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Abstract

This work presents a comprehensive study on feature selection and learning for seman-
tic segmentation. Various types of features, different learning algorithms in conjunction
with minimizing a variational formulation, are discussed in order to obtain the best seg-
mentation of the scene with minimal redundancy in the feature set. The features are scored
in terms of relevance and redundancy. A clever feature selection reduces not only the re-
dundancy but also the computational cost of object detection. Additionally different learn-
ing algorithms are studied and the most suitable multi-class object classifier is trained with
the selected subset of features for detection based unary potential computation. In order
to obtain consistent segmentation results we minimize a variational formulation of the
multi-labelling problem by means of first order primal-dual optimization.

Experiments on different benchmarks give a deep understanding on how many and
what kind of features and which learning algorithm should be used for semantic segmen-
tation.
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Part 1.

Introduction and Theory






1. Introduction

Building man-like machines, also called humanoid robots, has been a dream of humanity
since the life started. The fundamental problem to address in developing such robots is
how to understand the environment as we humans do. For many years, human vision has
kept its secret in visual understanding of the scene and making robust inference about un-
known environments or objects using previous experience. Although scientists have spent
many years to figure out how humans actually see the environment, we are still struggling
to express how this perfect learning and fully understanding happens. Nevertheless, we
know that the eyes allow individuals to interpret their surroundings and therefore we de-
veloped cameras. Invention of the cheap cost cameras has opened a gate for robots in
the direction of visual perception. Now, cameras are taking an important role on visual
understanding in many applications.

Development of the autonomous, unmanned vehicles and devices is essential not only
to replace man-power with mechanical power, but also to support the daily life activi-
ties. Transportation, production, surveillance systems, aero-space industry and human
supporting systems are only some of application areas. However, the remaining major
challenge is how to understand the environment and move autonomously using cameras.
Perceptual understanding of the scene is at the very heart of this problem and is still being
studied by many scientists.

Computer vision studies investigated perceptual interpretation of the objects in the
scene using just a single image, retrieved from a low-cost camera. Today, with the high
computational processing power of computers, many researchers consider recognition and
segmentation problems together to increase the capacity of current systems for perceptual
scene analysis. The integration of the visual semantics of objects into the segmentation
problem is nowadays the main concern in the field of semantic segmentation.

Segmentation of images based on semantics is essential for real-time scene understand-
ing, surveillance systems and 3D scene reconstruction, e.g. in [5, 26, 46]. The performance
of these segmentation algorithms heavily depend on the quality of the appearance model
which is computed using pixel-wise object detection algorithms.

The major challenge is to find the most representative features to distinguish dissim-
ilar objects in terms of their shape, color and textural differences. Conventional object
detectors deal with the task of finding bounding boxes around each object [14, 32, 49]. In
contrast, dense object detection approaches [29, 44] focus on detecting the objects at pixel
level which provides a preliminary segmentation. Several other studies pursued differ-
ent approaches for object detection and learning algorithms in order to perform semantic
segmentation, e.g. [3, 28, 43].

In this work we propose a method to systematically select the best subset of features
for semantic segmentation. Our approach is able to outperform state-of-the-art results in
terms of runtime and even in accuracy in several cases.
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1.1. Related Work

In 2001, Viola and Jones presented simple, but robust Haar-like features for real-time face
detection [49]. Haar-like features are simple to implement, computationally low cost and
very accurate in capturing the shape of objects. These features can be used for detection
of any type of object and this flexibility makes them convenient for semantic segmentation
applications. Lowe [32] presented a distinctive, scale-invariant feature transform (SIFT)
and Dalal and Triggs [14] presented so called histograms of oriented gradients (HOG)
which are computationally more expensive. SIFT can robustly identify the objects even
among clutter and under partial occlusion, because the SIFT feature descriptor is invariant
to uniform scaling, orientation, and partially invariant to affine distortion and illumination
changes. Moreover, Zhang et al. [52] proposed a set of novel features based on oriented
gradients to detect the cat heads. They have shown that exploiting shape and texture
features jointly outperforms the existing, leading features, e.g. Haar, HOG. However, these
proposed methods are mostly used in the context of sliding window techniques. In the
scope of this research we aim at detecting the objects densely at pixel level.

In [44], Shotton et al. proposed texture-layout filters based on textons which jointly
model patterns of texture and their spatial layout for dense object detection. They pre-
sented a two-step algorithm for semantic segmentation of photographs. In the first step
unary classification and feature selection are achieved using shared boosting to give an ef-
ficient classifier. Then, in the second step, an accurate image segmentation is achieved by
incorporating an unary classifier in a conditional random field to enforce the neighboring
pixels to have same labels.

Ladicky et al. [29] proposed a hierarchical random field model, that allows integration of
features computed at different levels of the quantisation hierarchy. Moreover, Ladicky et
al. [30] combined different features for unary pixel classification by using Joint Boost-
ing [48]. However, their approach is sensitive to a large set of parameters.

Frohlich et al. [21] proposed an iterative approach for semantic segmentation of a facade
dataset. They learn a single random forest and incrementally add context features derived
from coarser levels. This approach uses different kinds of features in a joint, flexible, and
fast manner and refines the semantic segmentation of the scene iteratively.

Hermans et al. [26] discussed 3D semantic reconstruction of indoor scenes by exploiting
2D semantic segmentation approach based on Randomized Decision Forests for RGB-D
sensor data. They used depth features in addition to a very basic set of features to train a
classifier for unary pixel classification.

However, neither of the approaches above does give any justification for the chosen set
of features nor address the problem of how to choose the best feature set for object detec-
tion in semantic segmentation. Feature selection plays an important role on the quality of
the object detector and also on runtime of the entire system. It is also known that the m
best features are not necessarily the best m features [12].

In [37], Peng et al. proposed a theoretical framework to rank the features based on
minimum-Redundancy-Maximum-Relevance (nRMR). They formulate a cost function
composed of a relevance and a redundancy term. The relevance between features and
class labels is maximized and the redundancy between feature pairs is minimized.




1.2. Contributions

1.2. Contributions

In this work, we adapt the approach of [37] to the task of semantic segmentation. We study
different types of features and learning algorithms and perform experiments on various
segmentation benchmarks. The main goal is to find the best subset of features for semantic
segmentation. This is done by systematically selecting them via minimizing redundancy
and maximizing relevance and thereby improving the unary pixel potentials. Exhaustive
experiments on various benchmarks show that reducing the redundancy in feature sets
significantly reduces the runtime while preserving the performance. Our approach is able
to outperform state-of-the-art algorithms in terms of runtime and even in accuracy in sev-
eral cases.







2. Image Segmentation and Object
Recognition

This chapter presents the theoretical background of the proposed method. Variational
image segmentation, object learning (classification) algorithms and mutual information
based feature selection method are discussed in detail to provide an insight into image
segmentation and object recognition.

2.1. Variational Image Segmentation

Image segmentation is recently the most popular research topic in computer vision. It
deals with finding disjoints sets of elements from an observation data such that similarity
inside the sets and dissimilarity in-between the disjoint sets are maximum.

Image segmentation contains finding object regions and accurate boundaries between
them. Let 2 be the image domain and k be the number of disjoint regions, the segmentation
criteria of an image can be written as:

Q = {Qla 927 ceny Qk—la Qk‘}?

where

k

U Q=09 N ﬂQj =0 ViJ‘ € {1,..,k} s.t.i # j.

i=1
In the simplest case, with only background and foreground, regions can be segmented
using very basic and conventional methods such as edge-detection based segmentation.
However, since this is not realistic, one should take more complex cases into considera-
tion to be able to segment the images into multiple regions. The image segmentation ap-
proaches are generally composed of graphical based models, e.g. Graph-Cut based image
segmentation [16] or variatonal image segmentation such as the generalized Mumford-
Shah Functional [36] for multi-region segmentation.

In this study, we only focus on the variational multi-region segmentation problem. Vari-

ational image segmentation minimizes an energy functional to find the consistent segmen-
tation. An energy functional for image segmentation is typically formulated as:

k k
E(’LL(.%‘)) = Z Edata(ui(x)v I) +A- Z Ereg(ui(x))
=1 =1

where u(x) = (uq, ..., uy) is the set of indicator functions with:

{1 forx € Q)

ui(z) = 0 else
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Ejaq is called data term and presents the fidelity of the segmentation of a given image
I. E,.4 is called regularizer term and ensures the resulting segmented regions should have
homogeneous class labels with optimum class boundaries. The parameter ) is a weight
and denotes the amount of smoothing on the segments. The trade-off for the parameter
A is that the segmented regions get more and more smoothed as the X increases. If the
parameter ) is set to a very low value, then the segmented regions will have noisy labels
and lose homogeneity property.

2.1.1. Mumford-Shah Functional

Mumford and Shah [36] presented an energy functional to segment images with piece-wise
smooth approximation in the following form:

E(u,C) :/

(I—u)2dx+)\/ Vul2dz + v|C)| 2.1)
Q Q\C

where u: Q@ — R is an approximation of the segmented image and C' C (2 is the one-
dimensional discontinuity set. (I — «) converges to zero while u gets similar to I and this
provides a good approximation of the segments. The second term smooths the regions
everywhere except for the set C. The last term ensures that the length of boundary |C|
between classes is minimal with a weighting v. However, C is part of the energy itself and
no numerical solution is given to minimize this functional. There are multiple approaches
presented to solve the Mumford-Shah functional. This thesis employs a related model of
the Mumford-Shah functional to solve multi-region segmentation problems.

