
Simulated Annealing for 3D Shape Correspondence

Benjamin Holzschuh
TU Munich

benjamin.holzschuh@tum.de

Zorah Lähner
TU Munich

zorah.laehner@tum.de

Daniel Cremers
TU Munich

cremers@tum.de

Abstract

We propose to use Simulated Annealing to solve the cor-
respondence problem between near-isometric 3D shapes.
Our method gains efficiency through quickly upsampling a
sparse correspondence by minimizing the embedding error
of new samples on the surfaces and applying simulated an-
nealing to refine the result. The algorithm alternates be-
tween sampling additional points on the surface and swap-
ping points within the current solution according to Sim-
ulated Annealing theory. Simulated Annealing is a prob-
abilistic method and less prone to get stuck in local ex-
trema which allows us to obtain good results on the NP-
hard quadratic assignment problem (QAP). Our method can
be used as a stand-alone correspondence pipeline through
an initial seed generator as well as to densify a set of sparse
input matches. Furthermore, the use of locality sensi-
tive hashing to approximate geodesic distances reduces the
computational complexity and memory consumption signif-
icantly. This allows our algorithm to run on meshes with
over 100k points, an accomplishment that few approaches
tackling the QAP directly achieve. We show convincing re-
sults on datasets like TOSCA and SHREC’19 Connecitvity.

1. Introduction
Shape correspondence problems occur in a great variety

of 2D and 3D vision and graphic processing tasks. They
can be applied in many applications, e.g. texture transfer,
recognition or statistical shape models. These applications
become more and more relevant with the rise of VR and
AR, and the need for scalable algorithms increases with the
precision of acquisition hardware. In its essence, the shape
correspondence problem aims to find a semantically mean-
ingful mapping between the points on two compact two-
dimensional Riemannian manifolds X and Y , i.e. a func-
tion ϕ : X → Y . The definition of semantically meaningful
can vary depending on the application but it is common to
choose pair-wise features, e.g. distance values, to be pre-
served. In case of a rigid transformation between X and Y
this translates to preserving the Euclidean distance between

points and the problem has six degrees of freedom, which
makes it efficiently solvable. In more general cases and with
discretized shapes this can be formulated as a version of the
NP-hard Quadratic Assignment Problem (QAP):

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)). (1)

Here, Pn denotes the set of n-permuations assuming
both shapes are discretized with n points and kX and kY
denote an arbitrarily chosen measure of the closeness be-
tween two points on X and Y . A wide variety of relax-
ations for this formulation exist (see Section 2) but are of-
ten still not feasible for a large number of vertices. Another
problem with solving Eq. (1) exactly is the underlying as-
sumption that ϕ is an bijection. While this is reasonable in
the continuous formulation, it requires the same amount of
vertices on both shapes. This assumption is often not met in
real-world data and needs to be artificially enforced through
subsampling which adds additional pre- and postprocessing
and might distort the result, for example for partial shapes.

Contribution In this paper, we propose to compute a cor-
respondence between two 3D shapes by approximating the
solution to Eq. (1) using a simulated annealing strategy [16].
Our main contributions are the following:

• We propose the first scalable application of Simulated
Annealing to the 3D non-rigid correspondence prob-
lem.

• Although QAPs are a NP-hard problem, we approx-
imate (1) in O(n log(n)

√
n) runtime where n is the

number of vertices.

• We propose to use a variant of locality sensitive hash-
ing to reduce the memory requirement to O(n

√
n).

• In numerous experiments, we demonstrate that the pro-
posed algorithm can be used both as a stand-alone
framework with a seed generator as well as complete
and denoise a set of sparse input matches. It provides
state-of-the-art results and scales to over 100K ver-
tices.

2. Background & Related Work
In this section we summarize the general background

needed to understand the rest of the paper and related work
most relevant to our method. A more general survey of re-
cent shape correspondence methods can be found in [26].

We denote the input triangular meshes as X and Y and
assume that they are proper discretizations of Riemannian
2-manifolds embedded in 3D. The set of vertices of each is
denoted by {x1, ..., xn} and {y1, ..., ym} respectively.

