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Abstract

We present a recording scheme, image formation model
and reconstruction method that enables image-based mod-
eling of flowing bodies of water from multi-video input data.
The recorded water is dyed with a fluorescent chemical to
measure the thickness of a column of water, which leads
to an image formation model based on integrated emissiv-
ities along a viewing ray. This model allows for a photo-
consistency based error measure for a weighted minimal
surface, which is recovered using a PDE obtained from the
Euler-Lagrangian formulation of the problem. The result-
ing equation is solved using the level set method.

1. Introduction

Recently, new multi-view reconstruction problems, dif-
ferent from the traditional diffuse surface reconstruction,
have emerged in the field of computer vision. These include
multi-view reconstruction of time-varying, transparent, nat-
ural phenomena like fire and smoke [6, 5, 1].

The work so far concentrates on non-refracting media.
In this paper, we present a level set method for the recon-
struction of a time-varying free flowing water surface. This
problem arises in the context of free-viewpoint video, where
we are concerned with the automatic acquistion of dynamic
models for computer graphics purposes. The main prob-
lem here is that the surface structure can not be determined
with traditional methods due to refraction effects, implying
a complex image formation process. We alleviate this prob-
lem by dyeing the water with a fluorescent chemical. This
allows us to directly measure the thickness of the water vol-
ume as a ray passes through it and hits the CCD-chip of the
camera. In addition, a sophisticated energy minimization
method is utilized for the reconstruction process, which is
able to correctly incorporate error functions depending on
surface normals. Obviously, this is a vital requirement if
one wants to take into account refraction.

Image-based modeling of natural phenomena suitable
for free-viewpoint video is performed using sparse view
tomographic methods [6, 1] or surface based methods [5].

Figure 1. Source images from two of the cameras for
one frame of our test video sequence, in which we pour
fluorescent water from a bottle into a glass.

Reche et al. reconstruct trees from still images [11]. In [9],
the geometry of hair is retrieved using a single camera and
varying light source positions, exploiting the anisotropic re-
flectance properties of hair.

Only limited work has been done which directly ad-
dresses image-based reconstruction of water. In [8], a time-
varying water surface is obtained by analyzing the distortion
of a known texture beneath the water surface using optical
flow and shape from shading techniques. Schultz [12] stud-
ies the reconstruction of specular surfaces using multiple
cameras. However, both of these methods can only deter-
mine a height field for a rectangular surface area, while we
reconstruct fully three-dimensional bodies of water.

Another line of research is refractive index tomography
e.g. [10, 14]. These methods usually need expensive ap-
paratuses and do not lend themselves to image-based mod-
elling. Whereas refractive index tomography attempts to re-
construct a field of varying refractive indices, we know that
we have a constant refractive index and need to compute the
surface of a volumetric body of water.

Our paper is organized as follows. Sect. 2 defines the
reconstruction problem we want to deal with and presents
a mathematical justification for the level set surface flow
yielding an optimal solution. Details for the implementation
using PDEs are discussed in Sect. 3. We present results
obtained with both synthetic 2D data as well as recorded 3D
data of flowing water in Sect. 4, and conclude with ideas for
future work in Sect. 5.
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Figure 2. Left: Excitation and emission in fluorophores:
the excitation wavelength changes the amplitude of the
emission spectrum only, the profile stays the same.
Right: The use of filters generates a proper excitation
light source, and allows the observer to measure the
emitted spectrum without interference from the excita-
tion light source.

2. General Reconstruction Problem

Our goal is to reconstruct the surface area of a possibly
moving body of water, using recordings from only a hand-
ful of fully calibrated cameras distributed around the scene.
In order to be able to work with a well-defined image for-
mation model, special care has to be taken when acquiring
the water video data. We employ a fluorescent dye which
causes the water to emit visible light when exposed to UV
radiation. An example input image from a single frame is
shown in Fig. 1.

This section embeds the reconstruction problem we want
to deal with in a rigorous mathematical framework. Sub-
section 2.1 discusses the image formation model underly-
ing the optimization. It shows how to generate synthetic
views given a certain reconstructed surface X, which can
be compared to recorded real-world data in order to de-
fine a photo-consistency error measure. The "best’ surface
is determined by minimizing an error functional optimiz-
ing photo-consistency. The functional is defined in subsec-
tion 2.2, while the mathematical foundations for its mini-
mization using a level set surface flow are adressed in sub-
section 2.3. After the theoretical discussion in this section,
we proceed with the details of the implementation in Sect. 3.