2.1.2. The ROF Model

In 1992, Rudin-Osher-Fatemi [40] pioneered the concept of nonlinear image denoising
which aims at removing noises by preserving the edges on an image. The principle is
to remove unwanted excessive and possibly spurious details, induce high total variation,
that is, the integral of the absolute gradient of the image. According to this principle, re-
ducing the total variation of the image removes the unwanted details and preserves the
image edges.

Given a noisy image f: @ — R, where 2 is bounded open subset of R?, we seek for
a clean image u, the denoised image version of f with bounded variation. To solve this
problem, Rudin ef al. minimize the total variation of an image with the following energy
functional:

. 1 2
mm — — + A Vul|dr . 2.2
uEBYl/(Q) 2 Hf UHZ /52 ‘ U| ( )

This variational energy has a data term, minimizes the Ly norm of desired and noisy
image and a regularizer |, |Vul, so called total variation, minimizes the length of object
boundaries. ) is a scale parameter that determines the level of smoothing.

Total variation is not differentiable under the constraint that u takes only 0 and 1. For this
reason, bounded variation of u is used to address the problem; u € BV () is constrained
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to be of bounded variation, defined as:
BV(Q) = {u € LY(Q) | TV (u) < +oc}

where the total variation is finite and given as [22]:
TV () = sup{ — [ ul(w)- divede|¢ € CHQR), [|€llz(o) < 1} 23)

If u is differentiable and €2 is a bounded open set, then we can re-write the total variation
equation using Gauss’ theorem:

[ vl = [ —u-dive= [ Vu-g< el [ [Vu

yielding equality with € := ;3; = / Vu-§ = / |Vul
Q Q

and £ can be approximated by a sequence (¢),, € C1(Q) it holds the following:

/Q_u.div(g)n:/QvU~(§)n—>/QVu-£:/Q|Vu|.

The ROF model is also called TV — L? model and it has two advantages;

¢ TV preserves discontinuity (edges on the images) and therefore the method is well
suited for image processing tasks,

* TV is a convex function; a function f is convex if and only if its epigraph epi(f) :=
{(z,y)|f(xz) < y} is a convex set. And it can be easily shown that if f is convex and
there exist a minimizer of f, then its minimizer is indeed globally optimal. Convex
functions have the advantage to be minimized with well-researched optimization
solvers regardless of initialization .

Equation 2.2 can be minimized with gradient descent and the equation for this task is

defined by:
ou Vu 1
at_v'<vm)_xw_f)

with boundary condition @‘ =
on 109

However, in the case of constant functions, |Vu| will be equal to 0 and the optimization
scheme will face the singularity problem because of zero division. Therefore, this problem
will be circumvented using a first-order primal-dual formulation of the Total-Variation
given in Equation 2.3 . First-order primal-dual convex optimization scheme will be dis-
cussed in Section 4.2 . See Figure 2.1 for an image denoising example with ROF model.
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(c) Denoised image with A = 30 (d) Denoised image with A = 50

Figure 2.1.: Image Denoising. Sample noisy image (a) was denoised with gradient de-

scent minimization on the ROF model, implemented by Magiera and Londahl
on Matlab [33]. The denoised images (b), (c), (d) were produced with 100 it-
erations and different smoothing scales (\). Each RGB color channel was pro-
cessed independently. The resulting image gets smoother as the A increases.

10
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2.1.3. Total-Variation Segmentation

A continuous model for TV based image segmentation, that will be used, has the following
form:

lelrsl)kz:/ fi(z)dx + = ZP@T‘QZ,Q

where f;: Q — R, are non-negative potential functions defined for each pixel with object
classification methods. The A-weighted second term, is half the sum of the perimeters of
the sets {2y, ..., €, and corresponds to the total length of the partition interface | J;; 9§ N
0€); (in order to count each perimeter once.). Thus, we segment the image into k sub-
partitions that yield the lowest energy and ensure a minimal surface at the same time.
The partitions are represented by characteristic functions, also known as indicator, func-
tions uy, ..., ui: © — {0, 1} so that the energy takes a computationally tractable form:

1 forx e k
ilx) = satisfyin i(x) =lae.x €
wi(z) {0 e ying ;u () x

Thus, the first term becomes:

sz;/f% fi(x)dx = sz;/guz(@fz(ﬂf)dm

Moreover, if indicator functions u; € BV (Q2) of measurable sets §2; C (2 are scalar-valued
functions of bounded variation, the co-area [17] formula tells us that the the perimeter is
equal to the total variation:

Per(Q;,Q) = Per(u;, Q) =TV (u;) :/ |Vu;|dx.
Q

As a consequence of the re-formulations of the problem, the energy functional takes the
form of an intermediate minimization problem as follows:

minz / wi(@) - fi(x) de + 2 Z / ) V| da (2.4)

u€eB 4

B = {(u ..,u) € BV(Q,{0,1})*

-:1a.e.x€§2}

with coherency constraint B on the indicator functions u;. The minimizer u now lies on
B, that is the k- dimensional space of binary functions with bounded variation and fulfills
the point-wise characteristic property (at every position z only one u; is allowed to be
non-zero). Also note that, TV in Equation 2.4 is weighted with a space-dependent g(x)
function given in Equation 2.5 , which takes low values if the derivative at position z is
high and takes high values otherwise, meaning that discontinuity will be preserved on the
boundaries of the input image.

11
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= g |, IVf@)Pds 2.5)

The energy functional is still hard to optimize since it is non-convex and non-
differentiable because of the binary indicator functions (u;). Therefore, to convexify the
energy, the u; functions are relaxed by mapping them into the whole interval u;: @ — [0, 1]
as described in [9]. With this, indicators change from hard to soft assignments, thus at a po-
sition x, u(x) can have multiple non-zero entries although the coherecency constraint still
holds in that case, i.e. the sum has to yield 1. TV is replaced with its dual representation
(Equation 2.3) to be a differentiable function.

The energy function now takes the form of a convex and differentiable optimization
problem as follows:

min supZ/ wi(x) - fi(x)de — X Z/ div & (z) - ui(z) dx . (2.6)

uesS ¢ex;

g(x) = exp ( - W)v o2

with minimization over the set S of BV functions moving into the k-dimensional simplex
and the dual variable ¢ is in the convex set K:

S = {u = (uq,...,ur) € BV(2,[0 1])k

x)=1 ae xEQ}.

In [31, 51], the authors use variations of a straight-forward formulation that arises from
the TV definition of the regularizer. ¢ is enforced to stay inside a norm boundary, e.g.
> 1€ |2)% < 1. This enforcement limits the amount of flow happening at every position.
Since, we weight the TV with a space-dependent weighting function g, the dual space can

be re-written as:
/ZH@ )2 < ( ) a.e. mEQ}.

Alternative approach is presented by Chambolle et al. [10]. They introduce the notion
of a paired calibration of the dual variables” components that represents a local convex
envelope of the energy:

K= {g = (&, . &) - Q — R2XF

Ko := {f = (2ij, ..., xp) 1 @ — RPF |

Z &i(z)] < g(;) (a.e.) z € Q}
11 <i<ig

It is proven that this model has a tighter bound for £ > 2 in comparion to others which
means that the found minimizer is closer to the original global optimum. This dual space
creates tighter solutions and the projection of a variable onto IC¢ is computationally bur-
densome, because it involves the projection of a variable onto multiple convex sets. On
the other hand, the projection onto K is very fast since it consists of point-wise truncation
operations.

The relaxed energy in Equation 2.6 is just an approximation of the original problem and
does not guarantee an optimal solution. The literature has shown that in the case of two
regions (k = 2), the thresholded solution of the relaxed version yields a global optimizer
independent of the chosen threshold. Nevertheless, this assumption no longer holds for
any binarized solution in the multi-region case.

12



2.2. Object Classification Methods

Data: (z1,y1), .., (Tm, Yym) Where z; € X, y; € Y = {-1,+1}
Result: Final strong classifier H(x)
fort=1,..,T do

¢ Train a weak learner using weight distribution D;.

* Get weak hypothesis h¢: X — {—1,+1} with error:

€t = Priwp, [ht(l’i) # yi]'

e Choose oy = %111 (t—f")

¢ Update:

_ Dy(i) y e~ if hy(z;) = i
e if hy(x;) # v

_ Dy(i) exp(—ayihe(4))

— 7

where Z; is a normalization factor such that D1 will be a distribution.

end
Output the final hypothesis:

T
H(z) = sign( Z atht(a:)>.

t=1

Algorithm 1: Discrete AdaBoost. The Adaptive Boosting Algorithm

2.2. Object Classification Methods

In machine learning and statistics, classification is the problem of identifying the categor-
ical class label of a new observation, on the basis of training data which contains observa-
tions whose category memberships are known. The output of a classification algorithm is
called classifier, that is, a function maps the observation data to a category (a class label).