2.1. Quadratic Assignment Problem

Modeling the correspondence problem in variants of the
Quadratic Assignment Problem has a long history [3]. If
both shapes have the same number of points, then the corre-
spondence φ can be represented by a permutation π, which
maps the vertices {x1, ..., xn} of the triangluar mesh X to
the vertices {y1, ..., yn} of the triangluar mesh Y . Follow-
ing the approach of [32], the optimal permutation π can be
described as the solution to a quadratic assignment problem
(QAP) with the objective

max
π

∑
1≤i,j≤n

kX (xi, xj)kY(yπ(i), yπ(j)). (2)

This objective is also referred to as the Koopman-Beckman
version of a QAP. However, as the original formulation,
all variants are NP-hard and in general not tractable for in-
stances with more than a few dozen points. This also holds
for the Quadratic Assignment Matching (QAM) [8]. It was
even shown that finding a ε-approximate in polynomial time
for any ε is only possible if P=NP [27].

Relaxations of the permutation matrix constraint are a
popular way to reduce the computational complexity of (1).
Spectral relaxations as introduced in [17] replace permuta-
tions with a Frobenius norm constraint which reduces the
optimization to an eigenvector problem. Other popular re-
laxations consider doubly-stochastic (DS) matrices instead
[5, 9] which preserves the optimum for concave energies
and on specific graph matching cases [1] but not for gen-
eral non-convex energies. Other relaxations can be shown
to be tight but are still too computationally demanding to
apply to high-resolution scans [4, 13].

The Product Manifold Filter (PMF) [33] solves the same
optimization problem as our work with a series of Linear
Assignment Problems (LAPs). However, it cannot work as
a stand-alone method, and only works on full shapes with
the same resolution and requires a (possibly sparse) initial-
ization. Additionally, the size of the problem is restricted by
the size of LAP that can be solved, usually not more than
a few thousand vertices. PMF has been extended to work
with features as initialization and on much higher resolu-
tions with a multi-scale approach in [32], but cannot densify
sparse inputs anymore. Both [33] and [32] are prone to get

stuck in local optima without chance of recovering whereas
our framework starts with a variety of initializations and ap-
plies a probabilistic approach which makes it more flexible.

2.2. Approximation Algorithms

Approaches that do not have any guarantees on being
close to the optimal solution can still work well in practice
and actually be more efficient. One class of algorithms, that
our method also falls into, looks for small step improve-
ments over the current solution. A famous member of this
class is [12] solving graph isomorphism. If the improve-
ment step has a probabilistic condition it is possible to es-
cape local optimal in very non-convex problems.

Genetic algorithms [21] fall under probabilistic opti-
mization with an idea based on evolution theory, namely
mutation and selection. Different than Simulated Anneal-
ing genetic algorithms maintain multiple solutions through-
out the optimization. This is more efficient in exploring
the solution space but increases the computational complex-
ity. [25] explored this direction for 3D correspondences,
but due to the aforementioned complexity it is not efficient
enough to produce a dense correspondence on high resolu-
tion shapes. [25] is similar to our pipeline in that its starts
with a very sparse set of correspondences that are refined
and expanded iteratively but only generates a fixed sized
sparse solution where we can sample indefinitely. [10] also
applied a genetic algorithm for 3D shape correspondence
but operates on maps. This scales to high resolutions but
relies on a reliable method to convert the map back to a
pointwise correspondence.

Simulated Annealing, which we use in this work, is a
variant of the Metropolis algorithm [20] that can approxi-
mate the global solution for complex functions and solution
spaces that defy conventional optimization techniques [23].
A solution to a discrete optimization problem is identified
by the physical state of a set of atoms. Starting with an
initial state and temperature t, a random generator produces
displacements of the atoms which change the energyE (ob-
jective function) so that the system of atoms remains ad-
missible. A displacement du is applied to a randomly cho-
sen atom and then the change in energy dE is assessed. If
dE < 0 the displacement is accepted. Otherwise

P (dE) := e−
dE
kt (3)

is evaluated, where k is the Boltzmann constant. P (dE) is
compared with a random variable X that is uniformly dis-
tributed in (0, 1) and we accept the displacement if X <
P (dE). The temperature t controls the flexibility to accept
changes increasing the objective function value and is grad-
ually lowered over the course of the optimization. In the

