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Abstract

In many real-world scenarios, labeled data for a specific
machine learning task is costly to obtain. Semi-supervised
training methods make use of abundantly available unla-
beled data and a smaller number of labeled examples. We
propose a new framework for semi-supervised training of
deep neural networks inspired by learning in humans. “As-
sociations” are made from embeddings of labeled sam-
ples to those of unlabeled ones and back. The optimiza-
tion schedule encourages correct association cycles that
end up at the same class from which the association was
started and penalizes wrong associations ending at a dif-
ferent class. The implementation is easy to use and can be
added to any existing end-to-end training setup. We demon-
strate the capabilities of learning by association on several
data sets and show that it can improve performance on clas-
sification tasks tremendously by making use of additionally
available unlabeled data. In particular, for cases with few
labeled data, our training scheme outperforms the current
state of the art on SVHN.

1. Introduction
A child is able to learn new concepts quickly and without

the need for millions examples that are pointed out individ-
ually. Once a child has seen one dog, she or he will be able
to recognize other dogs and becomes better at recognition
with subsequent exposure to more variety.

In terms of training computers to perform similar tasks,
deep neural networks have demonstrated superior perfor-
mance among machine learning models ([20, 18, 10]).
However, these networks have been trained dramatically
differently from a learning child, requiring labels for ev-
ery training example, following a purely supervised training
scheme. Neural networks are defined by huge amounts of
parameters to be optimized. Therefore, a plethora of labeled
training data is required, which might be costly and time

Figure 1. Learning by association. A network (green) is trained to
produce embeddings (blue) that have high similarities if belonging
to the same class. A differentiable association cycle (red) from
embeddings of labeled (A) to unlabeled (B) data and back is used
to evaluate the association.

consuming to obtain. It is desirable to train machine learn-
ing models without labels (unsupervisedly) or with only
some fraction of the data labeled (semi-supervisedly).

Recently, efforts have been made to train neural net-
works in an unsupervised or semi-supervised manner yield-
ing promising results. However, most of these methods
require a trick to generate training data, such as sampling
patches from an image for context prediction [6] or gen-
erating surrogate classes [7, 22, 13]. In other cases, semi-
supervised training schemes require non trivial additional
architectures such as generative adversarial networks [9] or
a decoder part [39].

We propose a novel training method that follows an intu-
itive approach: learning by association (Figure 1). We feed
a batch of labeled and a batch of unlabeled data through a
network, producing embeddings for both batches. Then, an
imaginary walker is sent from samples in the labeled batch
to samples in the unlabeled batch. The transition follows a
probability distribution obtained from the similarity of the
respective embeddings which we refer to as an association.
In order to evaluate whether the association makes sense, a
second step is taken back to the labeled batch - again guided
by the similarity between the embeddings. It is now easy to



check if the cycle ended at the same class from which it was
started. We want to maximize the probability of consistent
cycles, i.e., walks that return to the same class. Hence, the
network is trained to produce embeddings that capture the
essence of the different classes, leveraging unlabeled data.
In addition, a classification loss can be specified, encourag-
ing embeddings to generalize to the actual target task.

The association operations are fully differentiable, fa-
cilitating end-to-end training of arbitrary network architec-
tures. Any existing classification network can be extended
by our customized loss function.

In summary, our key contributions are:

• A novel yet simple training method that allows for
semi-supervised end-to-end training of arbitrary net-
work architectures. We name the method “associative
learning”.

• An open-source TensorFlow implementation1 of our
method that can be used to train arbitrary network ar-
chitectures.

• Extensive experiments demonstrating that the pro-
posed method improves performance by up to 64%
compared to the purely supervised case.

• Competitive results on MNIST and SVHN, surpassing
state of the art for the latter when only a few labeled
samples are available.

2. Related Work
The challenge of harnessing unlabeled data for training

of neural networks has been tackled using a variety of differ-
ent methods. Although this work follows a semi-supervised
approach, it is in its motivation also related to purely un-
supervised methods. A third category of related work is
constituted by generative approaches.

2.1. Semi-supervised training

The semi-supervised training paradigm has not been
among the most popular methods for neural networks in the
past. It has been successfully applied to SVMs [14] where
unlabeled samples serve as additional regularizers in that
decision boundaries are required to have a broad margin
also to unlabeled samples.

