49 24.3 12.5 20.8 22.0
DEC [40] 84.30 37.8 - - 35.9‡†

pretrain+DEC [17] - - 11.9 (0.4)† 46.9 (0.9)† 78.1 (0.1)†

VaDE [43] 94.46 - - - 84.5†

CatGAN [34] 95.73 - - - -
JULE [42] 96.4 46.1 - 63.5‡‡ -
DEPICT [4] 96.5 47.0 - - -
IMSAT [17] 98.4 (0.4) - 57.3 (3.9) ‡ 45.6 (2.9)† 94.1†

CCNN [16] 91.6 - - - -
ours (VCNN): Mean 98.7 (0.6) 43.7 (1.9) 37.2 (4.6) 26.7 (2.0) 38.9 (5.9)
ours (VCNN): Best 99.2 46.0 43.4 28.7 41.5
ours (ResNet): Mean 95.4 (2.9) 21.9 (4.9) 38.6 (4.1) 29.3 (1.5) 47.8 (2.7)
ours (ResNet): Best 97.3 29.0 45.3 32.5 53.0
ours (ResNet): K-Means 93.8 (4.5) 24.0 (3.0) 35.4 (3.8) 30.0 (1.8) 47.1 (3.2)

Table 1: Clustering. Accuracy (%) on the test sets (higher is better). Standard deviation in parentheses where available. We
report the mean and best of 20 runs for two architectures. For ResNet, we also report the accuracy when k-means is run on
top of the obtained embeddings after convergence. †: Using features after pre-training on Imagenet. ‡: Using GIST features.
‡†: Using Histogram-of-oriented-gradients (HOG) features. ‡‡: Using 5k labels to train a classifier on top of the features
from clustering.

3. Experiments

3.1. Training procedure

For all experiments, we start with a warm-up phase
where we set all loss weights to zero except β = 0.9 and
γ = 10−5. Lassoc,aug is used to initialize the weights of the
network. After 5,000 steps, we find an initialization for µk

by running k-means on the training embeddings. Then, we
activate the other loss weights.

We use the Adam optimizer [20] with (beta1=0.8,
beta2=0.9) and a learning rate of 0.0008. This learning rate
is divided by 3 every 10,000 iterations. Following [10] we
also adopt a warmup-phase of 2,000 steps for the learning
rate.

We report results on two architectures: A vanilla con-
volutional neural net from [13] (in the following referred
to as VCNN) and the commonly used ResNet architecture
[15]. For VCNN, we adopt the hyper-parameters used in
the original work, specifically a mini-batch size of 100 and
embedding size 128. For ResNet, we use the architecture
specified for CIFAR-10 by [15] for all datasets except STL-
10. Due to the larger resolution of this dataset, we adopt the
ImageNet variant, and modify it in the following way:

• The kernel size for the first convolutional layer be-
comes 3, with a stride of 1.

• The subsequent max-pooling layer is set to 2x2

• We reduce the number of filters by a factor of 2.

We use a mini-batch size of 128 images. For ResNet, we
use 64-dimensional embedding vectors, as the CIFAR10-
variant only has 64 filters in the last layer. We use a block
size of 3 for MNIST, FRGC and STL-10, and 5 for SVHN
and CIFAR-10.

The visit weight for both association losses is set to 0.3.
In order to find reasonable loss weights and investigate

the importance, we conducted an ablation study which is
described in the following section.

3.2. Ablation study

We randomly sampled the loss weights for all previously
introduced losses in the range [0; 1] except for the normal-
ization loss weight γ and ran 1,061 experiments on MNIST.
Then, we used this clustering model to assign classes to the
MNIST test set. Following [40], we picked the permuta-
tion of class labels that reflects the true class labels best and
summarized the respective accuracies in Figure 5. For each
point in a plot, we held only the one parameter fixed and
averaged all according runs. This explains the error bars
which arise from variance of all other parameters. It can
still be seen very clearly that each loss has an important
contribution to the test accuracy indicating the importance
of the respective terms in our cost function.