This section gives a brief description of Adaptive Boosting [20] and Random Forests [7]
machine learning algorithms which are used in the proposed method among various lin-
ear and non-linear supervised learning algorithms, e.g. Artificial Neural Networks [39],
Support Vector Machines [4], linear classifiers, deep learning.

2.2.1. Adaptive Boosting

The AdaBoost is a boosting algorithm, introduced by Freud and Schapire [18] in 1997 and
is capable of solving the binary classification problem. Adaptive Boosting is a linear dis-
criminative learning model which combines weak learners as strong classifier to find the
best separation between two classes. Algorithm 1 shows the algorithm of Discrete Ad-
aBoost [19].

13
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[ ]
* ® 9
Initial State: Y . > Misclassified samples:
uniformly weighted e 0 re-weighted heavily
training samples e o
® o © °
weak learner 1 4~ L ™ weak learner 2

weak learner 3 ¢———— @)

. . Final strong classifier:
Misclassified sample [ B J

. heavil PN weighted combination of
re-weighted heavily ® . ° the weak learners
®
[ ]

Figure 2.2.: Boosting Classifier. Illustration of the Adaptive Boosting Algorithm.

Given an observation set (X) with corresponding class labels (Y'), the algorithm itera-
tively finds the weak learners and combines them linearly to a strong classifier. Usually a
weak learner is a decision tree with one level, also called decision stump.

After receiving the weak hypotheses h;, the algorithm computes the importance rate o
of assigned to h;. Note that a; is proportional to ¢; and gets larger if ¢ gets smaller. One
of the main ideas of the algorithm is to maintain a distribution of weights (D;) over the
training set. In each round, weights of misclassified samples are increased and correctly
classified ones are decreased. As a result of this re-weighting, the weak learner b, is forced
to focus on hard examples in the training set. Thus, the weight tends to concentrate on
hard examples.

The final hypotheses H, which is also called strong classifier, is a majority vote of linearly
combined weak learners h;, weighted with corresponding a.

The weak learner is responsible to find a weak hypotheses hy : X — {—1,+1} appropriate
for the sample weights D; and the quality of this weak learner is measured by its error:

e = Priwp,[lu(xi) Zyil = Y Di(i).

izhe () Fyi

Figure 2.2 illustrates the boosting algorithm on a given simple training set. Strong
classifier is shown as a combination of three weak classifiers.

There are different kinds of Adaptive Boosting algorithm and each of them is named
depending on the error function:

* Real AdaBoost : The output of decision trees is a class probability estimate p(x) =
P(y = +1|z), the probability that x is in the positive class [20]. Each leaf node in the

14
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decision tree is changed to output half the logit transform of its previous value:

ft:;ln(lgx).

¢ Logit AdaBoost : This is a convex optimization problem and minimizes the logistic
loss:

Z log (1 + e_yif(“)> , where f(z;) = a;jhi(z;)

* Gentle AdaBoost : Previous boosting algorithms choose f; greedily, minimizing
the overall test error as much as possible at each step Gentle AdaBoost features a
bounded step size. f; is chosen to minimize Y; wy;(y; — fi(x;))?, and no further
coefficient is applied. Thus, in the case where a weak learner exhibits perfect classi-
fication performance, Gentle AdaBoost will choose f;(z) = atht(x) exactly equal to
y, while steepest descent algorithms will try to set oy = co. Empirical observations
about the good performance of Gentle AdaBoost appear to back up Schapire and
Singer’s remark that allowing excessively large values of « can lead to poor general-
ization performance [19, 41].

2.2.2. Random Forests

Random Forests is an ensemble learning method, proposed by Breiman [7] in 2001 and
can handle multi-class classification problems. Random Forests grow many decision trees,
introduced in [8], to construct more robust classifier against outliers.

The construction of a decision tree requires a training sample of m observations:

0= ($17y1)> ceey (xmaym) 7i = 17 - M

where z; € X, variable set and y; € Y, corresponding class labels. A sample constructed
decision tree is shown in Figure 2.3 . Each interior node corresponds to a variable in
X, while each leaf node corresponds to a class label in Y. A decision tree is trained by
splitting the input training set into subsets based on an attribute value test. Splitting is
repeated recursively on each node until all samples on the node have same target class
label or splitting no longer gives noticeable improvement on the predictions.

A decision tree is usually constructed from top to down and at each interior node, one
attribute is selected, which gives the best split of the subset. The quality of a split is deter-
mined by the average value of importance of each attribute, computed with the following
metrics:

¢ Information Gain: The concept of information gain comes from information theory
and it is based on entropy measurement. Information gain of an attribute gives us
the importance of that attribute given set of examples. Let 7" denote a set of train-
ing samples, each has the form of (z,y) = (21,2, ...., 2k, y) where z, € V(a) is the
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2. Image Segmentation and Object Recognition

is coughing ? no

/" \

has fever ? feeling groggy ?
sick healthy sick healthy
0.92 55% 0.175% 0.03 13% 0.001 27%

Figure 2.3.: Decision Tree. A tree showing the sickness of a child in a city where there is
an epidemic disease. The numbers under the leaf nodes show the probability
of sickness and the percentage of observations in the leaf.

value of ath attribute of the sample x and y is the corresponding class label. The
information gain for an attribute a is defined in terms of entropy H as follows [35]:

IG(T,a) = H(T) — z:|mGZET:UH'HG$ETMMZM)
veV(a)

H(X) = *ZP(%’) - log| P(Sﬂi),zp(l‘i) =1

¢ Gini Importance: Random Forests gain its superior performance from its implicit
feature selection strategy. In this strategy, Gini importance is the indicator of feature
relevance. This metric measures how often a particular attribute 6 is selected for a
split and how effective its overall discriminative value for the classification. At each
node ¢ within a binary decision tree, the optimal split is found using Gini impurity
i(t) and calculated as follows [34]:

i(t) =1—-p}—pd.

where p, = “E is the fraction of the n, samples from class k = {0, 1}. By following
this formula Gini importance /¢ of all variables 6 is computed as:

Ig(0) =) Aig(t)

Ai(t) = ig(t) — prio(t;) — prig(ts)
ny ny

b= —,Pr=—
n n

A decision tree has many advantages compared to the other learning methods. It is
simple to construct, very robust and reliable since it has a self-validation strategy, can han-
dle both categorical and numerical data, performs well even in case of a large dataset and
most importantly, a decision tree is fast to predict the class label of the new observations. A
decision tree has also some drawbacks; the quality of the classifier highly depends on the
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2.3. Feature Selection based on Mutual Information Criteria

training samples and a decision tree may over-fit and not generalize well on the training
data.

Random Forests consist of multiple decision trees. To train a forest, the initial training
data is split into subsets such that each tree has the same amount of samples. Each tree in
the forest gives a vote (classification) which is a mapping from an input vector to a class
label and the forest chooses the classification having the most votes over all the trees in the
forest.

In contrast to single decision tree, Random Forests do not over-fit. Adding more trees
to the forest increases the overall performance of the classifier, but the prediction time also
increases. Nevertheless, Random Forests can be easily parallelized since the prediction of
the new observation is evaluated at each tree independently. In Random Forests, there is
no need for an external test or cross-validation to estimate the forest error since the error
computation is done internally during training. One-third of the training subset of each
tree is left out to estimate the forest error while the trees are constructed. This error is
called the out-of-bag error and gives the unbiased classification error of the forest.

Moreover, in the original paper of Random Forests [7], it is shown that the forest error
depends on two factors which are the correlation between trees and the strength of each
individual tree in the forest. The forest error increases as the correlation gets higher, but
decreases as the strength increases.

Random Forests are scalable, reliable, robust, insensitive to the outliers, capable of solv-
ing multi-class classification problem on high dimensional data and also outperform the
other machine learning algorithms in terms of speed and accuracy. The strong charac-
teristics of Random Forests make them popular in the area of visual object detection and
recognition.

2.3. Feature Selection based on Mutual Information Criteria

Conventional machine learning algorithms aim to find the best subset of features which
distinguish the disjoint sets (classes) well for classification. However, most of the meth-
ods suffer from local minima or over-fitting problem due to high sensitivity to outliers
and the final classifier does not generalize well on the given training data which is usually
noisy because of the high redundancy in the feature set. Therefore, in statistical analy-
sis, this problem is addressed with feature reduction using some probabilistic frameworks
such as maximizing the dependency. This feature analysis provides minimal classification
errors by maximizing the statistical dependency of the target class c on the data distribu-
tion in an unsupervised situation. However, a maximum dependency approach typically
involves computation of multivariate joint probability which is often difficult and inaccu-
rate. One approach to overcome this problem is to realize maximum dependency with
maximizing the relevance, selection of features with the highest relevance to the target class
c. Relevance measures the dependency of the variables with correlation or mutual infor-
mation. Ding and Peng [15, 37] proposed a feature selection framework based on mutual
information. The idea is to maximize the relevance and minimize the redundancy of the
feature set. Peng et al. [37] proved that maximizing dependency is the same as maximiz-
ing the relevance between features and class labels while minimizing the redundancy of
dependent features in the feature set. Thus, the noise and outliers in data are reduced and
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2. Image Segmentation and Object Recognition

the redundancy is minimized which induces the classifiers to perform better. This feature
selection is applied to the training data as a preprocessing step before learning the object
classifiers. As a result of redundancy minimization, the classifier performance is signifi-
cantly increased and the efficiency of the learning algorithm is boosted by the selection of
feature subset [15, 37].