Seed Generator

Sparse Input
Matches

Insertion Phase 1

Swapping

Insertion Phase 2

Sw
ap

pi
ng

ZoomOut

Figure 1: Overview over our pipeline. The initialization can either be a set of sparse input matches or produced by our
proposed seed generator. The next phase alternates between inserting new points and swapping the current (sparse) solution
according to Simulated Annealing strategies until 250 points are filled in. After that the solution is filled to 70% of all points
with a final round of swapping. The final step is a round of post-processing with ZoomOut [19] to densify the solution.

case of the QAP, the random displacements are transposi-
tions and the corresponding change in energy can be com-
puted in O(n). Simulated Annealing has been used to find
point correspondences for stereo vision [29] or protein pre-
diction [28]. However, these algorithms do not scale to large
candidate sets but instead operate on special interest points
or return a sparse set of correspondences.

3. Method
We propose to use Simulated Annealing (SA) to opti-

mize for the optimal permutation Π∗ in this QAP

Π∗ = arg max
Π∈Pn

∑
x,y∈X

kX (x, y) · kY(Π(x),Π(y)). (4)

We propose a specific choice for kX and kY :

kX (x, y) := e−dX (x,y) and kY(x, y) := e−dY (x,y),
(5)

where dX and dY denote the geodesic distance on X and
Y . This definition tries to incentivize smoothness because a
single point xi on X contributes the most to the optimal ob-
jective (2) if all points in its neighborhood have correspon-
dences on Y that are also in the neighborhood of Π(xi).
In SA the current solution and a neighboring one are eval-
uated in terms of energy (Eq. (4)), and the neighbor is ac-
cepted with a certain probability based on the energy change
and current temperature (see Section 2.2 for details). In
case of the correspondence problem the current solution is
a (sub)permutation Π and a neighbor is a subpermutation,
where two matches Π(x) = x′,Π(y) = y′ are switched
such that Π(x) = y′,Π(y) = x′. If at some point no more
random displacements are accepted, the system is ‘frozen’.

Due to the complexity of the problem for large number
of vertices n, we propose several adjustments to make SA

more efficient in both memory consumption and runtime.
We use locality sensitive hashing instead of calculating and
storing all geodesic distances, see Section 3.1. Furthermore,
we introduce a seed generator to produce a sparse initializa-
tion well suited for our algorithm in Section 3.5. Based on
the sparse initialization our algorithm gradually adds more
points (Section 3.3) while already refining the solution with
SA (Section 3.4). We focus on refining when the solution
is not dense because this allows to correct errors with less
swapping operations.

3.1. Locality Sensitive Hashing

We use locality sensitive hashing [11] instead of calcu-
lating the entire geodesic distance matrices for X ,Y . Cal-
culating the entire distance matrix is slow and not feasible
for high resolutions, since it contains n2 elements.

For a set of points S = {s1, ..., sn} and an arbitrary dis-
tance function d : S → R locality sensitive hashing approx-
imates the distances by selecting a suitable subset Z ⊂ S
with |Z| � n and considers the inequalities obtained from
the elementary triangle inequality:

max
z∈Z
|d(z, s)−d(z, s∗) | ≤ d(s, s∗) ≤ min

z∈Z
d(z, s)+d(z, s∗),

(6)
which holds for all s, s∗ ∈ S . The tightness of these in-
equalities is determined by S, d and Z. We demonstrate
how well we can approximate the geodesic distance d on a
sphere in Appendix B. Effectively, each z ∈ Z serves as a
hash function which projects all points {s ∈ S |d(s, z) = t}
to a single number t ∈ R+. If two points s1 and s2 have a
similar profile, i.e. d(s1, z) ≈ d(s2, z) for all z ∈ Z, then
s1 and s2 are likely to be very close on S. We call the points
contained in Z basis points.

(i)

5 6
3

1

2
4

(ii)

Figure 2: Connections between basis points (orange) and
their surrounding vertices (blue). (i) For each x, basis points
are sorted by their distance as labeled on the dashed lines.
(ii) The environment of a basis point b are all vertices such
that b is one of their three closest basis points (solid lines).

