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Abstract— This paper presents the first method to compute

dense scene flow in real-time for RGB-D cameras. It is based

on a variational formulation where brightness constancy and

geometric consistency are imposed. Accounting for the depth

data provided by RGB-D cameras, regularization of the flow

field is imposed on the 3D surface (or set of surfaces) of

the observed scene instead of on the image plane, leading

to more geometrically consistent results. The minimization

problem is efficiently solved by a primal-dual algorithm which is

implemented on a GPU, leading to a previously unseen temporal

performance. Several tests have been conducted to compare

our approach with a state-of-the-art work (RGB-D flow) where

quantitative and qualitative results are evaluated. Moreover,

an additional set of experiments have been carried out to

show the applicability of our work to estimate motion in real-

time. Results demonstrate the accuracy of our approach, which

outperforms the RGB-D flow, and which is able to estimate

heterogeneous and non-rigid motions at a high frame rate.

I. INTRODUCTION

Estimating the motion of different objects in a scene is a
topic of great relevance in robotics. From a general point of
view, and without focusing on particular objects, scene flow
is defined as the dense or semi-dense non-rigid motion field
of a scene observed at different instants of time. Conversely
to optical flow, which provides the projection of the scene
motion onto the image plane, scene flow estimates the actual
3D motion field and hence requires more prior information
than optical flow (2D). As a consequence, stereo or multi-
view camera systems that allow for the estimation of the
scene structure have been commonly employed to compute
scene flow. However, the new affordable RGB-D cameras
which directly provide registered RGB and depth images at
a fairly high frame rate (30 Hz) are an advantageous setting
for the implementation of fast scene flow algorithms.

The potential applications of scene flow in the field of
robotics are numerous: autonomous navigation and manipu-
lation in dynamic environments, pose estimation or SLAM
refinement, human-robot interaction or segmentation from
motion are a few examples. Nonetheless, its applicability
is highly dependent on its temporal performance because
the aforementioned tasks normally need to be executed at
a high frame rate. Most existing approaches do not fulfill
this requirement and present execution times ranging from
several seconds to few hours to compute the scene flow per
frame, which in practice limits their usefulness.
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In this paper we present the first dense real-time scene
flow algorithm for RGB-D cameras. Under a variational
framework, a highly parallelizable primal-dual algorithm is
proposed to solve in real-time the underlying optimization
problem. The benefits of this algorithm compared to direct
solvers (e.g. SOR) or black box solvers are two-fold: the
utilised total variation (TV) regularizer can be minimized
with exactitude due to the introduction of dual variables,
not needing to resort to differentiable approximations (Char-
bonnier penalty [1]), and a very fast version of it can be
implemented on modern GPUs by reason of its first-order na-
ture. In our variational formulation, both the optical flow and
the range flow constraint equations are applied in a coarse-
to-fine scheme to allow for larger displacements of points
between consecutive frames. Regularization is imposed on
the 3D surface in order to smooth the flow field for close
points in the real space instead of for contiguous pixels in
the image plane. Several experiments have been carried out
to evaluate the performance of our approach and compare
it with the recent work of Herbst et al. (RGB-D flow [2]).
Overall, our approach achieves higher levels of accuracy in
this comparison while performs 3 orders of magnitude faster.
Quantitative and qualitative results show that our primal-dual
scene flow is able to estimate heterogeneous and non-rigid
motions precisely on a variety of scenes.

A. Related Work

Scene flow has traditionally been computed with data
coming from stereo or multiple view camera systems. The
term ”scene flow” was firstly coined by Vedula et al. in
[3] who proposed to compute a Lucas-Kanade optical flow
[4] first and apply the range flow constraint equation at
a later stage, obtaining a local solution which does not
exploit the geometric data to estimate the optical flow. A
global variational approach is presented in [5] where both
the optical flow and depth flow are estimated simultaneously
using quadratic regularization. To allow for discontinuities
in the motion field, Total Variation (TV) was adopted in
[6] and [7], where they each present a unified variational
formulation to compute the disparity and the motion field
jointly. However, other authors claimed that decoupling this
two sub-problems is indeed advantageous and developed
algorithms [8] that make the most of this decoupling to
efficiently solve the global problem, combining FPGA and
GPU for disparity and scene flow estimation, respectively,
and leading to real-time motion estimation. Moreover, some
of the most recent works with stereo cameras [9], [10]
propose to exploit the fact that in most realistic scenarios
the image motion is composed of several rigid body motions,



and impose local rigidity in their formulation which provides
more accurate results than standard TV regularization.