In theory, mutual information is defined in terms of probabilistic density functions p(z),
p(y), and p(z,y) of two random variables z and y:

I(X;Y) // (z,y)log () ())dsvdy

Max-Dependency finds the subset of features S with m features {z;} and is defined as:
max D(S,¢),D = I({z;,i =1,...m};c)

Max-Relevance selects the features x; which are required to have the largest mutual
information I(x;; ¢) with the target class c, reflecting the largest dependency on the target
class. An approximation of D(.S, ¢) in the maximum relevance approach is computed as:

max D(S,¢c), D = Z I(x;;c

However, it is very likely the case that there exist selected features which are dependent
and give strong relevance. For this reason while the relevance is maximized, the redun-
dancy of the correlated features should be minimized:

min R(S5), Z I(xi;xj)

xl,xJGS

A combination of the two criteria described above, formulates the minimal-redundancy-
maximal-relevance (MRMR) feature selection method. The final optimization problem is
defined as the difference of the two terms:

max®(D,R), =D — R

In this method, the subset of the features are iteratively selected such that at each step,
one feature is selected depending on all previously selected features with an incremental
search:

max [I(l’j, -— Z ij,ajz].

i €EX—Sm—
IJE m—1 mESm 1

Comparing to the Max-Dependency, the mRMR avoids the estimation of multivariate
probability densities p(z1, ..., z),) and only calculates the bivariate densities, i.e. p(x;, x;)
and p(z;, c), that is much easier and applicable to big data. Moreover, this also leads to
more efficient feature selection algorithms. On the other hand, mRMR algorithms do not
guarantee the global maximization of the problem due to the difficulty in searching the
whole space. However, global optimum solution in this approach might lead to over-
titting on the data, whereas, the mRMR is a practical way to achieve a superior classifica-
tion accuracy and it also reduces the complexity of the computation [37].
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3. Feature Ranking and Object Learning

In this chapter, we introduce our approach for feature selection and learning for semantic
segmentation. Our purpose is to find the most distinctive, discriminative and robust fea-
ture set for object recognition in the task of semantic segmentation. We employ a feature
ranking strategy to compute the importance of each feature in a given set of features and
reduce the redundancy in the feature set by analyzing the change of the performance ac-
curacy depending on each feature. Thus, the redundant features are eliminated whilst the
accuracy and the efficiency of the system is enhanced.

In the scope of the proposed method, Section 3.1 presents our appearance model, also
called unary pixel potential, based on object detection/recognition. Section 3.2 shows how
the features are ranked using mutual information based feature selection strategy. Fur-
thermore, Section 3.3 compares two machine learning methods, which are used for object
learning in the majority of state-of-the-art studies, in order to address the question which
one is the most convenient learning strategy in the task of semantic segmentation.

3.1. Appearance Model

Our appearance model is a unary pixel potential p;(z) assigned for every class i given
in Equation 3.1 and the potentials are inferred with multi-class object detectors i.e:

pi(z) = —log P(i|f,z), i=1,...n (3.1)

where P(i|f, z) is the probability of class i for a given feature vector f of pixel z. By taking
the negative logarithm of probability distributions, we ensure that our potential function
is a monotonously decreasing function. Hence, the potential is a convex function, meaning
that there exists a global minimizer.

Objects can be categorized with their shape, color and textural properties. To detect an
object, one should exploit these features jointly so that each different types of object can
be distinguished from others whilst the ones in the same class are kept together. In this
study, we employ six types of Haar-like features as shape features, 5 color and 17 texton
features (Gaussian filters, Laplacian of Gaussians and a first order derivative of Gaussian
filters with various bandwidths) as color-texture features, in addition, we use normalized
canonical location features in Equation 3.2 and when applicable depth features as shown
in Figure 3.1 . Object classifiers are trained with these 37 joint features to build a robust
multi-class object detector.

fz(p)Z( > Y ) (3.2)

b
Liath Iheight

with (z,y) is the location of the pixel p on an image /.
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3. Feature Ranking and Object Learning

(a) Haar-like features

- AR

b) Color features
s
u

Figure 3.1.: Feature set. First row, Haar-like features: horizontal/vertical edges and
lines, center surround and four square. Second row, color features: relative
pixel/patch, horizontal/vertical edge and center surround on color channels.
Third row, depth features: relative pixel, relative pixel comparison and height
of a pixel.

(c) Depth features

Filters are applied in a patch surrounding the pixel on the image. We use the CIELab
colour space [1] since it is a perceptual uniform color model and is designed to approx-
imate the human vision. This color space is a device-independent model and describes
all visible colors to human eye. Luminance (L) channel varies from 0 to 100, indicates the
brightness, ‘a” and ‘b’ are color channels. ‘a” axis varies between green and red while ‘b’
axis varies between blue and yellow. Colors are usually numbered from -128 to 127. Fig-
ure 3.2 shows the three dimensional Lab space. We sample the image pixels for training.
Filter responses are computed on a Ags X Ay, grid on the image to reduce the computa-
tional expense [46] during training. For testing, however, filter responses are computed
for each pixel.

3.1.1. Shape Features

In 2001, Viola and Jones [49] presented very simple, but robust Haar-like features for face
detection. These features are reminiscent of Haar basis functions (Haar wavelets), that
were proposed in 1909 by Alfred Haar [24]. A Haar wavelet allows a function defined in
an interval to be represented in terms of orthogonal basis functions. The only disadvantage
is that Haar wavelets are not continuous and therefore not differentiable. The Haar mother
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3.1. Appearance Model

Figure 3.2.: CIELab color space. Lab color space has three dimension. ‘L’ ranges from 0 to
100 and shows the brightness while ‘a” and ‘b” represent colors and they both
range from -128 to 127. Source: [2].

basis and k-th Haar function is defined by:

1 0<z<3,
w(ff) = -1 % <z S 17
0 else.

Yip(x) = 1/1(2ja: —k)

for j a non-negative integer and 0 < k < 2/ — 1 as shown in Figure 3.3.

W = ix)
" ’ i
jﬁﬂl:m:ﬂ J.flll.l =dw(Zx—1)
[ 1
-1 L ‘ -1 ’_‘ ‘F
2 p = Y4 x) J.faz,l =di{dx—1) J.faz,: =u{dx-12) J.fa:,;. =u(dx-3)

migs -1 —| -1 -1 —r

Figure 3.3.: Haar Wavelets. Haar mother basis function and haar wavelets [50].

These simple Haar-like features can be rapidly computed using an intermediate repre-
sentation for the image which is called the integral image [49], also known as summed area
table, introduced to computer graphics by Frank Crow in 1984 [13]. The integral image (I)
at a pixel position (z,y) contains the sum of all pixel intensities of the pixels above and to
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3. Feature Ranking and Object Learning

Figure 3.4.: Haar-like feature calculation via Integral Image. On the integral image above,
the pixel 1 contains the total sum of all pixels in the region R, 2 contains
Ri+Rg, 3 is equal to Ri+R3 and 4 is the sum of all regions: R;+Ra+R3+R4.
The sum of the pixels in the region R4 can be computed with four basic opera-
tions: Ry = (4+1) — (2+3).

the left:

I(z,y) = z image(x!,yl).
TI<z,YyI<y

With this small modification on the image, sum of the intensities in a rectangle can be com-
puted efficiently only with 4 simple operations illustrated in Figure 3.4 . To compute the
feature responses, the sum of the pixels which lie within the white rectangles is subtracted
from the sum of the pixels in the grey rectangles.

Haar-like features are very good to capture shapes such as lines, edges, corners and so
forth, and can be extensively used for all kinds of objects. The most important advan-
tage of Haar-like features is that the object boundaries can be recognized very sensitively
and perfect object separations can be retrieved as a result of segmentation. Another big
advantage of these features is that objects can be detected in any scale by scaling the fea-
ture window. When doing that, all the rectangle sums must be normalized by the size
of rectangle for scale-invariant feature responses. We only employ six Haar-like features,
however, one can also use different types and enlarge the feature set. All shape features
are computed only on the luminance (L) channel in the Lab color space.

3.1.2. Color and Texture Features

Pixel colors are very basic features and give the local information about the object parti-
cles. However, objects usually consist of many different colors and individual pixel colors
cannot be used directly as a feature to the object as a whole. Therefore, we extract the color
features for each pixel in a surrounding window. We are inspired by Hermans’ simple
color features [26]: the relative pixel and relative patches, shown in Figure 3.1 are used
for color relevancy of the object parts and different objects. Thus, we do not only learn
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3.1. Appearance Model

Gaussian Laplacian of Gaussian Derivative of Gaussian

UGN

VAN

Gaussian Laplacian of Gaussian
2

Figure 3.5.: Texture features. Gaussian, Laplacian of Gaussian and derivative of Gaussian
convolution kernels used as texture features. Rows show 3D and 2D illustra-
tion of the kernels, respectively. Warm colors represent the higher function
values.

the general color model of the object, but also the color relation between object and its
surroundings. This also allows to learn the co-occurrency of the objects and increase the
classification accuracy in some sense. In addition to the relative color features, we also
use three of the Haar-like features since they are extremely powerful to discover object
boundaries. Color features are computed on each channel in the Lab color space.