Basis Points For X we choose
√
n many basis points by

farthest point sampling and precompute the order of near-
est basis points with decreasing kX (x, z) for each vertex x
on X . Most kX (x, z) will be close to 0 because kX (x, z)
decays exponentially with increasing distance. Assuming
that the points x and the basis points z are evenly dis-
tributed across the shape’s surface, only few basis points
will be close to x, and we define the environment of a ba-
sis points z as all points x to which z is among the three
closest basis points. As a result, the environments of close
basis points will be overlapping and each point on X will
be contained in the environment of exactly three basis point
environments. Close points to x can be computed by merg-
ing the environments of the basis points that are close to
x. Depending on how many close points we want, we can
change the number of close basis points that we consider.
This behavior will be important in Section 3.3. Note that
if |Z| = Θ(

√
n), then the cardinality of the environments

of the basis points will be Θ(
√
n) on average. Ordering the

basis points’ distances for each vertex on X can be done
with an efficient implementation in O(n|Z| log(|Z|)). The
construction and analysis on Y is equivalent.

3.2. Optimization

Our SA process has five stages that depend on the num-
ber of vertices k already added to the solution. First, we
start on several sparse subpermutations πk produced by the
seed generator as the initial seed to which we add gradually
more matches. SA is applied regularly during insertion until
a sufficient number of points are matched in Πk. In our ex-
periments we found that the final matching was already well
characterized by approx. 250 points and [33] has shown that
a well distributed subpermutation defines the dense solution
well enough [33]. Each system is ’frozen’ by another appli-
cation of SA with temperature 0 and each Πk is evaluated
according to the QAP objective (4). The Πk with the best
score is finalized by inserting the remaining points into the
matching until 70% of points are matched. We do not match

all points through the insertion process because the last in-
sertions are prone to produce outliers. A final SA phase with
zero temperature is applied and in the end ZoomOut [19] is
used to produce a dense solution. We focus on applying
SA early because the amount of swaps needed to escape a
random, dense solution is very high.

Inconsistent Mesh Resolution. A challenging nature of
the shape correspondence problem can be observed, when
the number of vertices on the mesh X is less than the num-
ber of vertices on Y . For instance, let the same Riemannian
manifold be discretized with two different resolutions, one
of which is much finer than the other. We cannot require
that an optimal correspondence in this case is bijective any-
more but if the number of vertices on X is much smaller,
injectivity is still possible. However, an optimal solution
will result in a matching in which all points on Y are clus-
tered together instead of being evenly distributed. This is
a direct result of the formulation of objective (2), as points
can only contribute to the sum if they are close together. The
Cauchy-Schwartz inequality, i.e. for two vectors x, y ∈ Rn

〈x, y〉 =

(
n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)(
n∑
i=1

y2
i

)
(7)

implies that 〈x, y〉 is maximal, if xi = yi. This sug-
gests that objective (2) is near optimal, if kX (xi, xj) ≈
kY(yπ(i), yπ(j)). Based on this, we propose a surrogate
function for adding new correspondences to a partial match-
ing which aims to preserve the measure of closeness be-
tween two points on X and their matchings on Y and can be
optimized greedily. Let X̂, Ŷ be the sets of already matched
points on X and Y respectively and let y(x̂) be the corre-
spondence of x̂ ∈ X̂ on Y . We match a new point x ∈ X
to

ŷ∗ = arg min
ŷ∈Y\Ŷ

∑
x̂∈X̂

|kX (x̂, x)− kY(y(x̂), ŷ)|. (8)

ŷ∗ is the point on Y whose embedding with respect to Ŷ is
the closest to how x̂ is embedded in relation to X̂ .

3.3. Point Insertion

Point insertion refers to the extension of the existing sub-
permutation by a a single pair of points (x, y) ∈ X × Y ,
which is done repeatedly during the optimization process.
As discussed in the previous subsection, for a given point x
on X we want to find a yet unmatched point y ∈ Y which
minimizes (8). There are two stages of how we choose the
point x based on how many points were already matched.

