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Abstract— In this paper we present a fast and precise method
to estimate the planar motion of a lidar from consecutive
range scans. For every scanned point we formulate the range
flow constraint equation in terms of the sensor velocity, and
minimize a robust function of the resulting geometric con-
straints to obtain the motion estimate. Conversely to traditional
approaches, this method does not search for correspondences
but performs dense scan alignment based on the scan gradients,
in the fashion of dense 3D visual odometry. The minimization
problem is solved in a coarse-to-fine scheme to cope with large
displacements, and a smooth filter based on the covariance of
the estimate is employed to handle uncertainty in unconstraint
scenarios (e.g. corridors). Simulated and real experiments have
been performed to compare our approach with two prominent
scan matchers and with wheel odometry. Quantitative and
qualitative results demonstrate the superior performance of
our approach which, along with its very low computational
cost (0.9 milliseconds on a single CPU core), makes it suitable
for those robotic applications that require planar odometry.
For this purpose, we also provide the code so that the robotics
community can benefit from it.

I. INTRODUCTION

Odometry is an essential component for robot localization.
It is commonly solved through three major techniques that
are based on inertial devices, wheel encoders or visual
odometry (either by feature tracking or by dense image
alignment). Inertial measurement units (IMUs) are ideal to
estimate spatial orientation but accumulate too much trans-
lational error over time due to their inability to cancel the
gravitational component of the measurement [1]. Odometry
based on enconders has extensively been used to provide fast
motion estimates for wheeled or legged robots, though this
approach is prone to being inaccurate due to wheel/leg slip-
page and the impreciseness of the kinematic robot models.
Last, vision-based methods are arguably the most flexible and
powerful solution to the motion estimation problem because
they can be adapted to work with different types of robots
(wheeled, legged, aerial) and configurations (2D-3D motion).

Our proposal here relies on laser scans and has the ad-
vantage over the aforementioned methods to be independent
of the vehicle type of locomotion as well as very fast and
precise, as supported by experimental validation. Thus, it
turns out to be particularly suitable for those (very common)
cases where the robot already uses a laser range scanner for
mapping, obstacle avoidance or localization. Our approach,
named RF2O (Range Flow-based 2D Odometry), builds

This work has been funded by the Spanish Government under project
DPI2014-55826-R and the grant program FPI-MICINN 2012.

All authors belong to the MAPIR group of the department of System
Engineering and Automation, University of Malaga. {marianojt,
jgmonroy, javiergonzalez}@uma.es

upon [2] and represents the apparent motion of any point
observed by the sensor as a function of the velocity of the
sensor, assuming that the environment is static. Thus, every
point defines a geometric residual which can be minimized
within a dense formulation to obtain the lidar motion. To
overcome the assumption of a motionless environment (i.e. to
handle moving objects), we compute the Cauchy M-estimator
of the geometric residuals, a more robust estimate than
traditional choices like the L2 or L1 norms. Furthermore, we
solve this estimation problem within a coarse-to-fine scheme,
which provides finer results and allows the method to cope
with larger motions.

We have conducted a varied set of experiments to compare
our method against point-to-line iterative closest point (PL-
ICP) [3] and the polar scan matching approach (PSM) [4].
Firstly, their performances are evaluated at different scan
rates on simulated scenarios where the ground truth is
available. Secondly, qualitative results are shown for a real
experiment where 2D maps are built by concatenating the
scanned points according to the odometry motion estimates
of each method. Thirdly, we devise a real experiment to
evaluate how robust the methods are against the presence of
noise and moving objects. Overall, results show that RF2O is
significantly more precise for both translations and rotations,
and presents the lowest runtime (2 times faster than PSM
and 20 times faster than PL-ICP). Besides analyzing the
results presented herein, we encourage the reader to watch
the demonstration video which, together with the available
code, can be found at:

http://mapir.isa.uma.es/work/rf2o

II. RELATED WORK

Although low-cost RGB-D cameras have recently favored
the transition to 3D odometry, localization and mapping
strategies, it is a matter of fact that a fair number of mobile
robots move on planar surfaces and rely on laser scanners
to navigate. In this context, very successful results have
been achieved in the fields of 2D Localization [5][6] and
SLAM [7], and many algorithms have been proposed to solve
the general scan matching problem [8][3][9]. In this paper
we focus on pure 2D odometry, which can be regarded as
a particular case of scan matching, where the scans to be
aligned are taken consecutively and are normally close to
each other.