The advent of RGB-D cameras few years ago represented
a revolution in the field of robotics and computer vision,
and much of recent research on scene flow focuses on
the use of this kind of cameras. One of the first scene
flow algorithms for RGB-D cameras is presented in [11],
where a variational approach with quadratic data and reg-
ularization terms is proposed. Within a similar variational
framework, the work of Letouzey et al. [12] makes use of a
weighted quadratic regularizer and considers a set of sparse
feature correspondences to handle large displacements. The
regularization weights are functions of the depth gradients,
and are intended to increase regularization between pixels
with similar depth values and vice versa. More recently, the
RGB-D flow presented in [2] achieves qualitatively good
results by minimizing a functional composed of the L1-norm
of the optical and range flow constraint equations and a
weighted TV regularization, where the weighting function
encompasses information about the depth, color and surface
normals. The work presented in [13] achieves accurate results
too by defining a local/global formulation with adaptive TV
regularization, which is a weighted TV regularizer whose
weights are similar to those presented in [12], and also resorts
to interest points (SURF) to deal with large motions.

Apart from these variational approaches we find some
Monte Carlo-based methods which provide semi-dense or
dense motion fields. Cech et al. [14] presented a seed
growing algorithm to compute scene flow in a stereo setup
which represents a good trade-off between local and global
methods with respect to accuracy and running time. Hadfield
et al. [15] proposed a particle filter to estimate the motion
field from depth and intensity images coming from a RGB-
D camera, and extended this work in [16] to operate with
any combination of photometric and range sensors. Also for
RGB-D images, SphereFlow [17] exploits the availability of
depth data by seeking correspondences not in the image plane
but in spheres of the 3D space, which is demonstrated to be
advantageous to handle occlusion and large displacements.

B. Contribution

The main contribution of this paper is a robust scene flow
algorithm for RGB-D cameras that runs in real-time. To this
end, a primal-dual algorithm is applied for the first time to
solve the variational formulation of the scene flow problem.
The particular choice of this algorithm is crucial since it is an
iterative solver which performs pixel-wise updates and can
be efficiently implemented on modern GPUs. Furthermore,
a more natural regularization is theoretically justified and
imposed, substituting the standard TV by an adaptive TV
which represents the line integral of the flow field over the
observed surface. Last, we take advantage of the geometric
data provided by the camera to formulate a more consistent
approximation of the image gradients, as well as to filter
intermediate solutions in the coarse-to-fine scheme robustly.

The code is available online for public use. We also
encourage the reader to watch the demonstration video at:

http://mapir.isa.uma.es/mjaimez

II. VARIATIONAL FORMULATION FOR SCENE FLOW

We consider the problem of estimating the dense 3D
motion field of a scene between two instants of time t and
t + 1 using color and depth images provided by an RGB-
D camera. This motion field M : (⌦ 2 R2) ! R3 is
defined over the image domain ⌦, is described with respect
to the camera reference frame and is expressed in meters per
second. For simplicity’s sake, an alternative representation of
M is commonly adopted, where M is expressed in terms
of the optical flow u, v and the range flow w. For any
pixel with a nonzero depth value, the bijective relationship
� : R3 ! R3 between M and s = (u, v, w)T is given by:
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Equation (1) can be deducted directly from the well-known
”pin-hole model”, where f

x

, f

y

are the focal length val-
ues and X,Y, Z the spatial coordinates of the observed
point. Therefore, estimating the optical and range flows
is equivalent to estimating the 3D motion field, but the
former leads to a simplified implementation since optical
and range flow constraint equations apply directly on the
image plane. Hence, in order to compute the motion field we
formulate a minimization problem over s where photometric
and geometric consistency are imposed as well as a regularity
of the solution:

min
s

{E
D

(s) + E

R

(s)} (2)

In this functional, the data term E

D

represents a two-fold
restriction (intensity and depth matching between pairs of
frames) which is insufficient to compute a unique solution.
Consequently, a regularization term E

R

is crucial because
it does not only smooth the flow field but also further
constraints the solution space.