One training scheme applicable to neural nets is to boot-
strap the model with additional labeled data obtained from
the model’s own predictions. [22] introduce pseudo-labels
for unlabeled samples which are simply the class with the
maximum predicted probability. Labeled and unlabeled
samples are then trained on simultaneously. In combination
with a denoising auto-encoder and dropout, this approach
yields competitive results on MNIST.

1https://git.io/vyzrl

Other methods add an auto-encoder part to an existing
network with the goal of enforcing efficient representations
([27] [37] [39]).

Recently, [30] introduced a regularization term that uses
unlabeled data to push decision boundaries of neural net-
works to less dense areas of decision space and enforces
mutual exclusivity of classes in a classification task. When
combined with a cost function that enforces invariance to
random transformations as in [31], state-of-the-art results
on various classification tasks can be obtained.

2.2. Purely unsupervised training

Unsupervised training is obviously more general than
semi-supervised approaches. It is, however, important to
differentiate the exact purpose. While semi-supervised
training allows for a certain degree of guidance as to what
the network learns, the usefulness of unsupervised methods
highly depends on the design of an appropriate cost func-
tion and balanced data sets. For exploratory purposes, it
might be desirable that representations become more fine
grained for different suptypes of one class in the data set.
Conversely, if the ultimate goal is classification, invariance
to this very phenomenon might be more preferable.

[12] propose to use Restricted Boltzmann Machines
([33]) to pre-train a network layer-wise with unlabeled data
in an auto-encoder fashion.

[11][19][39] build a neural network upon an auto-
encoder that acts as a regularizer and encourages represen-
tations that capture the essence of the input.

A whole new category of unsupervised training is to gen-
erate surrogate labels from data. [13] employ clustering
methods that produce weak labels.

[7] generate surrogate classes from transformed samples
from the data set. These transformations have hand-tuned
parameters making it non-trivial to ensure they are capable
of representing the variations in an arbitrary data set.

In the work of [6], context prediction is used as a sur-
rogate task. The objective for the network is to predict the
relative position of two randomly sampled patches of an im-
age. The size of the patches needs to be manually tuned
such that parts of objects in the image are not over- or un-
dersampled.

[34] employ a multi-layer LSTM for unsupervised image
sequence prediction/reconstruction, leveraging the temporal
dimension of videos as the context for individual frames.

2.3. Generative Adversarial Nets (GANs)

The introduction of generative adversarial nets (GANs)
[9] enabled a new discipline in unsupervised training. A
generator network (G) and a discriminator network (D) are
trained jointly where the G tries to generate images that
look as if drawn from an unlabeled data set, whereas D is
supposed to identify the difference between real samples

https://git.io/vyzrl


and generated ones. Apart from providing compelling vi-
sual results, these networks have been shown to learn useful
hierarchical representations [26].

[32] presents improvements in designing and training
GANs, in particular, these authors achieve state-of-the-
art results in semi-supervised classification on MNIST,
CIFAR-10 and SVHN.

3. Learning by association
A general assumption behind our work is that good em-

beddings will have a high similarity if they belong to the
same class. We want to optimize the parameters of a CNN
in order to produce good embeddings, making use of both
labeled and unlabeled data. A batch of labeled and unla-
beled images (Aimg and Bimg, respectively) is fed through
the CNN, resulting in embedding vectors (A and B). We
then imagine a walker going from A to B according to the
mutual similarities, and back. If the walker ended up at the
same class as he started from, the walk is correct. The gen-
eral scheme is depicted in Figure 1.

3.1. Mathematical formulation

The goal is to maximize the probability for correct walks
from A to B and back to A, ending up at the same class. A
and B are matrices whose rows index the samples in the
batches. Let’s define the similarity between embeddings
A and B as

Mij
..= Ai ·Bj (1)

Note that the dot product could in general be replaced by
any other similarity metric such as Euclidean distance. In
our experiments, the dot product worked best in terms of
convergence. Now, we transform these similarities into
transition probabilities from A to B by softmaxing M
over columns:

P ab
ij = P (Bj |Ai) ..=(softmaxcols(M))ij (2)

= exp(Mij)/
∑
j′

exp(Mij′)

Conversely, we get the transition probabilities in the other
direction, P ba, by replacing M with MT . We can now de-
fine the round trip probability of starting at Ai and ending
up at Aj :

P aba
ij

..=(P abP ba)ij (3)

=
∑
k

P ab
ik P

ba
kj

Finally, the probability for correct walks becomes

P (correct walk) =
1

|A|
∑
i∼j

P aba
ij (4)

where i ∼ j ⇔ class(Ai) = class(Aj).
We define multiple losses that encourage intuitive goals.