2.1. Image Formation Model

We dissolve the chemical Fluorescein in the water. Fluo-
rescein exhibits a photo-luminescent behavior i.e. it has the
ability to absorb light of higher energy and subsequently
re-radiate light with a lower frequency than the light used
for excitation. Fig. 2 explains this principle. The emission
spectrum is independent of the excitation wavelength, only
the amplitude of the emitted light changes. A schematic of
our studio setup is shown on the right hand side. We place
filters in front of the light source and the cameras, respec-

tively. The two filters allow us to measure the emitted light
only, which in turn lets us treat the body of water as a self-
emissive medium.

We evenly dissolve the dye in the water and use a strong
UV source to illuminate it. This allows us to assume a con-
stant fluorescent emissivity throughout the volume. Thus,
the accumulated light intensity along a ray traced through
the water can be computed by multiplying its total length
within the volume with a constant emittance p. Further-
more, a color calibration on the cameras is performed, such
that they exhibit a linear response to the incoming light in-
tensity, scaling light intensity to image intensity by a factor
of 7.

Now, let p be a point in the image plane of camera C', and
c be the camera’s center of projection. We want to compute
the theoretical pixel intensity Is;(p) in the presence of a sur-
face X, enclosing a volume Vi of water prepared as above.
Let R(c,p) be the ray traced from ¢ in the direction of p
through the surface ., taking into account correct refrac-
tion, Fig. 4. We ignore scattering and extinction effects in
the water volume. Then,

Is(p) = 7/ pds = /w/ ds.
R(c,p)NVs R(c,p)NVs

The last integral just measures the length the ray traverses
through Vx. In order to avoid having to determine the con-
stant factor py experimentally by acquiring and measur-
ing a calibration scene, we implement an auto-calibration
scheme. All image intensities are divided by the average in-
tensity of the pixels in the image within the silhouette, and
all ray-traced intensities by the average intensity of the rays
corresponding to these pixels. The resulting quotients are
independent of the quantity pry.

Now that we are able to compute synthetic views given
a surface X2, we have to determine how well a reconstruced
surface fits a given set of input views. If we are able to quan-
tify the error, it can be used to define an energy functional
mapping surfaces to real numbers, whose minimum yields
an optimal reconstruction result. This aim is pursued in the
next subsection.

2.2. Energy Minimization Formulation
We have to take care of photo-consistency of a recon-

structed surface 3 with the given source images. We set up
an energy functional

AX) = /E<I>(5,n(s)) dA(s), (1

defined as an integral of the scalar valued weight function
® over the whole surface. ®(s,n) measures the photo-
consistency error density, and may depend on the surface



point s and the normal n at this point. The larger the val-
ues of @, the higher the photo-consistency error, so the sur-
face which matches the given input data best is a minimum
of this energy functional. Because refraction occurs fre-
quently, the dependency of the error measure on the normal
is a vital part of our method, in contrast to many other previ-
ous applications of weighted minimal surfaces in computer
vision.

The question remains how to correctly choose the error
measure. Ideally, we would want it to be the difference of
the measured intensity in every camera with the theoretical
intensity, which would look something like this:

Dpaive(s,m) = Z (Isi(s) — L o mi(s))?,

i=1

where Iy ;(s) is the ray-traced image intensity assuming
surface ¥, I; is the ¢th image, and 7; the ith camera’s pro-
jection mapping.

While the general idea is good and exactly what we im-
plement, in this initial form it faces several problems, the
worst of which is that we have to be able to evaluate the
error function away from the surface in order to perform
the surface evolution later. We postpone the exact technical
definition to Sect. 3, in favor of a discussion of the general
mathematical tools with which to find a minimum of an en-
ergy functional of the form above.

2.3. Level Set Surface Flow

Instead of implementing a surface evolution directly, we
will make use of the level set idea. We express the surfaces
Y for each parameter value 7 > 0 as the zero level sets of
a regular function

u:R¥x R0 SR, wu(s,7)=0 & s€X,.. (2
We require u(+, 7) to be negative inside the volume enclosed
by X, and positive on the outside.

As we proved in [4], we arrive at a local minimum of
the error functional if we choose a good initial starting sur-
face og and evolve this surface according to the evolution
equation

0 . Vu .
7 = {—dw((l)-w—u> + dlvz(q)n)} [Vul, )

which we have to implement.