Colors are not always so discriminative and robust for different textures. For that reason,
we exploit the simple, but relatively more expensive basic spatial image filters for texture
analysis, that is Gaussian (Equation 3.3), Laplacian of Gaussian (Equation 3.4) and deriva-
tive of the Gaussian (Equation 3.5) convolution kernels. The kernels are computed locally
around each pixel and the kernel size is determined by its bandwidth 2 - o + 1,k = 1).
Figure 3.5 shows the 3D and 2D texture kernels used in this application.

e L - 3.3
. = — 20
1 2 + y2 _z2+é12
LoG(x,y;0) = g {1 iy O (3.4)
T 22102 22277
DoG(z,y;0) = {aGU, 8GU} = {xe_ﬁ,ye_ﬁ (3.5)
Jdxr = Oy

3.1.3. Location Features

More or less, every object occurs at a specific region on the images. For example, sky
is always expected to be on the top as car, road and pavements invariably locate at the
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3. Feature Ranking and Object Learning

Rhino P.Bear Water Snow Vegetation ~ Ground Sky

Figure 3.6.: Location Potential Map. Location potential map of the 7-class Corel Bench-
mark [25], learnt from a training data. Pixels are normalized to 100-by-100
canonical size and w,, is chosen 1. Colors show the occurrence likelihood of
the objects at each pixel. Warmer colors represent higher probabilities.

bottom. The location information about the objects can be considered in two different
ways:

¢ Location as a feature: In the simplest case, locations can be integrated into the object
learning strategy in the same way as the other types of features. The location fea-
ture is basically computed as a normalized canonical form of a pixel location given
in Equation 3.2 . The most important location features will be implicitly selected
during training.

* Location as a potential: Another way of exploiting the location attribute of the ob-
jects is to learn a potential, captures the weak dependence of the class label on the
absolute location of the pixel in the image [44]. The location potential(f,) can be
adapted into the appearance model as follows:

pi(x) = —log (P(il f,x) - (i, 3)) .

with 6, (¢, ) being the location potential of class i at normalized pixel location &. The
location potential is then learnt from a training data with Equation 3.6 , as used
in [44].

O0x(1,2) = ( (3.6)
where N, ; is the number of pixels of class i at normalized location Z in the training
set, IV; is the total number of pixels at location Z and «), is a small integer, correspond-
ing to a weak Dirichlet prior on ). The location potential is raised to the power of
w) to compensate for overcounting.

N;z + a}\)w
N:ﬁ—f—a)\

Figure 3.6 shows an example location map, learnt for the 7-class Corel dataset of [25].
This map shows the object occurrences on the image. The color gets warmer as the occur-
rence potential of the object increases. As shown in the figure, there is a high uncertainity
on the locations. The appearance model is composed of a scalar multiplication of the object
detector confidence with the location confidence and the weak location confidence causes
high uncertainty in the model. Therefore, in this study we decided to use the location
attribute as a feature.
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3.2. Feature Ranking

3.1.4. Depth Features

With the development of cheap RGB-D cameras, the popularity of using these cameras in
the applications has increased. RGB-D sensors are very cheap and provide depth informa-
tion of the scene along with the color images. Therefore, nowadays researchers work on
integrating the depth features into the system. By doing that, the accuracy of the system
will be increased by only exploiting computationally very low cost and simple features.
See Figure 3.7 for a sample gray scaled depth map of a given image, taken from NYU ver-
sion 1 Depth Benchmark [47]. The Gaussian filter is applied to the all channels (Lab) whilst
Laplacian of Gaussian and derivative of Gaussian filters are only applied to the luminance
(L) channel.
We use three deep features, also used in [26]:

1- Depth of a relative pixel in a surrounding window, normalized by the furthest depth
in the corresponding column.

2- Depth comparison by subtraction of two relative depths as described in [45]. At a
given pixel z, the features compute:

foll,) = dr (m " dfl(bl")) — (x " dl?@) ’

where d;(z) is the depth at pixel  on an image /, and u and v are randomly chosen
offsets in a window (@ = (u,v)). The relative distances (offsets) are normalized by

the depth of the current pixel (ﬁ) to make the features more robust to camera
translation.

3- The height of a point in 3D [47]: The height f, of a point 2 = (z,, z.) with respect to
the camera center is computed as follows:

fnl,x) = —di(x) -z, .

3.2. Feature Ranking

All the features used for object recognition in this study have been selected only because
of their popularity in state-of-the-art works. However, randomly chosen features do not
always perform well or combining strong robust features does not guarantee any improve-
ment on the performance. In addition, another drawback of using many features is the
huge computation time. As the features are computed for each pixel, the calculation time
for the features exponentially grows by adding new ones to the system and the run-time
thus drastically increases. Another important issue when using different types of features
jointly is that there might be a redundant feature and therefore no longer a feature but a
noise, will definitely reduce the classification performance. For all these reasons, we aim
at reducing the redundancy and picking the most distinctive and robust feature set for a
given benchmark.

Among many other feature selection methods, we use a feature ranking algorithm based
on mutual information. In [37] Peng et al. present an algorithm which allows ordering
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3. Feature Ranking and Object Learning

(a) RGB image

(b) Depth map of the image (a)

Figure 3.7.: Depth map of the scene. RGB-D cameras provide both RGB color image (a)
and corresponding depth map (b) of the scene. Depth values are normalized
to gray scale. Brightness increases as the regions get away from the camera.
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3.3. Object Learning

features by means of maximizing the relevance between features and the corresponding
class labels and minimizing the inter-feature redundancy based on mutual information.
The Minimum-Redundancy-Maximum-Relevance method (mRMR) maximizes the objec-
tive function in Equation 3.8 where MI(X,Y) denotes the mutual information of two
continuous random variables:

MI(X;Y) Z/Y/Xp(x,y) logmwdy, (3.7)
1
x| [Ml(fj;C) - m‘lxie;m_lMI( fiifi) - (3.8)

The mRMR method (see Section 6.1 for detailed explanation) orders the features incre-
mentally by selecting the one with highest score at each iteration. After ranking the fea-
tures depending on their relative importance scores, we run the whole system adding
the ranked features one by one to the feature set and performing the segmentation on
all benchmarks independently. The list of ranked features for each benchmark is given
in Appendix A . Further evaluations will be presented in Chapter 6 .

3.3. Object Learning

After feature computation, the most important, class-separator features are selected with
one of the machine learning feature selection methods. In this research, we only study
commonly used supervised learning algorithms to learn the object classifiers. For our
tield of application, we consider Gentle AdaBoost [20] and Random Forests [7] to be the
most relevant. Classification algorithms generally estimates a class label for a given feature
vector. However, since we need to compute the appearance model for segmentation which
is consisted of class distributions per pixel, we adapt these two learning algorithms to our
purpose as described below.

Random Forests (see Section 2.2.2 ) are an ensemble of decision trees which can handle
large data. The learning process starts with one decision tree and adds another one to
the forest if the so called out-of-bag (oob) error is bigger than a certain threshold or the
maximum number of trees is not reached. Each tree T, returns a tree vote T;,(f) for a
given feature vector f. The probability distribution for each class i given f and a pixel z is
then estimated as follows:

Plilfa) =" i=1,..C (3.9)
where NV is the number of trees in the forest and C'is the total number of classes.
Random Forests exhibit a good detection rate and are very robust against outliers. An-
other alternative object learning method is the Boosting algorithm (see Section 2.2.1 ).
Boosting is a greedy learning algorithm that linearly combines the weak learners to train
a strong classifier. A one-vs-all strategy is used for the training and one strong classifier
for each class is trained. This method can either output a class label or a confidence value
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Ground

vegetation Vegetation

olar Bear
Polar Bear Polar Bear

i,

SHow Ground

(a) Input Image (b) RF unary classifier (c) AB unary classifier

Ground Ground Ground

Polar Bear Polar Bear Polar Bear

(d) Ground Truth (e) RF Segmentation (f) AB Segmentation

Figure 3.8.: Random Forest vs. Gentle AdaBoost. Images (a) and (d) show the input and
ground truth images, respectively. Images (b) and (c) illustrate the detection re-
sults (arg max; ,, P(i|f, z)) for Random Forest and Gentle AdaBoost and images
(e) and (f) compare the variational segmentation results.

which is sum of the weighted votes of the weak learners. However, we require a probabil-
ity distribution. Therefore, the distribution is computed using a soft-max transfer function:

Pilf,z) = CeXp(H"(f ) (3.10)

3 exp(Hi(f,2))

where H;(f, z) denotes the confidence score class i computed as follows:

w
Hi(f,x) =Y (@) - hy,(2) . (3.11)
w=1

For our experiments, we set the same learning parameters for all datasets. We trained
the Random Forests with a maximum of 50 decision trees, each having a depth of 15 at
most. In the Gentle AdaBoost, we perform the training using 100 weak learners per class.