A. Data term

Let I0, I1 be the intensity images and Z0, Z1 the depth
images taken at instants t and t + 1 respectively. We
choose a data term which encourages brightness constancy
and geometric consistency of the solution. The former is
commonly adopted by most existing optical flow and scene
flow approaches and encodes that a point should exhibit the
same brightness in both intensity images:

%

I

(s, x, y) = I0(x, y)� I1(x+ u, y + v) = 0 (3)

where x, y are the pixel coordinates in the image plane. On
the other hand, depth does not remain constant through time
but its change must be equal to the difference between the
first depth image and the second image warped with the
optical flow:

%

Z

(s, x, y) = w � Z1(x+ u, y + v) + Z0(x, y) = 0 (4)

Conversely to many other approaches, which make use of
the L2 norm or a differentiable approximation (Charbonnier



penalty) of the L1 norm, we minimize the exact L1 norm of
(3), (4):
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Z

(s, x, y)|dxdy (5)

where µ(x, y) is a positive function that weights geometric
consistency against brightness constancy. The L1 norm has
shown to be more robust against outliers than the L2 norm
[18] and the choice of the primal-dual algorithm to solve
the minimization problem allows us to minimize it exactly
without resorting to any approximation (more details will be
given in section III).

The nonlinear data term E

D

is nonconvex, which implies
that the energy functional can have multiple local minima. In
order to get as close as possible to the global minimum, we
use a coarse-to-fine scheme [19] in which an image pyramid
is built and the solution is computed and upsampled from
coarser to finer levels, employing a linearized version of (3)
and (4) at each level:
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with u

⇤
, v

⇤ being the solution computed at the previous level.
Equations (6), (7) are the well-known optical flow and range
flow constraint equations whose global minimum can be
obtained at each pyramid level.

B. Regularization term

The regularization term E

R

is introduced to overcome the
aperture problem associated to the optical and range flow
[20], as well as to provide a smooth flow field. In this paper
we present a regularizer of the flow field which is based on
the total variation but takes into consideration the geometry
of the scene, in contrast to standard TV which operates on
the image domain ⌦ and disregards the real world distances
between points. For the sake of clarity, the simplified 2D
case shown in fig. 1 will be used to describe the proposed
regularization and derive its mathematical formulation. Let
C : (l 2 R) ! R2 represent the observed surface of the
scene (which becomes a curve in 2D) and f : C ! R be any
component of the motion field of the curve C with respect
to the camera. The total variation of f in 2D is defined as:

TV (f) =

Z
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However, this regularization does not take into account
that contiguous pixels may correspond to distant points in
space with different values of f . Thus, if geometric data
is available, a more natural regularization would smooth f

among points which have a small distance in C instead of
in the image segment:
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Fig. 1: Two-dimensional representation (top view) of a
camera observing a scene where the image plane ⌦ becomes
an image segment and the frontal 3D surface becomes a 2D
curve C(l).

In both cases we integrate over the image domain ⌦ because
the curve C is not known, only its projection onto ⌦ (i.e
depth values and color information). The derivative of f with
respect to l can be decomposed into the two independent
directions of space X,Z:
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In (10), the vector (@X/@l, @Z/@l) is the tangent unitary
vector to the curve C and can be computed as a function of
the partial derivatives of X,Z with respect to x:
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Similarly, the derivative of f with respect to the world coor-
dinates X,Z can be expressed in terms of local coordinate
x of the image domain:
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Substituting (11),(12) and (13) in (10) we obtain the follow-
ing expression for the modified TV:
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In this way, the regularizer in equation (14) favors regu-
larization between close points (high r

x

) whereas it barely
regularizes f for distant points (low r

x

). Such behavior is
very convenient since close points are likely to belong to
the same object in the scene (hence moving similarly) while
distant points might be part of different objects with different
motion fields. Equation (14) can be easily generalized to the
3D world, leading to:
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Finally, the regularization term in our variational formu-
lation imposes the above TV penalization to the flow field:
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Where �

I

,�

D

are constant weights which can be tuned
accordingly.