Traditionally, ICP [9] or some of its variants have been
applied to solve the registration problem between consecutive
scans. A very successful approach was proposed by Censi
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[3], where a point-to-line metric is used instead of the point-
to-point original metric of ICP. Futhermore, the author pre-
sented an implementation which ran one order of magnitude
faster than existing ICP variants, and was more precise and
efficient than the pioneer point-to-segment work in [10].
More recently, Generalized-ICP [11] showed an improved
performance over previous ICP versions, but has been mostly
used for the registration of 3D point clouds. For this family
of methods, accuracy depends on every particular version
and implementation, yet they all share the same weakness:
they are computationally expensive.

Alternatively, other methods were specifically de-
signed to solve the 2D scan matching problem. Gonza-
lez&Gutierrez [2] formulated the ”velocity constraint equa-
tion”, an adaptation of the optical flow constraint for range
scans, and proposed to estimate the lidar motion by impos-
ing this restriction for every point observed in the scans.
However, their method was only tested with simple simu-
lated scenarios and provided modest results. Diosi&Kleeman
presented the Polar Scan Matching approach [8], where the
translation and rotation between two scans are alternately
estimated until convergence. Conversely to ICP, this method
avoids searching for correspondences by simply matching
points with the same bearing, which leads to a higher
computational performance. This approach was subsequently
extended and further evaluated in [4]. A different method
proposed by Olson [12] tries to find the rigid transformation
that maximizes the probability of having observed the latest
scan given the previous one. Additional information is used
(control inputs or wheel odometry) to ease the method
convergence and two different implementations, GPU and
multi-resolution CPU, are presented. A thorough evaluation
is performed in terms of computational performance but, sur-
prisingly, no results for the method’s accuracy are presented.

More recently, other approaches have built upon the afore-
mentioned works. It is the case of [13] and [14], which fuse
laser odometry (the Olson’s laser odometry [12] and point-
to-line ICP [3], respectively) with stereo vision to perform
autonomous navigation with UAVs. Furthermore, the work
of Pomerleau et al. [15] presents a fast implementation and
a through evaluation of some ICP variants on real-world 2D
and 3D data sets.

III. LIDAR VELOCITY AND 2D RANGE FLOW

In this section we describe how the 2D velocity of a
laser scanner can be estimated from the apparent motion
that it observes, assuming that the environment is static and
rigid. Let R(t, α) be a range scan where t is the time and
α ∈ [0, N) ⊂ R is the scan coordinate, being N the size
of the scan. The position of any point P with respect to
the local reference frame attached to the sensor is given by
its polar coordinates (r, θ) (see Fig. 1). Provided that P is
visible from the lidar, it will be observed at a scan coordinate
α that is directly related to the angular coordinate of P :

α =
N − 1

FOV
θ +

N − 1
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N − 1

2
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Fig. 1. Top view representation of a laser scan that intersects with a certain
object. An observed point P moves with respect to the scanner to P ′ after
an interval of time ∆t.

where FOV is the scanner field of view. Similarly to the
optical flow constraint equation, a linear constraint can be
derived from the general expression of geometric consistency
of two scan pairs. Assuming the differentiability of R, the
range of any point at the second scan can be expressed as
the Taylor expansion

R(t+ ∆t, α+ ∆α) = R(t, α) +
∂R

∂t
(t, α) ∆t

+
∂R

∂α
(t, α) ∆α+O(∆t2,∆α2) (2)

where ∆t is the time lapse between consecutive scans and
∆α represents the change in the scan coordinate of the point
considered. Neglecting the second/higher order terms, and
dividing by ∆t, we can obtain a simple expression that
relates the scan gradients with the change of the range and
the scan coordinate of a point during the interval [t, t+ ∆t]:

∆R

∆t
' Rt +Rα

∆α

∆t
(3)

with

∆R = R(t+ ∆t, α+ ∆α)−R(t, α),

Rt =
∂R

∂t
(t, α), Rα =

∂R

∂α
(t, α).