Figure 3.8 shows the experimental results for each unary pixel classifier. Note that
the Random Forests give better classification results compared to the Gentle AdaBoost.
This is due to the unbalanced training data. Hence in most benchmarks the pixel count
for each class is non-uniformly distributed. This leads to a suppression of classes with
less pixels. In addition, the soft-max transfer function over-smooths the class potentials.
The reason for this is that each classifier is trained independently and that the confidence
scores are discrete, real numbers. So the one-vs-all Boosting approach does not provide
a good appearance model. In contrast, the Random Forests circumvent this problem by
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Rhino P.Bear Water Snow Vegetation Ground  Sky

(b) Gentle AdaBoost Potential Map

Figure 3.9.: Probability maps provided by Random Forest (a) and AdaBoost (b) classifiers.
Warmer color represents higher probability.

penalizing the class errors with the corresponding class weights during the training and
perform equally well for each class.

Figure 3.9 shows the class-wise probability maps for both learners. We have more un-
certainty (cold colors) in the AdaBoost map ( Figure 3.9 b) compared to probabilities gen-
erated by the Random Forest ( Figure 3.9 a). This problem can be overcome by increas-
ing the number of weak learners. However, this drastically increases the prediction time.
Apart from that, prediction time in the Random Forests is faster than the one in the Gen-
tle AdaBoost. For the above reasons, we decided to use Random Forests in the following
experiments.

3.3.1. Measurement of the Classification Uncertainty

Random Forests classifier does not return a class label but a distribution over classes in our
study. By using this probability distribution p(x) for each pixel on an image (see Figure 3.9
a), we measure the quality of object recognition with entropy. Entropy in information
theory is a measure of the uncertainty associated with a random variable. This term is also
known as Shannon entropy [42], which quantifies the expected value of the information
contained in a message, that is a specific realization of a random variable. The entropy
H(C) of C random variables (in our case, the total number of classes) in a pixel z is defined
as follows:

C
H(C)=- Zpi(w) -loge pi(x).

Uncertainty of the detection at a pixel x is maximum (H(C') = 1) if the Random Forests
assign equal probabilities to all classes, and the uncertainty is minimum (H (C) = 0) if one
of the classes has the highest probability (p(z) = 1.0). Figure 3.10 illustrates a diagram
that plots the entropy versus probability for the case of 2 random variables.

We expect that a good distribution will retrieve the best segmentation at the end. There-
fore, entropy is used to measure the quality of the classifier. Figure 3.11 shows an example
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H(X)

p(X=1)

Figure 3.10.: Entropy H (X). Entropy in the case of two random variables with the proba-
bilities p(X = 1) and 1 — p(X = 1). Uncertainty is maximal (H(X) = 1) when
two random variables have equal probability.

for entropy based uncertainty measurement. The global uncertainty measurements of the
unary pixel classifiers for each benchmark are presented in Section 6.2 .
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(a) Example Image

Building
Window

Door

Car

PaverF?oeanc’jc Vegetation

(b) Unary pixel classification (arg max; , ﬁ(z] frx))

(c) Entropy Image

Figure 3.11.: Detection Uncertainty. (a) and (b) demonstrate the input image and the
unary pixel classification result, respectively. (c) shows the detection accuracy
at each pixel computed with entropy. Warmer colors represent high certainty.
As shown in (b) and (c), vegetation, sky and inner part of the building have
a high certainty in contrast to other regions. Due to the insufficient training
samples of cars in the eTrims [27] Benchmark, the pixels, belonging to the car,
have the lowest certainty.
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4. Variational Optimization and Image
Segmentation

This chapter presents the energy functional based on unary pixel potential for multi-class
image segmentation and gives a brief description of the convex energy optimization with
a first-order primal-dual formulation.

4.1. Variational Image Segmentation

Given an input image I : @ — R3 defined on the image domain Q2 C R?, we compute
the appearance model p;(x) for all classes i. A subsequent minimization of a regularizing
energy which is based on variational multi-labeling [9] allows to obtain consistent pixel
labeling and thereby removing label noise in the unary potentials. The energy functional
in Equation 4.1 is minimized using a first-order solver [11]. As a regularizer, the total
variation of the indicator function u; of an object of class i is used. This penalizes the
boundary length of the object associated with ;. In order to favor the coincidence of
the objects and the image edges, the total variation term is weighted with a non-negative
function g : @ — R given in Equation 2.5.

Z/pz e dg;+AZ/ ) V()| de 4.1)

4.2. First-order Primal-Dual Convex Optimization

In order to optimize the solution, the energy functional must meet the following two con-
ditions:

* Necessary condition. If there exist any minimum of the energy functional, the
derivative of the functional at the minimum must be equal to zero:

dE(u)

=0.
du

¢ Sufficient condition. To obtain a global minimizer, functional must meet the con-
vexity criteria.

As already discussed in Section 2.1, our energy functional in Equation 4.1 satisfies the
above conditions. However, the minimization problem is now a saddle-point optimization
since the total variation is replaced with its primal-dual formulation:

|Vu| = sup £ - Vu,
1€1<1
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4. Variational Optimization and Image Segmentation

where |¢| € R? is a dual variable and the supremum is attained at £ = % if [Vu| # 0.
This re-formulation allows to re-write the TV as in Equation 2.4 .

Since we replace the total variation with primal-dual formulation, we minimize the en-
ergy functional to find a saddle-point. In this study, we exploit an efficient algorithm for
minimizing this saddle-point problem, introduced in [11, 38]. We bring our energy func-
tion (Equation 4.1) into a primal form as follows:

minsupiz:/ pi(x) - ui(x) do — A;/Qdivfi ui(z) do

This problem can now be optimized easily using gradient descent/ascent aspect, also used
in [53]. This solving scheme descents in the primal variable and ascents in the dual variable
until convergence at the saddle-point. As following the necessary condition, we fix the
variables and derive the energy to formulate the update scheme for optimization:

e =pmdive, Go=Vu

In the first step, the primal variable u", dual variable ¢ and an auxiliary variable v* used
in the acceleration step, are initialized with 0. Then the algorithm iteratively runs the
following steps:

€ = T (&0 + 7 Vop)
utth = g (uf +n - (diver™ — pi)

,Un—‘rl — 2un+1 —

7 > 0,7 > 0 are step sizes and the solution provably converges for sufficiently small step
sizes. IIx and Ils are the projections onto the corresponding sets. For the primal variable
u, the projection onto the set S = BV(; [0, 1]) is calculated by clipping:

u(z), if u(z) €0,1]
(Ilsu)(x) = min {1, max {0, u(x)}} = < 1, if u(z) > 1
0, if u(z) <0

For the dual variable ¢, the projection onto the unit disk K is done as follows:

§(x)
max {1, |¢(x)]}

This update scheme is applied on each pixel independently on the image. Therefore, the
optimization process can be accelerated on a GPU.

Additionally, we also optimize the smoothing parameter A for each benchmark by using
binary search as given in Algorithm 2 . Hence, we obtain the best possible multi-region
segmentation of the image.

(i) () =
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4.2. First-order Primal-Dual Convex Optimization

Data: Unary pixel-wise potentials p(z)

Result: A,

€ <+ 0.005;
increment < 3;
in-between <« false;
A+ 1;

)\opt +0;

Popt — 0/ Pcurrent — O/ Pprevious — O;
Solve the segmentation with A and calculate the performance P;

wh11e Pcurrent - Pprevious Z € dO
if P,p; < P then
Popt < P;
Aopt — N\
end

Pprevious < Peurrent;
Peyrrent < P;

if Peurrent - Pprevious > (0 then

if in-between then

increment < increment / 2;

end

A < A + increment;

in-between <« false;
else

increment < increment / 2;

A < X - increment;
in-between < true;
end

Solve the segmentation with \;

Calculate the performance P;
end

Algorithm 2: Optimization of the smoothing parameter \. For each benchmark, X is

optimized with binary search.
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5. Benchmarks

In this chapter, we first introduce the benchmarks, used for the scientific evaluation. Our
framework has been evaluated on four challenging databases. The benchmarks consist of
landscape images, wild-scenes, facade and indoor scenes. This chapter gives a quick look
for each benchmark.

5.1. eTrims Benchmark

E-Training for Interpreting Images of Man-Made Scenes(eTrims) [27] dataset is consisted
of 60 facade/street images. Each pixel is labeled with a color which corresponds to a class
label. Thus, this dataset offers the ground truth annotation on both pixel and region lev-
els. There are in total 8 classes, which are “‘Window’, “Vegetation’, ‘Sky’, ‘Building’, ‘Car’,
‘Road’, ‘Door” and ‘Pavement’. Typical objects in the images exhibit considerable varia-
tions in both shape and appearance and hence represent a challenge for the object based
image interpretation. This benchmark is one of the most challenging datasets since the
shape and appearances of objects are more detailed in the images with high resolution.
and generalization of the complex structures on the objects is a difficult task in object clas-
sification. Figure 5.1 shows a sample image and the ground truth labeling from eTrims
Benchmark. The pixels close to the object boundaries are non-labeled (black) due to the
ambiguity on the original images.