These losses can be combined, as discussed in Section 4.

Ltotal = Lwalker + Lvisit + Lclassification (5)

Walker loss. The goal of our association cycles is con-
sistency. A walk is consistent when it ends at a sample with
the same class as the starting sample. This loss penalizes
incorrect walks and encourages a uniform probability dis-
tribution of walks to the correct class. The uniform distri-
bution models the idea that it is permitted to end the walk
at a different sample than the starting one, as long as both
belong to the same class. The walker loss is defined as the
cross-entropy H between the uniform target distribution of
correct round-trips T and the round-trip probabilities P aba.

Lwalker
..=H(T, P aba) (6)

with the uniform target distribution

Tij
..=

{
1/#class(Ai) class(Ai) = class(Aj)
0 else

(7)

where #class(Ai) is the number of occurrences of class(Ai)
in A.

Visit loss. There might be samples in the unlabeled batch
that are difficult, such as a badly drawn digit in MNIST. In
order to make best use of all unlabeled samples, it should
be beneficial to “visit” all of them, rather than just making
associations among “easy” samples. This encourages em-
beddings that generalize better. The visit loss is defined as
the cross-entropy H between the uniform target distribution
V and the visit probabilities P visit. If the unsupervised batch
contains many classes that are not present in the supervised
one, this regularization can be detrimental and needs to be
weighted accordingly.

Lvisit
..=H

(
V, P visit) (8)

where the visit probability for examples in B and the uni-
form target distribution are defined as follows:

P visit
j

..=〈P ab
ij 〉i (9)

Vj
..=1/|B| (10)

Classification loss. So far, only the creation of embed-
dings has been addressed. These embeddings can easily be
mapped to classes by adding an additional fully connected



layer with softmax and a cross-entropy loss on top of the
network. We call this loss classification loss. This mapping
to classes is necessary to evaluate a network’s performance
on a test set. However, convergence can also be reached
without it.

3.2. Implementation

The total loss Ltotal is minimized using Adam [16] with
the suggested default settings. We applied random data aug-
mentation where mentioned in Section 4. The training pro-
cedure is implemented end-to-end in TensorFlow [1] and
the code is publicly available.

4. Experiments

In order to demonstrate the capabilities of our proposed
training paradigm, we performed different experiments on
various data sets. Unless stated otherwise, we used the fol-
lowing network architecture with batch size 100 for both
labeled batch A (10 samples per class) and unlabeled batch
B:

C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Here, C(n, k) stands for a convolutional layer with n ker-
nels of size k×k and stride 1. P (k) denotes a max-pooling
layer with window size k× k and stride 1. FC(n) is a fully
connected layer with n output units.

Convolutional and fully connected layers have exponen-
tial linear units (elu) activation functions [3] and an addi-
tional L2 weight regularizer with weight 10−4 applied.

There is an additional FC layer, mapping the embedding
to the logits for classification after the last FC layer that
produces the embedding, i.e., FC(10) for 10 classes.

4.1. MNIST

The MNIST data set [21] is a benchmark containing
handwritten digits for supervised classification. Mutual
exclusivity regularization with transformations ([31]) have
previously set the state of the art among semi-supervised
deep learning methods on this benchmark. We trained
the simple architecture mentioned above with our approach
with all three losses from Section 3.1 and achieved competi-
tive results as shown in Table 1. We have not even started to
explore sophisticated additional regularization schemes that
might further improve our results. The main point of these
first experiments was to test how quickly one can achieve
competitive results with a vanilla architecture, purely by
adding our proposed training scheme. In the following, we
explore some interesting, easily reproducible properties.

4.1.1 Evolution of associations

The untrained network is already able to make some first
associations based on the produced embeddings. However,
many wrong associations are made and only a few samples
in the unsupervised batch (B) are visited: those most sim-
ilar to the examples in the supervised batch (A). As train-
ing progresses, these associations get better. The visit loss
ensures that all samples in B are visited with equal prob-
ability. Figure 2 shows this evolution. The original sam-
ples for a setup with 2 labeled samples per class are shown
where A is green and B is red. Associations are made top-
down. Note that the second set of green digits is equal to
the first (“round-trip”). The top graphic in Figure 2 shows
visit probabilities at the beginning of training. Darker lines
denote a higher probability (softmaxed dotproduct). The
bottom graphic in Figure 2 shows associations after train-
ing has converged. This took 10k iterations during which
only the same 20 labeled samples were used for A and sam-
ples for B were drawn randomly from the rest of the data
set, ignoring labels.