If we consider that ṙ = ∆R/∆t and α̇ = ∆α/∆t are the
average velocities of a point in range and scan coordinates
during the interval [t, t+ ∆t], we obtain:

ṙ ' Rt +Rαα̇ = Rt +Rαkα θ̇ (4)

Equation (4) was firstly introduced by Gonzalez&Gutierrez
[2] and subsequently generalized and named as the ”range
flow constraint equation” in [16].

In order to describe the velocities of all points with
respect to the same vector basis, we transform the radial
and azimuthal velocities (ṙ, θ̇) to a cartesian representation
(ẋ, ẏ), as shown in Fig. 1:

ṙ = ẋ cos θ + ẏ sin θ (5)

r θ̇ = ẏ cos θ − ẋ sin θ (6)

As a last step, we need to impose that every apparent motion
is actually caused by the lidar translation and/or rotation. In



other words, we assume that every point moves with respect
to the sensor as if it was part of a rigid body whose velocity
is the same but opposite in sign to that of the sensor:(

ẋ
ẏ

)
=

(
−vx,s + y ωs
−vy,s − xωs

)
(7)

being ξs = (vx,s , vy,s , ωs) a 2D twist (sensor velocity)
and (x, y) the cartesian coordinates of P . If the cartesian
velocities (5) (6) are substituted in (4) and the rigidity
hypothesis (7) is imposed, we can transform the range flow
constraint equation into a constraint for the lidar velocity:(

cos θ +
Rαkα sin θ

r

)
vx,s +

(
sin θ − Rαkα cos θ

r

)
vy,s

+ (x sin θ − y cos θ −Rαkα)ωs +Rt = 0
(8)

As a result, every scanned point imposes a restriction to
the sensor motion and, therefore, 3 linearly independent
restrictions would theoretically suffice to estimate it.

IV. VELOCITY ESTIMATION

In practice, the lidar motion cannot be estimated with
only three independent restrictions because, in general, (8)
is inexact due to the noise of the range measurements, the
errors made by the linear approximation (3) or the presence
of moving object (non-static environment). Therefore, we
propose a dense formulation in which all the points of the
scan contribute to the motion estimate. For every point, we
define the geometric residual ρ(ξ) as the evaluation of the
range flow constraint (8) for a given twist ξ:

ρ(ξ) = Rt + (x sin θ − y cos θ −Rαkα)ω (9)

+

(
cos θ +

Rαkα sin θ

r

)
vx +

(
sin θ − Rαkα cos θ

r

)
vy

To obtain an accurate estimate, the sensor motion is com-
puted by minimizing all the geometric residuals within a
robust function F :

ξM = arg min
ξ

N∑
i=1

F (ρi(ξ)) (10)

F (ρ) =
k2

2
ln

(
1 +

(ρ
k

)2)
(11)

The function F is the Cauchy M-estimator, and k is an ad-
justable parameter. Conversely to the more common choices
of the L2 or L1 norms, this function reduces the relevance
of those points with very high residuals, and represents
an effective and automatic way to deal with outliers. The
optimization problem is solved with Iteratively Reweighted
Least Squares (IRLS), where the weights associated to the
Cauchy M-estimator are:

w(ρ) =
1

1 +
(
ρ
k

)2 (12)

With IRLS, the system is iteratively solved by recomputing
the residuals and subsequently the weights until convergence.

A. Pre-weighting strategy

As previously mentioned, there are some factors that can
render (8) inaccurate, mainly the unfulfillment of the rigidity
hypothesis (7) and the deviations from the linear approxi-
mation made in (3). Although the Cauchy M-estimator can
alleviate their effect on the overall motion estimate, it does
not eliminate it completely. The presence of moving objects
is hard to detect before solving the motion and, therefore, we
rely on the Cauchy M-estimator to downweight them during
the minimization process. On the other hand, deviations from
the linear approximation adopted in (3) can be detected
beforehand, which helps to accelerate convergence in (10)
and also leads to more accurate results. To this purpose, we
propose a pre-weighting strategy to downweight the residuals
of those points where the range function is nonlinear or even
non-differentiable. We call it ”pre-weighting” because it is
applied before the minimization problem (10) is solved. In
order to quantify the error associated to the linearization of
(2), we expand the Taylor series to the second order:

