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Abstract— In this paper we propose an efficient solution to
jointly estimate the camera motion and a piecewise-rigid scene
flow from an RGB-D sequence. The key idea is to perform a
two-fold segmentation of the scene, dividing it into geometric
clusters that are, in turn, classified as static or moving elements.
Representing the dynamic scene as a set of rigid clusters
drastically accelerates the motion estimation, while segmenting
it into static and dynamic parts allows us to separate the camera
motion (odometry) from the rest of motions observed in the
scene. The resulting method robustly and accurately determines
the motion of an RGB-D camera in dynamic environments with
an average runtime of 80 milliseconds on a multi-core CPU. The
code is available for public use/test.

I. INTRODUCTION

The joint estimation of the motion of a camera and the
motion of the objects it observes is a problem of great interest
with numerous applications in robotics, computer vision and
beyond: tracking and mapping in dynamic scenarios, ma-
nipulation of fast-moving objects, or autonomous navigation
are a few prominent examples. However, it is also a complex
and computationally demanding problem that has not been
properly solved yet. On the one hand, great progress have
been made in visual odometry under the assumption of static
or quasi-static environments [1]–[3], but the performance
of these methods deteriorates when the number of pixels
observing non-static parts becomes significant. On the other
hand, scene flow (motion of the scene objects) is often
estimated as the non-rigid velocity field of the observed
points with respect to the camera relative position. This
approach alone does not yield the camera motion because
all points in the scene are treated equally and, therefore,
static and non-static regions are indistinguishable when the
camera moves. Moreover, the scene flow estimation tends to
be computationally expensive, and most existing approaches
require between several seconds and few minutes to align
just a pair of images, which prevents them from being used
in practice.

In this paper we present a new method to estimate both
the motion of an RGB-D camera and the scene flow. Our
approach relies on a two-fold segmentation of the scene.
First, the scene is divided into geometric clusters by running
K-Means on the 3D coordinates of the observed points.

This work has been funded by the Spanish Government under project
DPI2014-55826-R, the grant program FPI-MICINN 2012 and the ERC
Consolidator Grant 3DReloaded.

1 Department of Systems Engineering and Automation, University of
Málaga, Spain (emails: {marianojt,javiergonzalez}@uma.es).

2 Department of Computer Science, Technical University of Munich,
Germany (emails: {christian.kerl,cremers}@tum.de).

These clusters are treated as rigid bodies and are mostly ex-
ploited for the scene flow estimation, which greatly reduces
its computational cost without sacrificing much accuracy.
Second, the scene is also segmented into static and moving
parts. The static regions (background) are used to derive
the camera motion while the scene flow is estimated for
the moving parts. To increase robustness, we propagate
the background segmentation through time since static and
moving parts of the scene are likely to be consistent along
the image sequence.

We perform an extensive evaluation of our approach,
comparing it with several state-of-the-art methods in visual
odometry and scene flow estimation. Results show that our
approach estimates the camera motion more accurately, in
particular when the scene is highly dynamic, and ranks
second in the scene flow evaluation. Above all, its main
advantage is its significantly lower runtime, of about 80
milliseconds running on multiple CPU cores at QVGA
resolution (several orders of magnitude faster than most
scene flow algorithms). For this reason, it can be applied
online, a feature that existing approaches lack.

The code, together with the demonstration video, can be
found here:

http://mapir.isa.uma.es/work/Joint-VO-SF

II. RELATED WORK

Thus far, visual odometry and scene flow estimation
are two highly related problems that are usually addressed
separately because of their intrinsic complexity. Though
some joint solutions have been reported, they typically lack
precision and efficiency. Next, we review some of the latest
proposals for these problems.