3. Implementation

In this section, we go into the details on how to imple-
ment our reconstruction scheme. Subsection 3.1 specifies
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Figure 3. Evaluation of the partial error function ¢; for
a single camera.. The length difference between rays
traced through the distorted surface Y’ and the undis-
torted surface X is just ||s — v||. Note that n is not
necessarily the exact surface normal, it may vary close
to it in order to evaluate the derivative of ® with respect
to the normal.

the construction of the error function. For a stable evolu-
tion, we have to make sure that the surface does not shrink
below the image silhouettes. We finally describe the imple-
mentation of the PDE as a narrow band level set method in
subsection 3.2.

3.1. Construction of the Error Function

Of particular difficulty is the evaluation of the error func-
tion ®(s,n) for a given point s and corresponding normal
n. The problem is that this term has to be evaluated away
from the current surface Y in order to compute the deriva-
tives in (3), i.e. for points that do not lie directly on the
surface, and with a normal which may be different from the
current surface normal. The particular question one asks in
that case is what local error would arise if the surface was
distorted such that it lies in s with normal n. For this rea-
son, ray tracing in order to evaluate the error function has to
be performed for a distorted surface /. The computation
of ®(s,n) is thus performed in three steps.

In the first step, we construct the distorted surface X’/
through which rays are traced. We have to change X locally
in a reasonably smooth manner such that the new surface
passes through s. At this moment, we do not yet care about
the normal. Assume for now that s lies outside the volume
Vs, enclosed by 3. The desired result can then be achieved
by uniting Vs, with a ball B centered in the point v closest
to s on X, with radius ||s — v||. Vice versa, if s lies inside
Vs, then we can achieve the result by subtracting B from
VE, Fig. 3.

The second step is to define the set of cameras C =
{C1,...,Cy} which contribute to the error measure. Ide-



Figure 4. The rays used to generate a view from the upper
left direction, visualizing the complexity of the image for-
mation process. Top: resulting 1D view, intensity of each
pixel is proportional to the length of the yellow segments
for the corresponding ray.

ally, since the medium is transparent, we would like to
consider all cameras we have available. Unfortunately,
this would require to find for each camera the ray pass-
ing from the camera center to s, possibly refracted multiple
times on the way. This computation definitely is too time-
consuming. Instead, we only consider those cameras which
have a good enough unobscured view of v with regard to the
original surface. More precisely, each camera C; belonging
to C must meet the following two criteria:

e The straight line from v to the center of projection c;
must not intersect X, and

e The ray starting from v in the refracted direction
p(v — ¢;,n) must travel inside V5, in the beginning. p
is computed using Snell’s law, using the index of re-
fraction of water for inside the volume, and of vacuum
for outside.

In the third step, we finally compute the photo-
consistency error ¢; for each contributing camera C; and
average those to get the total error ®. Each individual error
is computed as follows: Let I; o ; (s) be the intensity of
the projection of s in image I;, and 7;(s, n) be the accumu-
lated intensity along a ray traced from s into the refracted
direction p(s — ¢;,n). Then

¢i(s,m) := (I om; (s) —ri(s,m))>.

This corresponds to comparing the image intensity to the

Test Volume #1

8 Cameras
12 Cameras
16 Cameras
32 Cameras

0 100 200 300 400 500

Number of iterations

Test Volume #2

£ 0.2 AN

v

H 0.1 N o

Are
(

|

I\

0 10 20 30 40 50 60

Number of iterations

Figure 5. Convergence of the results depending on the
number of input views.

ray-traced intensity of a ray cast from the camera to s, re-
fracted as if by a surface located in s with normal n. Thus,
the desired normal n is also correctly taken into account.

3.2. PDE Discretization

In order to implement the level set evolution equation,
the volume surrounding the surface ¥ has to be discretized.
We use a regular three-dimensional grid of evenly dis-
tributed cells with variable spatial resolution of usually 643
or 1283 cells. The surface is evolved according to the nar-
row band level set method [13], starting the evolution with
the visual hull surface 3, and the values u;”* of the corre-
sponding level set function u in the centers of the grid cells.
The values of the level set function are updated iteratively
using the upwind scheme. At iteration step ¢ + 1, the new
values u;{ | are obtained from the values u;** of the previ-
ous iteration step by a discrete version of equation (3) using
an explicit time step. To ensure stability, the step size A7
must be chosen such that the level sets of u; cannot cross

more than one cell at a time, i.e. satisfy the CFL-condition.

4. Results
4.1. Synthetic 2D Experiments

In order to verify that our surface evolution is capable of
producing correct results despite the complex problem we
want to solve, we first test it on synthetic 2D data. We ray-
trace several views of two different test volumes using the
image formation model presented in Sect. 2.1. The first vol-
ume is designed to test how well the algorithm can recover



(a) The first synthetic volume together with 16 input views. Below
each view is shown the signed distance transform o of the silhouette.