ṙ = Rt +Rαα̇+R2o(∆t, α̇) +O(∆t2, α̇)

R2o(∆t, α̇) =
∆t

2

(
Rtt +Rtαα̇+Rααα̇

2
)

(13)

It can be noticed that, neglecting higher order terms, the
second order derivatives in R2o(∆t, α̇) can be used to
detect the deviations from linearity. One special case is the
second order derivative with respect to time (Rtt), which
cannot be computed in a coarse-to-fine scheme because the
warped images are timeless and, therefore, the concept of
second temporal derivative makes no sense (coarse-to-fine
is described in Section V). Moreover, it is important to
detect those regions of the scans where the range function is
not only nonlinear but non-differentiable. These regions are
mainly the edges of the different objects observed, and are
typically characterized by very high values of the first order
derivatives (Rt and/or Rα). To penalize these two effects,
nonlinearities and discontinuities, we define the following
pre-weighting function for each scanned point:

w̄ =
1√

ε+Rα
2 + ∆t2Rt

2 +Kd

(
Rαα

2 + ∆t2Rtα
2
)
(14)

The parameter Kd marks the relative importance of first order
and second order derivatives, and ε is a small constant to
avoid the singular case.

Thus, we initially compute a pre-weighted set of residuals

ρwi (ξ) = w̄i ρi(ξ) i ∈ {1, 2...N} (15)

which are subsequently minimized according to (10) (11).
Although we do not show comparisons in the paper, this
strategy provides better results than standard IRLS minimiza-
tion without pre-weighting and converges faster (approxi-
mately by a factor of 2).

V. COARSE-TO-FINE SCHEME AND SCAN WARPING

The linearization presented in (3) holds either for small
displacements between consecutive scans or at areas with



constant range gradients (which, in the case of a lidar, would
occur for a very unusual geometry: an Archimedean spiral).
To overcome this limitation, we estimate motion in a coarse-
to-fine scheme, where the coarser levels provide a rough
estimate which is improved subsequently in finer levels. The
coarse-to-fine scheme was introduced by Battiti et al. [17] to
solve the optical flow problem for large displacements, and
has commonly been adopted ever since [18][19].

Let R0, R1 be two consecutive laser scans. Initially,
two Gaussian pyramids are to be created by successively
downsampling (typically by 2) the original scans R0, R1.
Normally, a Gaussian mask is applied to downsample RGB
or grayscale images but, in the case of range data, a standard
Gaussian filter is not the best choice since it creates artifacts
on the filtered scans. As an alternative, we employ a bilateral
filter [20] that does not mix distant points which are likely to
belong to different objects of the scene. Once the pyramids
are built, the velocity estimation problem is iteratively solved
from the coarsest to the finest level. At every transition to
a finer level, one of the two input scans must be warped
against the other according to the overall velocity estimated
in previous levels (ξp). This warping process is always
divided into two steps and, in our formulation, is applied
over the second scan R1. Firstly, every point P observed
in R1 is spatially transformed using the rigid body motion
associated to the twist ξp:xwyw

1

 = eξ̂p

xy
1

 , ξ̂p = ∆t

 0 −ωp vx,p
ωp 0 vy,p
0 0 0

 (16)

Secondly, the transformed points must be reprojected onto
R1 to build the warped scan Rw1 so that:

Rw1 (αw) =
√

(xw)2 + (yw)2, (17)

αw = kα arctan

(
yw

xw

)
+
N − 1

2
(18)

Several points could be warped to the same coordinate αw,
in which case the closest one is preserved (the others would
be occluded). If ξp is converging to the real velocity, then
the warped scan Rw1 will be considerably closer to the first
scan R0 than the original R1, which allows us to apply the
linear approximation in (2) with a finer resolution.

VI. IMPLEMENTATION

Our algorithm pays special attention to the computation
of the range gradients. Normally, a fixed discrete formula
is employed to approximate either scan or image gradients.
In the case of range data, this strategy leads to very high
values of the gradients at the object borders, which do
not represent the real gradients over those objects. As an
alternative, we make use of an adaptive formula that regards
the geometry of the environment. This formula weights
forward and backward derivatives in the scan with the 2D

distances between contiguous observations (points):

Rα(α) =
d(α+ 1)R−

α (α) + d(α)R+
α (α)

d(α+ 1) + d(α)
(19)

R−
α = R(α)−R(α− 1), R+

α = R(α+ 1)−R(α)

d(α) = ‖((x(α)− x(α− 1), y(α)− y(α− 1))‖

Thus, the closest neighbour is always contributing more to
the gradient computation while distant points barely affect it.
In the case that both neighbours are approximately equidis-
tant, the presented formula is equivalent to a centered finite
difference approximation. More details about the gradient
computation can be found in [19].