Traditionally, visual odometry approaches have exploited
sparse feature correspondences to estimate the camera mo-
tion [4]. While they are resilient to large numbers of outliers,
they usually require optimization over multiple frames to
achieve accurate camera localization. In general, these me-
thods cannot provide a dense scene flow, but there exist ex-
tensions to estimate the motion of multiple rigid objects [5].
However, they require enough feature points to sufficiently
constrain the motion, which is not guaranteed for objects
projected as small regions on the image. With the advent of
consumer RGB-D cameras, which provide dense depth maps
at comparably high resolution, dense direct methods gained
popularity. Typical cost functions penalize the intensity error
[1], [6], inverse or direct depth error [3], [7], point-to-
plane error [8], or an alternative error in the feature space



[9]. The main difference to sparse, feature-based methods
is that they do not require explicit correspondences, but
rather compute and update them implicitly during the opti-
mization. To achieve robustness against unmodelled effects,
these approaches combine multiple cost functions and use
robust penalties like Huber, Tukey, or Cauchy [1], [10]. This
strategy works well if most of the scene is static and only
little portions of the input images observe moving parts, but
fails when the moving parts become more significant.

Scene flow has traditionally been estimated with stereo
systems [11], but this trend also changed in 2010 with the
appearance of affordable RGB-D cameras. Several varia-
tional approaches have been proposed [12]–[14] to compute
scene flow from RGB-D image pairs, using different norms
(weighted L2 / L1) for the data and the regularization terms.
Jaimez et al. [15] presented a real-time implementation using
a Primal-Dual solver, which provides good estimates only for
small motions. The semi-rigid scene flow proposed in [16]
uses 6-DoF representation for the flow and also includes the
camera motion into its formulation, which makes it the best
candidate for comparisons. However, only the accuracy of
the scene flow was evaluated in their paper. Sun et al. [17]
presented a probabilistic approach which relies on a depth-
based segmentation of the scene. They regularize the estima-
tion process by retrieving a mean rigid-body motion for each
layer, and allow for small deviations of the motion field from
the layer’s mean motion. A big downside is its high runtime:
it requires several minutes to align just a pair of images.
The smooth piecewise-rigid flow proposed in [18] achieves
very accurate flow estimates by jointly segmenting the scene
into its rigidly moving parts and computing their underlying
motions. However, optimizing for the segments makes it
also computationally very expensive. Other approaches focus
on the estimation of large motions. SphereFlow [19] also
parametrizes the motion field with 6 DoF, and proposes to
match corresponding points within a 3D spherical search
range instead of using traditional planar patch comparisons.
GraphFlow [20] outperforms SphereFlow by looking for
and registering sparse correspondences between points in
geometric edges, and densify the flow at a later optimiza-
tion stage. None of these two methods [19] [20] provide
information about their runtime.

Recent works on non-rigid 3D reconstruction also estimate
the camera motion and a deformation flow for the particular
objects they reconstruct. DynamicFusion [21] estimates the
camera motion using KinectFusion [8], which is not prepared
to handle moving objects. Afterwards, they estimate a set of
sparse volumetric rigid transformations to align the moving
object to the model, and interpolate between these transfor-
mations to obtain the dense warp-field. VolumeDeform [22]
follows a similar sequence, estimating the camera motion
by aligning sparse color correspondences and computing
the dense deformation field associated to the deformable
object at the finest resolution. They both provide impressive
results for moderate camera motions and deformations, but
unfortunately their code is not available. Fusion4D [23]
addresses the same problem using multiple static cameras,

and therefore only a nonrigid motion field is estimated
(odometry is not necessary).

III. OVERVIEW OF THE METHOD

The proposed method to jointly estimate the camera and
the scene motions from RGB-D sequences comprises several
sequential blocks, as illustrated in Fig. 1. As inputs, a pair
of I-D frames (I1, Z1) and (I2, Z2) is given, where I(.) :
Ω → R and Z(.) : Ω → R stand for the intensity and
depth images defined on the image domain Ω ⊂ R2. First,
the frame (I1, Z1) is segmented into N geometric clusters
C = {Ci, i = 1, ..., N} by applying K-Means to the 3D
coordinates of the scene points. Each cluster is considered
to behave as a rigid body, which greatly simplifies the scene
flow estimation because the motion is estimated cluster-wise
instead of pixel-wise (reducing the number of unknowns by
3-4 orders of magnitude). The velocity associated to the each
cluster is represented by the 3D twist ξi ∈ se(3). Second,
an initial guess for the odometry ξR ∈ se(3) is computed by
minimizing the photometric and geometric residuals within
a robust M-estimator. Thus, we obtain the predominant rigid
motion of the scene which, save in cases of very dynamic
environments, corresponds to the camera motion itself. Sub-
sequently, this estimate is used to segment the scene into
static parts (or background) and moving objects. To this end,
the I-D images are warped according to ξR and the average
residuals per cluster are computed. Only the clusters moving
according to ξR will have low residuals, and therefore will
be segmented as background. Clusters with high residuals
after the warping are those whose motion does not coincide
with ξR, and hence are tagged as moving objects. Instead
of using a binary segmentation, which would require to set
a sharp threshold on the residuals, we use a continuous
representation and define bi ∈ [0, 1] as the probability of any
cluster i to be a moving object. For simplicity, we will use
b to refer to the segmentations of all clusters. More details
about the background segmentation are given in Section VI.