We carried out similar experiments for other datasets
which allowed to choose one set of hyper parameters for
all subsequent experiments, which is described in the next
section.



Figure 3: Clustering examples from MNIST. Each row con-
tains the examples with the highest probability to belong to
the respective cluster.

3.3. Clustering performance

From the previous section, we chose the following hyper
parameters to hold fixed for all datasets:
α = 1;β = 0.9; γ = 10−5; δ = 2× 10−5

3.4. Evaluation protocol

Following [40], we set k to be the number of ground-
truth classes in each dataset, and evaluate the clustering
performance using the unsupervised clustering accuracy
(ACC) metric. For every dataset, we run our proposed algo-
rithm 10 times, and report multiple statistics:

• Mean and standard deviation of all clustering accura-
cies.

• The maximum clustering accuracy of all runs.

3.5. Datasets

We evaluate our algorithm on the following, widely-used
image datasets:

MNIST [23] is a benchmark containing 70,000 hand-
written digits. We use all images from the training set with-
out their labels. Following [12], we set the visit weight to
0.8. We also use 1,000 warm-up steps.

For FRGC, we follow the protocol introduced in [42],
and use the 20 selected subsets, providing a total of 2,462
face images. They have been cropped to 32×32px images.
We use a visit weight of 0.1 and 1,000 warm-up steps.

SVHN [29] contains digits extracted from house num-
bers in Google Street View images. We use the training set
combined with 150,000 images from the additional, unla-
beled set for training.

CIFAR-10 [22] contains tiny images of ten different ob-
ject classes. Here, we use all images of the training set.

STL-10 [3] is similar to CIFAR-10 in that it also has
10 object classes, but at a significantly higher resolution
(96×96px). We use all 5,000 images of the training set for
our algorithm. We do not use the unlabeled set, as it con-
tains images of objects of other classes that are not in the
training set. We randomly crop images to 64×64px during
training, and use a center crop of this size for evaluation.

Table 1 summarizes the results. We achieve state-of-the-
art results on MNIST, SVHN, CIFAR-10 and STL-10.

3.6. Qualitative analysis

Figure 3 and Figure 4 show images from the MNIST and
STL-10 test set, respectively. The examples shown have the
highest probability to belong to the respective clusters (logit
argmax). The MNIST examples reveal that the network has
learned to cluster hand-written digits well while generaliz-
ing to different ways how digits can be written. For exam-
ple, 2 can be written with a little loop. Some examples of 8
have a closed loop, some don’t. The network does not make
a difference here which shows that the proposed training
scheme does learn a high-level abstraction.

Analogously, for STL-10, nearly all images are clustered
correctly, despite a broad variance in colors and shapes. It is
interesting to see that there is no bird among the top-scoring
samples of the airplane-cluster, and all birds are correctly
clustered even if they are in front of a blue background. This
demonstrates that our proposed algorithm does not solely
rely on low-level features such as color (cf. the blue sky
problem) but actually finds common patterns based on more
complex similarities.

4. Conclusion

We have introduced Associative Deep Clustering as a
novel, direct clustering algorithm for deep neural networks.
The central idea is to jointly train centroid variables with
the network’s weights by using a clustering cost function.
No labels are needed at any time and our approach does not
require subsequent clustering such as many feature learning
schemes. The importance of the loss terms were demon-
strated in an ablation study and the effectiveness of the
training schedule is reflected in state-of-the-art results in
classification. A qualitative investigation suggests that our
method is able to successfully discover structure in image
data even when there is high intra-class variation. In clus-
tering, there is no absolute right or wrong - multiple solu-
tions can be valid, depending on the categories that a human



Figure 4: Clustering examples from STL-10. Each row contains the examples with the highest probability to belong to the
respective cluster.

Figure 5: Ablation study for different hyper-parameters on MNIST.



introduces. We believe, however, that our formulation is ap-
plicable to many real world problems and that the simple
implementation will hopefully inspire many future works.
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