(b) The second synthetic volume, also together with 16 input views
and signed distance transform of the silhouette.

Figure 6. Synthetic test volumes and ray-traced views. Red color denotes positive values of signed distance, blue color

negative values.

DD DD

(a) Convergence towards the first test volume, after 0, 100, 200, and
300 iterations.
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(b) Convergence towards the second test volume, after 0, 15, 30, and
45 iterations.

Figure 7. The best results we achieved using 24 input
views, together with several in-between stages of the
iteration.

concavities, while the second volume is not connected and
has a mixture of straight and round edges. Both test vol-
umes and resulting 1D views are shown in Fig. 6. An exem-
plary trace through the volume can be found in Fig. 4. This
trace gives a glimpse of the complexity of the reconstruc-
tion problem, and demonstrates how heavily the ray-tracing
result depends on the normals.

We run our algorithm with different numbers of input
views in order to test the dependence of convergence on this
critical parameter. The results are shown in Fig. 5. Con-
vergence becomes stable with eight or more cameras used,
with twelve views required in the more complex second test
case. We can also note that there is a quick saturation of re-
construction quality with respect to the number of cameras.
The visual hull does not improve much more if more than

16 cameras are used, in accordance with earlier results [7].
In addition, the quality of the reconstruction peaks at around
24 cameras for both test volumes. Interestingly, more cam-
eras do not necessarily imply a better result, which indicates
that a good placement of the cameras is at least as important
as their sheer number. The best reconstruction results were
achieved with the moderate number of 24 cameras, shown
in Fig. 7.

In all cases, the algorithm runs with the same parameter
values of €¢; = 0.1 and e = 100. It exhibits a very sta-
ble behaviour against parameter changes, as the following
table suggests. Here, 24 Cameras are used for the estima-
tion of the first test volume, and the error after exactly 200
iterations depending on different parameter values is noted
down.

€1
0.01 0.1 0.5 1 5
1 0.07 U U U U
10 | 0.05 0.04 0.06 U U
€2 50 | 016 0.07 0.03 0.04 U
100 | 0.04 0.05 0.04 0.06 U
1000 S S S S 0.03

As a rule of thumb, there is a certain threshold value for the
speedup term above which it accelerates the evolution above
a stable limit, causing the surface to shrink uncontrolled be-
low the silhouettes. This is indicated by a “U” in the table.
Too low a choice of €; has no ill effects on stability, but
slows down the convergence a bit. e can safely be chosen
somewhere between 10 and 100 without much effect, but
may cause the surface to be stuck at an undesireable spot if
set too high, as indicated by the “S” in the table.

4.2. Real-world Water Videos
For the real-world tests, we use a multi-video studio con-

sisting of 8 CCD-cameras with a resolution of 1004 x 1004
pixels. The cameras can record at a frame-rate of 45 frames



Figure 8. Reconstructed stream of water placed in a vir-
tual environment. Left: Turning water into wine - we
changed the material properties of the water such that it
resembles red wine. Right: Close-up of the water sur-
face, showing the details of the reconstructed geometry.

per second. A 300W UV light source is employed to illumi-
nate the Fluorescein-dyed water. We acquire test sequences
using a dark studio, the excitation light source and the fluo-
rescent water being the only source of light. This measure
allows for simple background subtraction. The reconstruc-
tion is performed on an equidistant, uniform grid of 1283
voxels. An example of a reconstructed water surface ren-
dered in a virtual environment and with changed material
properties is shown in Fig. 8.

5. Summary and Conclusions

We have presented a method for the reconstruction of
flowing water surfaces suitable for free-viewpoint video.
A novel recording methodology and a corresponding im-
age formation model allow us to define a photo-consistency
constraint on the reconstructed surface. We utilize weighted
minimal surfaces to refine the visual hull of the water us-
ing constraints based on thickness measurements of the real
surface. The resulting energy functional is minimized using
the Euler-Lagrange formulation of the problem, leading to
a partial differential equation. This PDE is solved by apply-
ing the well known level set method. Synthetic tests indi-
cate that the solution of the equation is stable. Real-world
tests demonstrate the suitability of our method for the re-
construction of water.

Our Future work includes research into the applicabil-
ity of our method to the reconstruction of other refractive
media. Additionally, we would like to develop a hierarchi-
cal representation of the underlying computational grid to
achieve a higher resolution reconstruction which allows to
resolve finer details.
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