III. PRIMAL-DUAL ALGORITHM

As pointed out in section II-A our energy formulation is
based on a linearisation of the data term. Additionally, since
we utilise the convex TV regularizer in (17), this renders the
overall formulation (2) convex, which makes our algorithm
amenable to convex solvers. As a non-smooth energy is to
be minimized, we have chosen a first order solver [21],
[22] for non-smooth problems which tackles the primal-dual
formulation of (2):
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where the dual variables pu, pv and pw corresponding to
the regularizer and the dual variable ⇠

Z

corresponding to the
data term are constrained by the following sets:
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�� |p(x, y)|2  1
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�� |⇠(x, y)|  1
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(20)

This iterative solver is suitable for the development of a
real-time implementation of scene flow because the primal
and dual pixel-wise updates can efficiently be computed in
parallel on GPUs. Note that (18) is convex with respect to
its primal variables and concave with respect to its dual vari-
ables which makes it possible to compute a global optimal
with the primal-dual algorithm. Regarding the data term (5),
we decided to just dualize the range flow |%

Z

(s, x, y)| and
minimize the optical flow term |%

I

(s, x, y)| using the so-
called ”proximal” or ”shrinkage” operator (see [21], [22]
for further information and details about the algorithm). In
the primal-dual framework, this alternative represents a good
balance between fast converge and formulation complexity.
On the one hand, the addition of an extra dual variable

associated to the optical flow term |%
I

(s, x, y)| would slow
down convergence and hence the temporal performance of
our method. On the other hand, formulating the primal-dual
problem without dual variables associated to |%

Z

(s, x, y)|
and |%

I

(s, x, y)| would give rise to a more involved and
computationally demanding ”shrinkage” operator.

IV. IMPLEMENTATION DETAILS

In this section we describe some important aspects as-
sociated with the implementation of the primal-dual scene
flow. We will mainly focus on the computation of the image
gradients, the filter applied to the solutions of each pyramid
level and the weighting parameters and functions.

Regarding the image gradients, most implementations of
optical or scene flow choose a particular finite difference
approximation (forward, backward or centered formulas) and
apply it to the whole image. Nevertheless, when this strategy
is applied to compute the depth image gradients it gives rise
to very high values at the edges/borders of objects, which are
not representative of the real gradients of the surface (or set
of surfaces) observed by the camera. Consequently, the esti-
mated range flow w is prone to taking excessively high values
at object borders owing to the inaccurate approximation of
gradients adopted. As a solution, we introduce an adaptive
approximation of image gradients which is consistent with
the geometry of the observed scene. It consists in a weighted
forward-backward formula, where the weighting functions
capture the geometry derivatives in both directions (forward
and backward):
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and similarly for @I/@y and @Z/@y. The operators @

+ and
@

� represent right and left derivatives and are approximated
using the stencils [0 -1 1] and [-1 1 0] respectively, and the
terms r

+
x

, r

�
x

, r

+
y

, r

�
y

are right and left approximations of
the ones presented in (16). These expressions downweight
derivatives which contain borders or discontinuities (r

x

and
r

y

very low) adopting that approximation which is more
likely to capture the real surface gradient properly. If they
are evaluated at pixels which do not lie on object borders
then both terms will have practically the same weight and
(21) will be equivalent to standard centered approximations
of the image gradients.

Another important issue is the selection of an appropriate
filtering strategy. It is commonly known that the solution to
the variational problem might contain outliers that must be
removed. These outliers are particularly detrimental in inter-
mediate levels of the coarse-to-fine scheme since they are
propagated throughout the pyramid altering significantly the
final flow estimate. Traditionally, a median filter is applied to
the flow estimate at each level to reject outliers. However, this
filter presents an important drawback: it combines the flow
fields of different objects when it is applied at their borders.
As an alternative, we opt for using a 3⇥ 3 weighted median
filter, similar to the one described in [23]. In this filter, pixels
are weighted in local histograms which are accumulated to



obtain the median value. The weighting function h

median

is
defined as:
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�Z measures the depth difference between pixels, @Z/@t

represents the temporal derivative of depth and k

d

, k

dt

are
parameters. This weighting function allows us to apply a
median filter that does not mix the flow fields of different
objects, and at the same time penalizes pixels with high
temporal derivatives, which are likely to contain outliers.