Last, it is important to remark that there are some ge-
ometric configurations of the environment from which the
sensor motion cannot be recovered. The most common case
arises when the lidar only observes a wall. Under this
circumstance, the motion parallel to the wall is undetermined
and therefore the solver would provide an arbitrary solution
for it (not only our method but any approach based purely on
geometry). In order to mitigate this problem, we apply a low-
pass filter in the eigenspace of the velocity ξ which works
as explained next. First, the eigenvalues of the covariance
matrix Σ ∈ R3×3 of the IRLS solution are analyzed to detect
which motion (or combinations of motions) are undetermined
and which are perfectly constrained. In the space of the
eigenvectors, the velocity ξtM provided by (10) is weighted
with that of the previous time interval ξt−1 to obtain the new
filtered velocity ξt:

[(1 + kl)I + keE] ξt = ξtM + (klI + keE)ξt−1 (20)

where E is a diagonal matrix containing the eigenvalues and
kl, ke are parameters of the filter. Concretely, kl imposes a
constant weighting between the solution from the solver and
the previous estimate while ke defines how the eigenvalues
affect the final estimate. These parameters are set to the
following values:

kl = 0.05e−(l−1), ke = 15× 103e−(l−1) (21)

where l is the pyramid level that ranges from 1 (coarsest) to
the number of levels considered. Please refer to [19] for a
more detailed explanation on this filter and how it is applied.

VII. EXPERIMENTS

This section is composed of a set of three different exper-
iments. The two first experiments address the evaluation of
the proposed RF2O algorithm and its comparison with other
approaches in simulated and real environments, respectively.
The third experiment is carried out to analyze the robustness
of the motion estimates against noise and the presence of
moving objects. For comparison, two state-of-the-art scan
matchers are selected: Point-to-Line ICP (PL-ICP) [3], and
Polar Scan Matching (PSM) [4]. In both cases, we use
the implementations that their authors published online. For
quantitative evaluation, the relative pose errors as described
in [21] will be considered. Both translational and rotational
deviations per second will be evaluated with the root mean



TABLE I
SIMULATED EXPERIMENT - TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND, AND EXECUTION TIMES.

Translational RMSE (cm/s) Rotational RMSE (deg/s) Runtime (ms)
Scan rate (Hz) RF2O PSM PL-ICP RF2O PSM PL-ICP RF2O PSM PL-ICP

Sc
en

.1

10 0.425 14.82 1.860 0.108 2.412 0.524 0.941 1.837 15.98
5 0.308 7.363 0.759 0.054 1.572 0.321 0.933 1.979 18.51
2 0.248 3.071 0.584 0.043 0.598 0.281 0.904 2.205 23.79
1 0.273 12.27 0.396 0.372 2.290 0.108 0.900 2.675 27.58

Sc
en

.2

10 0.398 19.56 1.904 0.121 4.725 0.473 0.951 1.994 19.02
5 0.346 18.60 1.084 0.084 4.370 0.268 0.935 2.642 23.84
2 0.785 18.13 10.14 0.339 4.155 3.042 0.931 3.351 28.59
1 5.250 42.67 24.07 3.669 15.67 7.282 0.892 3.656 35.56

Sc
en

.3

10 0.461 4.940 18.44 0.071 1.469 0.246 0.922 1.826 19.55
5 0.382 5.499 39.74 0.054 2.027 0.129 0.940 2.296 15.25
2 0.249 7.138 38.48 0.033 2.328 0.071 0.900 2.911 17.54
1 0.439 33.51 40.19 0.106 3.693 0.068 0.875 3.677 26.74

squared error (RMSE), which corresponds to a performance
measure independent of the experiment duration.