3.3.1 First stage:

The goal of the first stage is to achieve an evenly distributed
cover of both surfaces with the inserted points. We add a

Figure 3: Insertion process of the algorithm visualized on two shapes from the FAUST dataset. From left to right: 1. The 4
initial seed points generated by the seed generator are well distributed over the surface. 2. The first 25 points added within
the first phase of point insertion. 3. The first phase ends when 250 points were added. Until this point swapping operations
refine the solution regularly. 4. The second insertion phase stops when the majority of points were added. Some noise and
outliers are visible. 5. The final solution is dense and refined.

new pair to the existing matching as follows

1. Select a point on x ∈ X by farthest point sampling
with respect to the already matched points.

2. Find the best k best matching basis points according to
Eq. (8) on Y which we call B̂ . We choose k = 3.

3. Among the points contained in the environments of
every basis point in B̂, match the optimal unmatched
point according to Eq. (8) with x.

Pre-selecting the basis points reduces the search space sig-
nificantly. We alternate between sampling a point from
X and finding a matching candidate on Y , and sampling
a point on Y and finding the best matching candidate on
X . This guarantees that the matched points are evenly dis-
tributed on both surfaces after the first phase terminates. In
our experiments we stop the first phase after 250 points have
been matched. The first phase of the insertion process is vi-
sualized in Figure 3 and already indicates that 250 matches
are dense enough to infer the rest of the correspondence.
Therefore, we switch to the second insertion stage which
efficiently interpolates the current result.

3.3.2 Second stage:

In the second phase, we sample a new point x randomly
from all yet unmatched points on X . During this phase
it might happen that we can no longer find an unmatched
point on Y in the environments of the best matching basis
points. To still enforce the smoothness condition whenever
possible, we use the following algorithm:

1. Find all already matched points that are close to x.
This can be efficiently done by looking up the top m
closest basis points around x and merging their envi-
ronments. We denote the obtained set by EX (x). Let
UEX (x) ⊂EX (x) contain only unmatched points and
MEX (x) only matched points.

2. For each element x̂ in MEX (x) find EY(ŷ(x̂)) analo-
gously to the step above where ŷ(x̂) denotes the cor-
respondence of x on Y . The set of candidates is now
Ê := Ê(x) =

⋃
x̂∈MEX (x)UEY(ŷ(x̂)).

3. If Ê = ∅ we gradually increase m by 3. Once m is
greater or equal to the number of basis points, Ê is
identical to the set of unmatched points on Y and we
are guaranteed to find a match.

4. The matching candidate y ∈ Ê for x is chosen accord-
ing to Eq. (8). When evaluating this score, we only
sum over MEX (x) instead of all matched points X̂ .

Note that we stop expanding the sets MEX (x) and Ê(x) in
step 1 and 2 if they contain too many elements to guaran-
tee the time bounds of the algorithm. See Appendix B for
a derivation of the algorithmic complexity. We effectively
search for a candidate y only among the points that are close
to the correspondences of the matched points on X that are
close to x and score it according to them as well. Note that
this only works well as both shapes are sufficiently covered
after the first phase of the insertion process.

However, the matches that are inserted last often suffer
from not finding a good unmatched correspondence on Y
since most points on Y are already matched (this happens
after approx. 90% of all points were inserted). See Sec-
tion 4.2 for experiments showing the evolution of the qual-
ity of our results during insertion.

3.4. Swapping

The swapping according to SA strategy is applied multi-
ple times during the algorithm (see Section 3.2). During the
first insertion phase SA is applied repeatedly after a fixed
number of particles (in our experiments we used 10) has
been inserted using the same initial temperature. Since we
evaluate multiple seeds, we do not want a too high tempera-
ture because this would impair the diversity of the seeds. On

Figure 4: Correspondence example of our method from
an input shape (left) with our method without ZoomOut
(middle) and with ZoomOut (right). Due to the sequential
adding the last points can often not be placed correctly, lead-
ing to some extreme outliers. These can be easily removed
by using ZoomOut as post-processing.

the other hand, the temperature should not be too low so that
meaningful improvements to the subpermutation are possi-
ble. In our experiments we used a temperature oft = 0 :01.