Last, further details are given about the parameters and
weighting functions employed in our variational formulation.
The function µ(x, u) presented in (5) which weights the
geometric data term is defined as:
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This definition reinforces geometric consistency in areas
with low depth gradients and downweights it otherwise
(high depth gradients are normally caused by jumps between
objects, the presence of null depth measurements, occlusions,
etc.). Furthermore, the parameters involved in the calculation
of the scene flow are empirically set to the following values:
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= 0.04, �
D

= 0.35, k
d

= 5, k
dt

= 10, (24)
µ0 = 75, k

µ

= 1000,

V. EXPERIMENTS

We have performed two sets of experiments to evaluate
our approach quantitatively and qualitatively. Given the lack
of a benchmark to test scene flow with RGB-D cameras,
some authors resort to the stereo Middlebury dataset and
use the depth groundtruth which, together with the intensity
images from different views, emulate a pair of RGB-D
images. However, this set of images does not exhibit the
same characteristics that real RGB-D images: they are not
affected by realistic noise or quantization effects, nor contain
large empty areas (null depth) that are quite common in depth
images. For these reasons, we have created a tool to test
scene flow algorithms by generating artificial RGB-D images
from a previously captured RGB-D frame and a predefined
3D motion field. Following this procedure, we will present
quantitative and qualitative results from this semi-real data.
Moreover, qualitative results of real sequences of RGB-D
images processed in real-time will be shown. In all cases the
resolution of the motion field is 240 ⇥ 320 (QVGA).

A. Evaluation with semi-real data

In this subsection we compare our approach (named PD
flow) with a recent work (RGB-D flow) [11] in terms of ac-
curacy and temporal performance. To this purpose, we have
developed a procedure to evaluate the similarity between the
estimated and real motion field that exists between two RGB-
D frames. This procedure is decomposed into the following
steps:

1) Capture an RGB-D frame with the camera.

2) Create a 3D colored mesh from the RGB-D images.
3) Generate an artificial motion field consistent with the

geometry of the scene.
4) Apply this motion field to the vertices of the mesh.
5) Generate new intensity and depth images from this

deformed mesh.
As a result, a second RGB-D frame is generated from a
known motion field, which can be used as a groundtruth. The
resulting intensity and depth images mainly differ from real
ones in one aspect: they do not contain any new information
respect to the first RGB-D frame. Thus, some pixels (mainly
at the image borders) might not observe the deformed mesh,
and their intensity and depth values have to be set to zero. On
the other side, the intensity values at pixels with null depth
measurements are neglected (set to zero) because they are not
used to build the 3D mesh (their 3D location is unknown)
and they will not appear in the second frames. In any case,
this last factor is not very relevant since scene flow cannot
be evaluated at pixels with null depth measurements (the �
transformation in (1) becomes singular).

Five pairs of RGB-D images have been chosen for the
evaluation. These images have been generated according to
the aforementioned procedure using distinct motion fields
with maximum values ranging from 7 to 15 centimeters.
Besides, these images emcompass information of realistic
scenes with close and distant objects moving differently. As
in similar works [16], two error measurements are compared:
the 3D average angle error (AAE) expressed in degrees
and the normalized root mean square error of the velocity
magnitude (NRMS-V), where the maximum magnitude of
the motion field (MAX-V) is used for normalization. Quan-
titative results are presented in table I, where two versions
of the PD flow with standard TV (8) and TV

g

(9) along
with the RGB-D flow are evaluated. On the other hand,
qualitative results are displayed in fig. 2, which shows that
the RGB-D pairs generated for this evaluation contain varied
and heteregeneous motion fields. In fig. 2 it can be noticed
that RGB-D flow is slightly more accurate than our approach
computing the optical flow, whereas PD flow provides con-
siderably better results for the range flow. Regarding the
quantitative results, PD-flow with regularization on the 3D
surface outperforms the other approaches. Overall, PD flow is
50% more accurate than RGB-D flow estimating the norm of
the motion field and more that 100% more accurate obtaining
its direction in space.

As far as temporal performance is concerned, average
runtimes are measured for both methods, including different
CPU - GPU implementations of our work (table II). The
test platform used is a standard desktop PC running Ubuntu
14.04 with an AMD Phenom II X6 1035T CPU at 2.6 GHz,
equipped with an NVIDIA GTX 780 GPU with 3GB of
memory. Table II shows that even the CPU implementation
of PD-flow is one order of magnitude faster than RGB-D
flow (it should be remarked that RGB-D flow uses GPU).
With GPU acceleration, the execution time of our primal-
dual scene flow is 2800 times faster than the RGB-D flow,
hence reaching a maximum frame rate of 24 Hz. If 30 Hz
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Fig. 2: Color representation of the optical and range flows for the ”person standing” frames (first row), ”robot top” frames
(second row) and ”person desk” frames (third row) following the Middlebury color scheme (for the range flow we only
consider the colors of the x axis). The flow field is shown in white for the areas with null depth measurements.