Building

Window

Figure 5.1.: eTrims Benchmark. Sample image (left) from eTrims dataset with its associ-
ated ground truth labeling (right). Each class is represented with a color. Labels
are imposed on the respective color regions.
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5. Benchmarks

5.2. NYU version 1 Depth Benchmark

Cheap and sufficiently accurate RGB-Depth cameras increase their popularity in computer
vision applications since besides color images, these cameras also provide a depth map of
the scene. In our experiments, we used the same RGB-D indoor benchmark introduced
in [47] and also used in [26]. This benchmark is comprised of thousand of objects and
each image has 640x480 resolution. In order to compare our results with state-of-the-art,
we also categorize the objects into 12 core classes as ‘Bed’, ‘Blind’, “Bookshelf’, ‘Cabinet’,
‘Ceiling’, ‘Floor’, ‘Picture’, ‘Sofa’, “Table’, “TV’, “Wall’, “‘Window’. Depths are normalized
to grey level (range from 0 to 255), the whiter color represents the further distances. Un-
known regions are labeled with white color on the ground truth and these regions are not
considered during the training. Figure 5.2 demonstrates a sample image with correspond-
ing depth map and ground truth.

Figure 5.2.: NYU version 1 Depth Benchmark. From left to right: original image, grey
level depth map and corresponding ground truth labeling.

5.3. Corel and Sowerby Benchmarks

We also applied our method to two natural image datasets, used in [25]. First dataset is a
100 subset of the Corel image database, consisting of African and Arctic wildlife natural
scenes. The Corel dataset is labeled into 7 classes: ‘Rhino/Hippo’, ‘Polar Bear’, “Vegeta-
tion’, ‘Sky’, “Water’, ‘Snow” and ‘Ground’. Each image is 180x120 pixels. See Figure 5.3
for a sample image and ground truth labeling.

Second dataset, the Sowerby Image Database of British Aerospace, is a set of color im-
ages of out-door scenes (consisting objects near roads in rural and suburban area) and their
associated labels. This benchmark is comprised of 104 images with 8 labels: ‘Sky’, ‘Grass’,
‘Roadline’, ‘Road’, ‘Building’, ‘Sign’, ‘Car’; each image is 96x 64 pixels.
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5.3. Corel and Sowerby Benchmarks

SKy Vegetation
Rhino

Ground

Figure 5.3.: Corel Benchmark. An example image (left) from Corel benchmark and its as-
sociated ground truth (right) with imposed class names on the corresponding
labels.

(arass

EBullding Sign Car

Road

Figure 5.4.: Sowerby Benchmark. An example image (left) from Sowerby benchmark and
its associated ground truth (right) with imposed class names on the corre-
sponding labels.
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6. Experimental Results

This chapter presents our evaluations for feature selection and segmentation separately.
In Section 6.1 , we discuss how many and what kind of features give the best performance
for each benchmark independently. Then, in Section 6.2 , we present our segmentation
results with the selected subset of features. We compare our experimental results with
state-of-the-art methods in terms of quantitative scores and run-time.

We have implemented our approach in C++, NVidia CUDA with OpenCV (Open Com-
puter Vision) [6] Library and DARWIN [23] Machine Learning Framework on Ubuntu
12.04 LTS (Precise Pangolin) Operating System. All experiments have been executed on In-
tel® Core™ i7-3770 processor equipped with 32 GB RAM and a NVIDIA GeForce GTX480
graphics card.

We tested our framework on four different benchmarks, the 8-class facade dataset intro-
duced in [27], the 7-class Corel and Sowerby datasets of He et al. [25] as well as the NYU
Depth v1 [47] with 12 core classes. Except for the eTrims Benchmark, we randomly split
each dataset into training and test sets by 50%. Table 6.1 shows the patch size and the
sampling rate A, used for each benchmark. Due to huge memory consumption on fea-
ture ranking with mRMR algorithm, we only use 100 randomly sampled images for NYU
Depth v1 Benchmark.

Table 6.1.: Parameters. Patch size and sampling rate, used for each benchmark.

Parameter ‘ Sowerby = Corel  eTrims  NYUvl

Patch size 6 10 24 24
ASS 3 3 5 5

For the object learning, the same parameters are used for all benchmarks during the
training of Random Forests and Gentle AdaBoost classifiers. AdaBoost classifiers are
trained with 100 weak learners for each class where each weak classifier is a decision
stamp. Random Forests are trained with maximum 50 trees where each has at most 15
depths. Maximum categories parameter is set to 15 (any bigger number than the total
class number) so that none of the classes in the benchmark are grouped during training.
Splitting is repeated unless at least 10 samples are left in the node. The number of the trees
in the forest is determined by the forest accuracy, also known as the out-of-bag error, which
is set to 1%. Apart from the learning parameters, due to high unbalanced sample distri-
bution over the classes in benchmarks, we set the class weights for each classes so that
during the out-of-bag error calculation, class errors are weighted with the corresponding
class weights to balance the class-wise classification accuracy. Although this weighting
does not improve the overall performance, it has a significant effect on the class-wise per-
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6. Experimental Results

formance scores. Table 6.2 shows the class weights used for each benchmark. The class
weights are set to 1 for each class in the NYUv1 Depth Benchmark.

Table 6.2.: Class Weights. Class priors to balance the detection performance of each class
in all benchmarks.

(a) Sowerby
JELTIER Sky Grass Roadline Road Building Sign ' Car
Weight| 1.0 1.0 1.5 1.0 1.0 1.5 1.5

(b) Corel
|- IIER Rhino Polar Bear Water| Snow Ground Vegetation Sky
Weight| 1.0 1.0 1.05 1.0 1.0 1.0 1.1
(c) eTrims
JELIER Building Vegetation Door Window Car Sky Pavement Road

Weight 1.0 1.0 1.15 0.65 1.0 1.0 1.0 1.0

6.1. Feature Selection

We rank the features using the mRMR method on the training images and select the best
subset of features, by incrementally adding the ranked features one by one to our feature
set and comparing the results for each feature set. Figure 6.1 illustrates the overall per-
formance scores vs. the total number of used features for all benchmarks. The features
which are actually increasing the performance as well as the number of features leading to
a redundant-free feature set can be easily found in this illustration.

The eTrims Benchmark is composed of high resolution images, thus object textures have
significant importance for detection. Similar to Frohlich et al. [21] we split the dataset by
a ratio of 60%/40% for training/testing. As shown in Figure 6.1 , there is a jump at the
24th feature which is a first order derivative of a Gaussian on the ‘L’ channel. Figure 6.1
indicates that the remaining features are redundant. Therefore, we only use the first 24
features for the eTrims Benchmark.

For a reasonable overall performance on the Sowerby Benchmark according to Fig-
ure 6.1 , already the first three features would be enough: the relative color feature on
the “a’ channel, the Haar horizontal edge feature on the ‘b’ channel and the relative patch
feature on the ‘L’ channel. Instead of using a larger set of features, this simple set can be
used to obtain similar performance. However, one can observe another jump in the per-
formance at the 21st feature. Additional features beyond the first 21 do not improve the
performance, but would increase the computational cost. Hence, for our experiments we
used the first 21 features. Most of the dropped features are texture features. In contrast
to the eTrims Benchmark, the information gain of the textural features is relatively small
because of the low resolution of the images in the Sowerby dataset.
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Figure 6.1.: Overall performance vs. Features. Features are added to the feature set one by
one. Pink dots denote the type of the feature (H: Haar, C: Color, T: Texture and
L: Location, D: Depth) added at current step. Yellow circles show how many
features are selected for the benchmark.

6.2. Segmentation Results

In this section, we present our qualitative and quantitative segmentation results in addi-
tion to the performance/run-time comparisons between ours and state-of-the-art studies.

We, first, present the global entropy scores computed during the evaluation. Entropy
is computed at each pixel and averaged as global entropy all over the test set in each
random split. Scores present the final mean global entropy scores for each benchmark
givenin Table 6.3 .

Table 6.3.: Global Detection Entropy. Unary pixel classifier global entropy scores for all
benchmarks.
‘ H, global (C)
eTrims 0.31
NYUv1 0.38
Corel 0.42
Sowerby| 0.23

In Table 6.4 we compare our eTrims benchmark segmentation results with the work of
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Frohlich et al. [21]. The algorithm is executed on ten random splits of each benchmark and
the scores shown in Tables 6.4, 6.5, 6.6, 6.7 are the average scores of these random splits.
The scores give the percentage of the correctly labeled pixels for each class, overall denotes
the percentage of the correctly labeled pixels in the whole dataset whilst the average gives
the mean of the class-wise scores.

Table 6.4.: eTrims Benchmark. Comparison of the segmentation performance and the effi-
ciency for eTrims

= o

= 2|

> 2| E
Labels o < =
Frohlich et al. [21]|63.5 90.1 95.4 71.9 77.4 73.2 71.1 69.9|76.1 72.3|~ 17s
Ours 75.0 84.0 64.0 57.0 78.0 96.0 56.0 69.0/76.0 72.0| ~ 5s

Our performance scores shown in Table 6.4 are as good as Frohlich et al. [21]’s and we
have significant improvement in the evaluation time for the eTrims Benchmark.

Table 6.5 shows that both training and testing speeds are significantly reduced com-
pared to Shotton et al. [46] on the Sowerby and Corel benchmarks.