For real experiments, a Hokuyo URG-04LX-UG01 laser
scanner mounted on a Giraff mobile robot [22] is used to
gather the laser scans at a maximum frequency of 10 Hz. For
the case of simulated experiments, the laser characteristics
have been imitated (ray number = 682, FOV = 240 ◦, max
distance = 5.5 m). Moreover, a Gaussian noise with σ = 1 cm
is added to the simulated scans to make them more realistic.

A. Comparison in a Simulated Environment

In this experiment, the compared methods estimate the
planar motion of a laser scanner that moves in a simulated
environment. We use the precise ground truth available
in simulation to perform a quantitative evaluation of the
different approaches. The simulated environment is divided
into three distinct scenarios: a room containing only objects
formed by straight line segments (Scen. 1), a room that
contains only curved obstacles and curved walls (Scen. 2)
and a straight corridor with scattered small objects (Scen. 3).
During the experiment, the lidar travels along a predefined
path, covering a distance of 43.47 meters at an average speed
of 0.398 m/s. Furthermore, four different scan rates (10,
5, 2 and 1 Hz) are tested to analyze the influence of the
frequency of execution in the odometry estimates. Table I
depicts the relative pose errors in the form of translational

GT RF2O PL-ICP PSM

Start

End

1

2

3

Fig. 2. Simulated environment and the best path as estimated by each
method (RF2O@5Hz, PL-ICP@10Hz, PSM@2Hz). Numbers indicates the
different scenarios of the environment.

and rotational deviations per second, together with their
runtimes for the three compared methods. Fig. 2 plots the
simulated environment with the best estimated trajectory of
each method. That is, from all the execution rates, only the
one with overall minimum error is plotted for qualitative
assessment. As can be noticed, RF2O exceeds the other two
approaches for all the scenarios in the experiment, providing
much more accurate estimates. PL-ICP presents relatively
good estimates for the room scenarios, but it drastically fails
at the corridor (specially for translations). On the other hand,
PSM presents much higher relative errors in general, and
concretely at the second scenario where only curved objects
can be found. Furthermore, it presents important problems
at narrow places such as doors.

It is interesting to notice that the best results are not
obtained with the highest frequency. Experiments at 10 Hz
provide worse results than those at 5 or 2 Hz, which indicates
that data oversampling leads to error accumulation. On the
other hand, a too little frequency implies that consecutive
scans are too separate and more difficult to align (as occurs at
1 Hz). Thus, the optimal frequency is not always the highest
available one and depends on the average (or maximum)
linear and angular speeds of the lidar.

An alternative and helpful way to compare these methods
is to calculate their RMS errors per segment length, as
described in [23]. Fig. 3 depicts these average translational
errors as a percentage of the segment length considered,
and computed independently for the three scenes of the
experiment. It can be seen that our approach is in all cases
superior to the other two methods, being always under
1% RMSE for all three scenes. PL-ICP is the second best
candidate, having around 5% RMSE, except for the long
corridor (Scen. 3) where it completely fails.

Finally, from the computational point of view, the last
columns on Table I show the runtimes in milliseconds
measured on an AMD Phenom II X6 1035T CPU at 2.6 GHz.
Overall, RF2O takes less than 1 ms, followed by PSM
with 2.85 ms and PL-ICP with more than 19 ms. Taking
this into account, the presented approach not only provides
more accurate estimates but it is also much faster than its
competitors.
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Fig. 3. Translation errors averaged over all sub-sequences of a given length
for the three scenes of the simulated experiment.

B. Real Experiment

To validate the results obtained in the simulated exper-
iments, we employ a real mobile robot equipped with a
Hokuyo laser scanner which navigates in an office-like envi-
ronment. Making use of a mobile robot allows us to include
the odometry estimates from the onboard encoders (a pair of
low-cost AMT102-v incremental encoders from CUI Inc.),
but prevents us from performing a quantitative comparison
given the lack of a precise ground truth. Therefore, in this
section the different methods are compared just qualitatively
by plotting 2D maps built purely from the odometry pose
estimates. In other words, for each method we present maps
built as a concatenation of 2D point clouds along their
estimated trajectories, without resorting to global consistency
or any other mapping strategy.