TABLE I: Quantitative evaluation of scene flow with five distinct RGB-D frame pairs.

NRMS-V NRMS-V NRMS-V AAE AAE AAE MAX-V
PD-flow with TVg PD-flow with TV RGB-D flow PD-flow with TVg PD-flow with TV RGB-D flow (meters)

person standing 0.069 0.081 0.119 7.433 8.788 24.47 0.073
person desk 0.068 0.076 0.093 4.852 4.402 6.553 0.064
robot top 0.061 0.111 0.072 8.078 11.72 23.08 0.110
robot front 0.064 0.075 0.133 7.823 9.747 18.86 0.155
room 0.078 0.077 0.062 5.081 7.786 4.947 0.154
Overall 0.068 0.084 0.096 6.653 8.489 15.58 0.111

are needed, the primal-dual solver can be stopped before
convergence, providing results which are only 16% less
accurate than those presented in table I.

TABLE II: Runtime comparison.

RGB-D flow PD flow CPU PD flow GPU

119.1s 7.150s 0.042s

B. Evaluation with real data in real-time

In this subsection we show qualitative results of the scene
flow working at a high frame rate (24 - 30 Hz). We have
created two alternative representations of the flow field to
illustrate its performance graphically. In the first case, scene
flow was computed at 30 Hz (favoring speed) while two
people were playing with a basketball. This experiment
comprises fast movements, occlusions and heterogeneous
and non-rigid motion fields associated to the different objects
of the scene. A temporal sequence of pictures is shown in fig.
4, where the color goes from grey/blue for still objects (null
module of the 3D velocity) to intense red for fast motions.
It can be observed that the motion field is consistent with
the scene, adopting the arms/hands and the ball different red
tones while the rest of the scene remains virtually still. Only
the small regions at the background that are occluded by the
ball in subsequent frames show a wrong (reddish) flow. It
can even be noticed from the sequence that the maximum
speed is reached at the moment of launching the ball, and
this speed slightly decreases when the ball ascends, which
is coherent with the basic principle of energy conservation.

On the other hand, a distinct representation is displayed in
fig. 3 to illustrate how the scene flow at 24 Hz (favoring pre-
cision) reproduces the real movements of a person. Two 3D
point clouds are generated from consecutive depth images,
being the first one shown in red and the last one in turquoise,
and a vector field represents in blue the magnitude and direc-
tion of the estimated motion field. The three images in fig. 3
show how our primal-dual scene flow is able to estimate non-
homogeneous movements accurately (hand movements in the

Fig. 3: 3D representation of the estimated motion field for
non-rigid movements of a person. The initial and final point
clouds are shown in red and turquoise respectively, and the
3D flow is depicted with blue lines.



Fig. 4: Temporal sequence of two people throwing and receiving a basketball. The magnitude of the motion field is represented
by colors ranging from grey/blue (null velocity) to intense red (fast motion).

left images are significantly different than the movement
of the body). In contrast to most existing approaches, we
do not need to cope with very big displacements since our
approach can be executed at a high frame rate, and hence the
changes between consecutive images are drastically smaller
for a given motion of the scene. For instance, at a frame rate
of 24 Hz and considering a maximum displacement of 15
centimeters between frames (see table I) movements faster
than 3 meters per second can be estimated properly.

VI. CONCLUSION

A novel scene flow algorithm for RGB-D cameras has
been presented. Within a variational framework, geometric
data from depth images is exploited to obtain more accurate
results: TV regularization is applied over the observed 3D
surface and a non-constant expression is proposed to ap-
proximate the image gradients regarding the geometry of the
scene. In order to minimize our functional, a highly par-
allelizable primal-dual solver is proposed and implemented
in GPU to achieve real-time performance. Our algorithm’s
runtime is between two and three orders of magnitude faster
than previous work in scene flow for RGB-D cameras, which
makes it suitable for a fair amount of robotic applications
that require real-time processing. Quantitative and qualitative
results are presented to demonstrate the robustness and
accuracy of our approach. The code is available online under
an open source license.
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