Table 6.5.: Sowerby and Corel Benchmark. Segmentation/detection and efficiency com-
parison with Shotton et al.

Overall Speed(Train/Test)
Sowerby Corel|Sowerby  Corel
Shotton ef al. — Full CRF model [46] | 88.6  74.6 | 5h/10s 12h/30s

Ours — Segmentation 90.0 69.4 |13s/96ms 45s/280ms
Shotton et al. — Unary classifier only| 85.6  68.4 - -
Ours - Unary classifier only 871  65.0 - -

Table 6.6.: Sowerby and Corel Benchmark Average Class Scores. Average class-wise seg-
mentation performance of ten random splits.

(a) Sowerby
Labels Sky Grass Roadline Road Sign Building Car
Average Score|93.7 87.5 7.35 96.0 57.0 0.042 0.274
(b) Corel

Labels Rhino Polar Bear Water Snow Vegetation Ground Sky
Average Score| 83.1 65.5 751 60.6 71.5 65.6  53.0

Furthermore, we compare our segmentation with the approaches of Ladicky et al. [29]
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and Hermans et al. [26] on the NYUv1 Benchmark. Here we use only the best 11 ranked
features including the depth features to compete with Hermans et al. [26]. Table 6.7 demon-
strates that we can significantly improve the detection rate for several classes. We obtain
the best score compared to Ladicky et al. [28] and Hermans et al. [26] for more than half of
the classes. Furthermore, we obtain the best average performance. We cannot win a direct
runtime-competition with the algorithm of Hermans et al. [26]. Nevertheless, our system is
open to be paralellized for faster evaluation. Our goal is to keep things simple and to give
the opportunity for a quick reimplementation without the need of a high-end hardware.
Compared to the multi-threaded CPU implementation of Ladicky et al. [29] our runtime
is around 20 times faster. This shows the outstanding performance of our method in the
detection accuracy and runtime.

Table 6.7.: NYUv1 Benchmark. Comparison of the segmentation/detection performance
and the efficiency for NYUv1

()

£
Labels =
Ladicky et al. [29] 14 3 57 34 59 76 49 34 47 56 90 11|68 44 |~3m
Hermans et al. [26] 58 57 67 58 93 88 57 67 46 82 78 17|71 64 |~ 1s
Ours 8259827575 7879 71 81 85 68 49|70 74|~ 8s
Hermans et al. [26](unary)|51 42 48 54 88 87 62 50 40 73 70 19|65 57 | 0.2s
Ours (unary) 76 57 7270 71 75 70 66 74 74 63 44|64 68|~ 4s

Figure 6.2 illustrates the qualitative results in all benchmarks. In the segmentation result
of eTrims in the third row of Figure 6.2 d, we can see that the windows on the roof are
labeled as sky because of the reflection and also in the upper part of image we can find a
region labeled as pavement although there is none in the ground truth.

Comprehensive experiments on various benchmarks have proven that the segmentation
performance is heavily dependent on the pixel-wise object classification where the quality
of the feature set is significantly effective. Combining robust and discriminative features
does not always yield better performance since the redundancy of the interrelated features
causes high amount of misclassification in the object detection, hence decreases the effi-
ciency of the system in terms of computational expense and the accuracy of segmentation.
Therefore, the features were ranked based on their mutual information and the most dis-
tinctive feature set for each benchmark was determined with performance experiments on
the test sets. These selected subset of features improved the segmentation accuracy whilst
decreased the computational cost along with the complexity of the classification problem.

It is also shown that Haar-like features are the most robust and the most discriminative
features compared to the other simple features and also to the computationally expensive
features such as textons. However, in contrast to the conventional object detection studies,
these simple, yet powerful features yield better performance if the features are extracted
on color channels. Moreover, Haar-like features are indeed robust to capture the object
shapes which induces the object detectors to preserve the object boundaries by finding the
best separation of the segments accurately.
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(a) Original Image (b) Ground Truth (©) Un.aI.'y Rixel (d) Segmentation
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Figure 6.2.: Qualitative Results. Rows correspond to the Sowerby, Corel, eTrims and NYU
Depth v1 benchmarks respectively. First two columns show input and ground
truth images while the third and forth columns show unary pixel classification
and segmentation result respectively.
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7. Summary

Semantic segmentation is a joint task of object detection/recognition and segmentation
in the field of computer vision. In this work, to address the problem of semantic seg-
mentation, an appearance model based on object detectors is constructed and an energy
functional based on this model is optimized with a convex optimization approach.

In this study, we construct our appearance model with Random Forest classifier, trained
with various types of features and optimize our energy functional with the total variation,
boundary-length minimizer, based variational optimization technique. Although the opti-
mization tries to find the best segmentation on a given appearance model, the robustness
and the accuracy of the segmentation is purely dependent on the quality of the appearance
model. The major challenge in constructing this sort of appearance model is to accurately
detect the objects while preserving the boundaries in-between. In order to segment all
disjoint sets on an image, the current studies use a mixture of all types of features so that
the various objects, which carry different structural and textural properties, can be easily
distinguished from each other. Despite the fact that different types of features are actually
designed for capturing different object properties such as color, texture or shape, using
these features jointly is not always a good solution because of the high relevance between
features yields high redundancy in the feature set. As a result of redundant features, the
noise in the training data increases and the classification methods struggle with building
robust object classifiers. Moreover, the computational cost is exponentially increased by
adding new features to the feature set since the object detection is performed at a pixel
level and herewith the segmentation speed gets slower.

By exploiting redundancies in feature sets we have shown that the computational cost
for learning and testing in the task of semantic segmentation can be significantly reduced.
To this end we adapted a feature selection algorithm to the purpose of semantic segmen-
tation which reduced the redundancy within the feature set while preserving accuracy. In
many cases, we are able to outperform state-of-the-art results in terms of performance and
in addition to runtime due to a sophisticated feature set selection with reduced dimension.

7.1. Discussion

In this study, we have proven that Random Forests perform better than Gentle AdaBoost
in terms of runtime as well as classification accuracy in the task of multi-class object de-
tection for semantic segmentation. Apart from that, the lists of ranked features indicates
that Haar-like features are the most robust and the most discriminative features compared
to the others. Nevertheless, we should also note that Haar-like rectangles are capable of
understanding the shapes robustly and produce much more distinctive features on color
channels. Additionally, experiments have shown that the object boundaries can be accu-
rately detected with these simple features.
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7. Summary

As every object has its own characteristic, every benchmark has also certain differences
and therefore the number and type of features, which should be used, vary from one to an-
other. Simple objects and low resolution images on which the objects have no detail, could
be easily segmented by using only a couple of features while high resolution images on
which the shape and the texture of the objects can be observed well, could be segmented
accurately by using relatively more features. Therefore, the used features should be exam-
ined and the best subset of the features should be selected in order to detect the objects
and to find the consistent segmentation in addition to reduce the computational expense
and runtime.
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8. Conclusion

Semantic segmentation is one of the most challenging research topics in the field of com-
puter vision due to the huge diversity of the objects and the limitations of current object
classification methods. Although the current multi-class classification algorithms perform
well on variant image benchmarks, because of the high relevance between features and
the redundancy in the feature set, these algorithms suffer from huge amount of the noise
in the training data. As a result of noisy training, the accuracy of the classifiers drasti-
cally decreases and the segmentation fails. Therefore, the visual object detection features,
which basically represent the characteristic of the objects, should be chosen depending
on their importance so that the classification method generates a robust object classifier
with a noise-free training set. Hence, the quality of the object detectors increases and the
algorithm generates better segmentation outputs with a lower cost of computation.

8.1. Future Work

The feature selection by reducing the redundancy in the feature set with minimum-
redundancy-maximum-relevance method improves the performance and reasonably reduces
the computation time. However, this approach requires a huge memory to run and it is
not possible to perform the feature selection on big benchmarks. As a future work, either
one should optimize the method to perform on a huge data or another approach should
be replaced.

Due to the insufficient memory issue, we could only test several types of features and
our framework only allows to select the features for each benchmark independently. In
future studies, one could generalize the framework to select the features considering all
benchmarks together. Moreover, once the system is eligible, the number of objects in the
set of classes can be increased to solve more complex and higher dimensional object clas-
sification problems.

55






Appendix






A. List of Ranked Features

The full list of ranked features for each benchmark is given in this chapter. For eTrims,
Corel and Sowerby benchmarks, 37 features, composed of 6 Haar-like features, 12 Color
features, 2 location and 17 texture features, are used. For NYU version 1 Depth benchmark,
additionally 3 depth features are used. Tables A.2, A.3, A.4, A.5 demonstrates the ranked
features with their associated type, color channel which the feature computed on, the patch
size and the bandwidth parameters used for the feature. For better visualization, rows in
the tables are colored with the corresponding color of features given in Table A.1 .

Table A.1.: Feature Colors. Each feature is associated with a color.

| Haar| Color| Texture| Location| Depth|
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A. List of Ranked Features

Table A.2.: eTrims Benchmark. The full list of ranked features.
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Table A.3.: NYUv1 Benchmark. The full list of ranked features.
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A. List of Ranked Features

Table A.4.: Corel Benchmark. The full list of ranked features.
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Table A.5.: Sowerby Benchmark. The full list of ranked features.
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