Once the segmentation is known, it can be used to break
the motion estimation process into two separate steps. First,
all the clusters that have been tagged as background are
used to obtain a more precise odometry ξO, now excluding
the non-static parts. Second, a piecewise rigid scene flow is
estimated for the rest of the scene, assuming that each cluster
behaves as a rigid body. Last, the background segmentation
is recomputed with the new refined odometry and warped to
the next frame, leading to BT : Ω → [0, 1]. Since moving
objects are likely to be moving for more than one frame,
and the same applies to still parts, we make use of BT in
the next iteration to obtain segmentations that are consistent
through time.

IV. GEOMETRIC CLUSTERING

Our proposal to reduce the complexity of a per-pixel
estimation of the motion field is to cluster the scene points
in sets that will be treated as rigid bodies. Other existing
algorithms have employed this strategy as well to obtain a
faster (and often more precise) scene flow either by using
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Fig. 1. Schematic representation of the main components of our algorithm. The estimation process starts (left) by reading a pair of RGB-D images. After
the process finishes, the background segmentation b is propagated to the next frame according to ξi and ξO to be used in the next iteration.

superpixels [24] or K-Means [17] [18]. We follow the idea
presented in [18] and compute K-Means clusters based on
the 3D coordinates of the observed points. This strategy is
advantageous because:

• It has a physical ground, in the sense that close points in
space are very likely to belong to the same rigid body.

• It is a very convenient representation when working with
image pyramids (coarse-to-fine). Once the clusters are
computed for a given image, they can be easily computed
for the rest of the pyramid by using the spatial coordinates
of the k-means that have already been obtained. This is ef-
ficient and also provides a consistent clustering throughout
all the image levels.

• It is suitable to propagate information from one frame
to the next because the cluster centers can be mapped
efficiently from (Z1, I1) to (Z2, I2) with ξO and ξi.

Two additional steps are performed after obtaining the
clusters. First, we build a connectivity graph G = {Gij , i =
1, ..., N, j = 1, ..., N} which indicates which clusters are
contiguous in space (Gij = 1) and which ones are sepa-
rated (Gij = 0). This graph is exploited later on for the
background segmentation by fostering contiguous clusters
to be segmented similarly (spatial regularization). Moreover,
contiguous clusters are smoothed to avoid sharp motion
transitions along their boundaries, but this smoothing mostly
affects the scene flow estimation and does not play any role
in the other modules of our algorithm.

Another important aspect is the number of clusters to
consider. Too few leads to very large scene regions which
will likely include parts of the scene with different motions.
On the other hand, if many clusters are extracted, then they
will not contain enough points for their motion to be robustly
estimated. We have empirically chosen to use 24 clusters
per image, which leads to middle-size clusters that can be
homogeneously initialized on the image domain (6×4). More
elaborate strategies could be adopted in the future, like using
an adaptive number of cluster to fuse redundant regions or
to create new ones in areas with high residuals.

The main limitation of our approach is the assumption that
each cluster behaves as a rigid body. Since the only criterion

to form the clusters is the spatial proximity of points, there
can always be clusters which actually contain points from
different rigid bodies. For instance, if a person stands close
to a wall, there might be some clusters containing points
from both the person and the wall. In this case, the estimated
motion for those clusters will be the predominant motion
between the two (person or wall). This limitation could be
alleviated or even solved by increasing the number of cluster
and regularizing the motion between them, at the expense of
a significantly higher computational cost.