4.1.2 Confusion analysis

Even after training has converged, the network still makes
mistakes. These mistakes can, however, be explained. Fig-
ure 3 shows a confusion matrix for the classification task.
On the left side, all samples from the labeled set (A) are
shown (10 per class). Those samples that are classified in-
correctly express features that are not present in the super-
vised training set, e.g. “7” with a bar in the middle (mis-
taken for “2”) or “4” with a closed loop (mistaken for “9”).
Obviously, A needs to be somewhat representative for the
data set, as is usually the case for machine learning tasks.

4.2. STL-10

STL-10 is a data set of RGB images from 10 classes [4].
There are 5k labeled training samples and 100k unlabeled
training images from the same 10 classes and additional
classes not present in the labeled set. For this task we mod-
ified the network architecture slightly as follows:

C(32, 3)→ C(64, 3, stride=2)→ P (3)

→ C(64, 3)→ C(128, 3)→ P (2)

→ C(128, 3)→ C(256, 3)→ P (2)→ FC(128)

As a preprocessing step, we apply various forms of data
augmentation to all samples fed though the net. In particu-
lar, random cropping, changes in brightness, saturation, hue
and small rotations.

We ran training using 100 randomly chosen samples per
class from the labeled training set for A (i.e. we used only
20% of the labeled training images) and achieved an accu-
racy on the test set of 81%. As this is not exactly following



# labeled samples
Method 100 1000 All

Ladder, conv small Γ [28] 0.89 (0.50) - -
Improved GAN † [32] 0.93 (0.07) - -

Mutual Exclusivity + Transform. [31] 0.55 (0.16) - 0.27 (0.02)
Ours 0.89 (0.08) 0.74 (0.03) 0.36 (0.03)

Table 1. Results on MNIST. Error (%) on the test set (lower is better). Standard deviations in parentheses. †: Results on permutation-
invariant MNIST.

Figure 2. Evolution of associations. Top: in the beginning of training, after a few iterations. Bottom: after convergence. Green digits are
the supervised set (A) and red digits are samples from the unsupervised set (B).

the testing protocol suggested by the data set creators, we
do not want to claim state of the art for this experiment but
do consider it a promising result. [13] achieved 76.3% fol-
lowing the proposed protocol.

The unlabeled training set contains many other classes
and it is interesting to examine the trained net’s associa-
tions with them. Figure 4 shows the 5 nearest neighbors
(cosine distance) for samples from the unlabeled training
set. The cosine similarity is shown in the top left corner
of each association. Note that these numbers are not soft-

maxed. Known classes (top two rows) are mostly associated
correctly, whereas new classes (bottom two rows) are asso-
ciated with other classes, yet exposing interesting connec-
tions: The fin of a dolphin reminds the net of triangularly
shaped objects such as the winglet of an airplane wing. A
meerkat looking to the right is associated with a dog look-
ing in the same direction or with a racoon with dark spots
around the eyes. Unfortunately, embeddings of classes not
present in the labeled training set do not seem to group to-
gether well; rather, they tend to be close to known class



Figure 3. MNIST classification. Top left: All labeled samples that
were used for training. Right: Confusion matrix with mistakes
that were made. Test error: 0.96%. Bottom left: Misclassified
examples from the test.

representations.

Figure 4. Nearest neighbors for samples from the unlabeled train-
ing set. The far left column shows the samples, the 5 other
columns are the nearest neighbors in terms of cosine distance
(which is shown in the top left corners of the pictures).

4.3. SVHN

The Street View House Numbers (SVHN) data set [25]
contains digits extracted from house numbers in Google
Street View images. We use the format 2 variant where
digits are cropped to 32x32 pixels. This variant is simi-
lar to MNIST in structure, yet the statistics are a lot more
complex and richer in variation. The train and test subsets
contain 73,257 and 26,032 digits, respectively.