We pick possible transpositions randomly between
matched points on both shapes. The improvements are cal-
culated only with respect to the points onX that have a
correspondence onY according to (8). Depending on the
temperature and the improvement the transposition is ac-
cepted. This is repeated2:500 times. In the last SA phase
of the �rst insertion stage, we decrease the temperature to
t = 0 to move the system to a local optimum.

At the end of the algorithm, after all points were in-
serted, we evaluate how much each match in the current
(sub)correspondence� contributes to the objective (2) and
the worst20%of contributors are marked as candidates for
re�nement in a �nal SA phase with temperaturet = 0 . The
local contribution ofx 2 X can be calculated as:

X

x 02 MEX (x)

kX (x; x 0)kY (y(x); y(x0)) : (9)

We iterate through all re�nement candidatesx and check if
there are other re�nement candidatesy 2 Ê (x) (i.e the en-
vironments of the points onX that correspond to points on
Y which are close to the correspondence ofx onY, see Sec-
tion 3.3) and check if a transposition of those pairs improves
their overall contribution.

3.5. Seed Generator

Our method needs an initial set of sparse seeds to start
the insertion process as described in Section 3.3. These can
either be given by the user or come from the seed generator.

The seed generator produces and evaluates a series ofk-
submatchings (sets ofk matches that are locally bijective)
calledseeds. The best seed according to Eq (4) is used as
the initialization for the rest of the pipeline. The embed-
ding of new points, Eq. (8), relies on the fact that the initial
points are well distributed over the surface and therefore we

sample potential seeds with farthest point sampling. For
instance, when matching shapes resembling human bod-
ies, a promising seed should match points located on the
limbs of one body to the similar counterpart on the other.
These property should be kept in mind when running the
rest of the pipeline on arbitrary input matches. We produce
all seeds by samplingm distinct points via farthest point
sampling from each of the input shapes. These are called
M X andM Y . There arem! possible correspondences be-
tweenM X and M Y . However, it is unlikely that any of
them is completely meaningful because the point sets were
sampled independently of each other and the perfect match
might not have been sampled. To be more robust to incon-
sistent samplings we only keepk < m of the candidates.
There are

� m
k

�
many differentk-sized subsets of anm-sized

set. Hence we can generate
� m

k

�� m
k

�
k! many differentk-

sized seeds from the candidate point sets onX andY. This
works well because points at the tip of extremities are the
the furthest away from many subsets and sampled early with
a very high probability. In general, the difference between
m andk should not be too large, as it drastically increases
the number of seeds that need to be evaluated. In our exper-
iments, we obtained good matchings for seeds constructed
with m = 4 andk = 3 . See Figure 3 for an example of the
�nal seed.

4. Experiments

We show experiments evaluating the matching error of
our method in comparison to state-of-the-art methods on
popular data sets in Section 4.1 and an ablation study in Sec-
tion 4.2, as well as some qualitative examples. We evaluate
our algorithm according to the Princeton benchmark proto-
col, see [14]. If the matching produced by our algorithm
contains the pair(x; y), then we plot its accumulated error
� (x) := dY (x; ŷ)=diam(Y), where diam(Y) is the diameter
of Y and the pair(x; ŷ) is given by a known optimal match-
ing. In the quantitative results we choose only non-learning
methods to evaluate against to keep the results comparable.

4.1. Quantitative Results

We evaluate our algorithm quantitatively on the TOSCA
dataset [7], the FAUST dataset [6] and the SHREC Con-
nectivity dataset [18]. The ground-truth correspondences
for all these datasets are known. The TOSCA dataset con-
sists of8 classes of triangular meshes resembling animals
and humans in different positions and ranging from3:000
to 50:000 vertices. The results can be seen in Figure 6.
The FAUST registration dataset contains100 shapes from
10people in different poses. See Figure 7 for our results in-
cluding results of the ablation study. The SHREC Connec-
tivity dataset contains44 human shapes with a wide range
of resolutions and inconsistent meshings even within the
shape. This is a very challenging setup for many algorithms.