The path covered by the robot during this experiment is
roughly 49 meters long, and is travelled at an average speed
of 0.535 m/s (max speed of 0.6 m/s). For all methods, we
set the scan rate at 10 Hz. Fig. 4 plots the maps built from
the trajectory estimates of the different approaches. As a
reference, we plot the map built from the accurate localiza-
tion provided by [6], which does not compute odometry but
finds the pose of the robot within a previously built map. As
can be seen, the map derived from our odometry estimation
is noticeably closer to the reference map than any of the
others. PL-ICP provides the second best estimation after
RF2O, failing mostly in the corridor areas (see Section VII-
A), which results in a shortening of the map and overlapping
of scan points in such areas. PSM and the encoder-based
maps follow the comparison, being the latter the worst of all
of them, with difference.

C. Robustness Against Noise and Non-static Environments

Finally, we analyze how noise and moving objects affect
the motion estimation of the proposed method, i.e., when the
assumption of a static environment is violated. Therefore,
this section is composed of two experiments. The first one
aims to evaluate the drift of the compared methods caused by
the noise of the measurements. To this end, a real experiment
is conducted where a lidar working at 10 Hz is kept still

in a static environment for a time lapse of three minutes.
Under this setup, since the only error involved is the sensor
noise, the outcome represents how noise affects the motion
estimates of the different methods. Table II shows the relative
deviations per second of the compared methods. We have
also considered a simplified version of our approach (RF2O-
NC), where we remove the Cauchy M-estimator and simply
minimize the squared residuals (see (11)). From these results
we can conclude that both RF2O and PL-ICP are equally
good at translations, being marginally worse than the non-
robust RF2O-NC, while, at rotations, PL-ICP is slightly
superior than the others.

Then, a second experiment is conducted in the same sce-
nario but, in this case, several moving objects are introduced.
During the experiment two persons are walking around the
robot, opening and closing a door and displacing a cardboard
box (see Fig. 5). The reader is encouraged to watch the
demonstration video where the experiment is shown in detail
(http://mapir.isa.uma.es/work/rf2o).

TABLE II
TRANSLATIONAL AND ROTATIONAL DEVIATIONS PER SECOND:

ROBUSTNESS AGAINST NOISE AND MOVING OBJECTS.

Static Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.125 0.113 0.268 0.125
Rotation (deg/s) 0.075 0.064 0.216 0.043

Moving Objects Experiment
RMSE RF2O RF2O-NC PSM PL-ICP

Translation (cm/s) 0.636 0.879 3.548 0.412
Rotation (deg/s) 0.267 0.321 1.091 0.082

As can be seen in the second part of Table II, PL-ICP
is the most robust method in such situations, followed by
the proposed RF2O. It is important to notice that, although
PL-ICP is between two and three times better than RF2O,
the magnitude of the errors is still pretty small for both
methods, unlike the PSM estimates, which show important
translational and rotational drifts. Finally, comparing the
two versions of our approach, it can be noticed that under
the presence of moving objects, the Cauchy M-estimator
provides results that are 25% more accurate than those
obtained with standard quadratic minimization.

VIII. CONCLUSIONS

We have presented a novel approach named RF2O to
estimate the planar motion of a lidar by imposing the range
flow constraint equation on consecutive scan pairs. Exten-
sive experiments have been carried out to demonstrate the
accuracy of our method, and comparisons with point-to-line
ICP, Polar Scan Matching and the standard wheel odometry
have been performed under different scenarios and frame
rates. Results show that RF2O provides the most accurate
estimates for both translations and rotations, except for non-
static environments, where PL-ICP is slightly superior. With
a reported runtime of barely 1 millisecond, planar motion can
be easily estimated with almost no computational cost, which
makes this method attractive for many robotic applications

http://mapir.isa.uma.es/work/rf2o
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Fig. 4. Maps built as a concatenation of 2D point clouds along the estimated trajectories for different methods. The reference map is built using the
accurate localization of a particle filter-based approach. Trajectories are shown in red and the scanned points in blue.

Fig. 5. First row: Sequence of images taken during the second experiment
described in the section VII-B. Second row: 3D representation of the scans
and the robot at those particular instants, where the non-static points are
shown in red.

that are computationally demanding and require real-time
performance. For future work, we plan to analyze the effect
of small deviations from planar motion, which might be
useful if this method is applied to estimate the motion of
a quadcopter or a vehicle with strong dynamics.
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