We performed the same experiments as for MNIST with
the following architecture:

C(32, 3)→ C(32, 3)→ C(32, 3)→ P (2)

→ C(64, 3)→ C(64, 3)→ C(64, 3)→ P (2)

→ C(128, 3)→ C(128, 3)→ C(128, 3)→ P (2)→ FC(128)

Data augmentation is achieved by applying random
affine transformations and Gaussian blurring to model the
variations evident in SVHN.

4.4. Effect of adding unlabeled data

In order to quantify how useful it is to add unlabeled data
to the training process with our approach, we trained the
same network architecture with different amounts of labeled
and unlabeled data. For the case of no unlabeled data, only
Lclassification is active. In the other cases where labeled data is
present, we optimize Ltotal. We ran the nets on 10 randomly
chosen subsets of the data and report median and standard
deviation.

Table 3 shows results on SVHN. We used the (labeled)
SVHN training set as data corpus from which we drew ran-
domly chosen subsets as labeled and unlabeled sets. There
might be overlaps between both of these sets, which would
mean that the reported error rates can be seen as upper
bounds.

Let’s consider the case of fully supervised training. This
corresponds to the far left column in Table 3. Not surpris-
ingly, the more labeled samples are used, the lower the error
on the test set gets.

We now add unlabeled data. For a setup with only 20
labeled samples (2 per class), the baseline is an error rate
of 81.00% for 0 additional unlabeled samples. Performance
deteriorates as more unlabeled samples are added. This set-
ting seems to be pathological: depending on the data set,
there is a minimum number of samples required for suc-
cessful generalization.

In all other scenarios with a greater number of labeled
samples, the general pattern we observed is that perfor-
mance improves with greater amounts of unlabeled data.
This indicates that it is indeed possible to boost a network’s
performance just by adding unlabeled data using the pro-
posed associative learning scheme. For example, in the case
of 500 labeled samples, it was possible to decrease the test
error by 64.8% (from 17.75% to 6.25%).

A particular case occurs when all data is used in the la-
beled batch (last row in Table 3): Here, all samples in the
unlabeled set are also in the labeled set. This means that
the unlabeled set does not contain new information. Never-
theless, employing associative learning with unlabeled data
improves the network’s performance. Lwalker and Lvisit act
as a beneficial regularizer that enforces similarity of em-
beddings belonging to the same class. This means that as-
sociative learning can also help in situations where a purely
supervised training scheme has been used, without the need
for additional unlabeled data.

4.5. Effect of visit loss

Section 3.1 introduces different losses. We wanted to in-
vestigate the effects of our proposed visit loss. To this end,



# labeled samples
Method 500 1000 2000

DGN [17] 36.02 (0.10)
Virtual Adversarial [24] 24.63

Auxiliary Deep Generative Model [23] 22.86
Skip Deep Generative Model [23] 16.61 (0.24)

Imporoved GAN [32] 18.44 (4.8) 8.11 (1.3) 6.16 (0.58)
Imporoved GAN (Ensemble) [32] 5.88 (1.0)

Mutual Exclusivity + Transform.* [31] 9.62 (1.37) 4.52 (0.40) 3.66 (0.14)
Ours 6.25 (0.32) 5.14 (0.17) 4.60 (0.21)

Table 2. Results of comparable methods on SVHN. Error (%) on the test set (lower is better). Standard deviations in parentheses.
*) Results provided by authors.

# labeled # unlabeled samples
samples 0 1000 20000 all

20 81.00 (3.01) 81.98 (2.58) 82.15 (1.35) 82.10 (1.91)
100 55.64 (6.54) 39.85 (7.19) 24.31 (7.19) 23.18 (7.41)
500 17.75 (0.65) 12.78 (0.99) 6.61 (0.32) 6.25 (0.32)

1000 10.92 (0.24) 9.10 (0.37) 5.48 (0.34) 5.14 (0.17)
2000 8.25 (0.32) 7.27 (0.43) 4.83 (0.15) 4.60 (0.21)

all 3.09 (0.06) 2.79 (0.02) 2.80 (0.03) 2.69 (0.05)

Table 3. Results on SVHN with different amounts of (total) labeled/unlabeled training data. Error (%) on the test set (lower is better).
Standard deviations in parentheses.

we trained networks on different data sets and varied the
loss weights forLvisit keeping the loss weight forLclassification
and Lwalker constant. Table 4 shows the results. Worst per-
formance was obtained with no visit loss. For MNIST, visit
loss is crucial for successful training. For SVHN, a mod-
erate loss weight of about 0.25 leads to best performance.
If the visit loss weight is too high, the effect seems to be
over regularization of the network.. This suggests that the
visit loss weight needs to be adapted according to the vari-
ance within a data set. If the distributions of samples in the
(finitely sized) labeled and unlabeled batches are less simi-
lar, the visit loss weight should be lower.

4.6. Domain adaptation

A test for the efficiency of representations is to apply a
model to the task of domain adaptation (DA) [29]. The gen-
eral idea is to train a model on data from a source domain
and then adapt it to similar but different data from a target
domain.

In the context of neural networks, DA has mostly been
achieved by either fine-tuning a network on the target do-
main after training it on the source domain ([36, 15]), or by
designing a network with multiple outputs for the respective

domains ([5, 38]), sometimes referred to as dual outputs.
As a first attempt at DA with associative learning, we

tried the following procedure that is a mix of both fine-
tuning and dual outputs: We first train a network on the
source domain as described in Section 4. Then, we only ex-
change the unsupervised data set to the target domain data
and continue training. Note that here, no labels from the
target class are used at all at train time.

As a baseline example, we chose a network trained on
SVHN. We fed labeled samples from SVHN (source do-
main) and unlabeled samples from MNIST (target domain)
in the network with the architecture originally used for
training on the source domain and fine-tuned it with our
association based approach. No data augmentation was ap-
plied.

Initially, the network achieved an error of 18.56% on the
MNIST test set which we found surprisingly low, consid-
ering that the network had not previously seen an MNIST
digit. Some SVHN examples have enough similarity to
MNIST that the network recognized a considerable amount
of handwritten digits.

We then trained the network with both data sources as
described above with 0.5 as weight for the visit loss. After



Visit loss weight
Data set 0 0.25 0.5 1

MNIST 5.68 (0.53) 1.17 (0.15) 0.82 (0.12) 0.85 (0.04)
SVHN 7.91 (0.40) 6.31 (0.20) 6.32 (0.07) 6.43 (0.26)

Table 4. Effect of visit loss. Error (%) on the resp. test sets (lower is better) for different values of visit loss weight. Reported are the
medians of the minimum error rates throughout training with standard deviation in parentheses. Experiments were run with 1,000 randomly
chosen labeled samples as supervised data set.

Data Method
Domain (source→ target)

SVHN→MNIST

Source
only

DA [8] 45.10
DS [2] 40.8
Ours 18.56

Adapted
DA [8] 26.15 (42.6%)
DS [2] 17.3 (58.3%)
Ours 0.51 (99.3%)

Target
only

DA [8] 0.58
DS [2] 0.5
Ours 0.38

Table 5. Domain adaptation. Errors (%) on the target test sets
(lower is better). “Source only” and “target only” refers to train-
ing only on the respective data set without domain adaptation.
“DA” and “DS” stand for Domain-Adversarial Training and Do-
main Separation Networks, resp. The numbers in parentheses in-
dicate how much of the gap between lower and upper bounds was
covered.

9k iterations the network reached an accuracy of 0.51% on
the MNIST test set, which is a higher accuracy than what we
reached when training a network with 100 or 1000 labeled
samples from MNIST (cf. Section 4.1).

For comparison, [2] has been holding state of the art for
domain adaptation employing domain separation networks.
Table 5 contrasts their results with ours. Our first tentative
training method for DA outperforms traditional methods by
a large margin. We therefore conclude that learning by as-
sociation is a promising training scheme that encourages
efficient embeddings. A thorough analysis of the effects
of associative learning on domain adaptation could reveal
methods to successfully apply our approach to this problem
setting at scale.

5. Conclusion

We have proposed a novel semi-supervised training
scheme that is fully differentiable and easy to add to ex-
isting end-to-end settings. The key idea is to encourage
cycle-consistent association chains from embeddings of la-

beled data to those of unlabeled ones and back. The code
is publicly available. Although we have not employed so-
phisticated network architectures such as ResNet [10] or
Inception [35], we achieve competitive results with sim-
ple networks trained with the proposed approach. We have
demonstrated how adding unlabeled data improves results
dramatically, in particular when the number of labeled sam-
ples is small, surpassing state of the art for SVHN with 500
labeled samples. In future work, we plan to systematically
study the applicability of Associative Learning to the prob-
lem of domain adaptation. Investigating the scalability to
thousands of classes or maybe even completely different
problems such as segmentation will be the subject of future
research.
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