V. ROBUST ODOMETRY

The odometry is computed by minimizing the photometric
and geometric residuals between consecutive RGB-D pairs.
The geometric residuals rZ and the photometric residuals rI
are defined as

rkZ(ξ) = Z2(W(xk, ξ))−
∣∣T (ξ)π−1(xk, Z1(xk))

∣∣
z
, (1)

rkI (ξ) = I2(W(xk, ξ))− I1(xk) , (2)

where xk represents a given pixel of the image (the super-
script k is omitted from here on) and | • |z denotes the z-
coordinate of a 3D point. The function π : R3 → R2 projects
3D points onto the image plane according to the pinhole
model, and T (ξ) ∈ SE(3) is the homogeneous transformation
associated to the twist ξ. The warping function is given by:

W(x, ξ) = π(T (ξ)π−1(x, Z1(x))) . (3)

We formulate a dense optimization problem to obtain the
camera motion, and compute the Cauchy M-estimator of the
residuals:

ξR = arg min
ξ

{
M∑
k=1

[
F (wk

Rr
k
Z(ξ)) + F (αIw

k
Rr

k
I (ξ))

]}
,

(4)

F (r) =
c2

2
log

(
1 +

(r
c

)2
)
, (5)

where M is the number of pixels in Z1 with non-null depth.
The Cauchy M-estimator represents a good compromise
between robustness and basin of convergence, since it is
much more robust than L2 / L1 norms but never gets flat



like the Tukey’s biweight function. The parameter αI weights
the photometric and the geometric terms. The parameter c
marks the inflection point of F , and can be tuned to make
the estimation more or less robust against high residuals.
Furthermore, a pre-weighting (wR) is applied to help the
solver converge to the true camera motion:

wR(x) = Z1(x)(1−BT (x)) . (6)

The pre-weighting has a two-fold function. First, it down-
weights pixels of the clusters which were previously seg-
mented as moving objects (remember that BT (x) encodes
the probability of pixel x to have been moving in the previous
frame). Second, it gives more significance to distant points
which are more likely to observe static parts of the scene.

Since (4) is highly non-linear, the motion is solved within a
coarse-to-fine scheme, linearizing the residuals at every level
of the image pyramid, as done in [1], [3]. At each level, the
solution of (4) is obtained via Iteratively Reweighted Least
Squares.

VI. BACKGROUND SEGMENTATION

In order to estimate both odometry and scene flow, we
need to separate the static parts of the scene from the moving
ones. This would be straightforward if the camera was still,
but when the camera moves every region of the scene is
in apparent motion and, hence, static and non-static objects
become hard to distinguish. To identify them, we propose
to use the robust odometry ξR (previously computed) to
check which regions/clusters follow this pattern of motion
and which do not. This evaluation is not performed pixel-
wise but cluster-wise, since we assume that all pixels in a
cluster have the same rigid body motion.

Initially, the RGB-D frames are warped according to ξR.
After the warping, clusters belonging to the background will
have low photometric and geometric residuals, whereas the
residuals associated to moving objects will still be high. In
theory, this criterion should suffice to segment the scene into
static and non-static parts, but in practice the process is much
more complicated because residuals are not always a good
metric to evaluate precise image alignment:
• Intensity and depth images are never registered perfectly.

This means that some pixels of the background (close to
object boundaries) tend to get the color of the foreground
and vice versa. Thus, some clusters could be perfectly
aligned and still bear high residuals due to this misreg-
istration of color and depth.

• Occluded pixels will always exhibit high residuals even if
the images are perfectly aligned.

• Since the depth measurement error grows quadratically
with depth, the geometric residuals of distant clusters tend
to be much higher than those of clusters close to the
camera.

To cope with these issues, the background segmentation is
divided into two steps. First, we compute a robust metric
of the residuals per cluster (δ). Second, we formulate a
minimization problem to obtain the segmentation of the
clusters b based on their average residuals, their geometry

and their previous segmentations bT (bT is computed by
averaging BT (x) per cluster).

The robust average residuals are computed as:

δi =

∑Si−Oi

k=1 αIr
k
I + rkZ/Z̄i

Si −Oi
, (7)

where Si is the size of the i cluster, Oi is the number of
occluded pixels in the cluster (which are excluded from
the computation of δi) and Z̄i is the average depth of the
cluster. The occluded pixels are considered to be those with
geometric residuals below a certain threshold, that is, a pixel
x is occluded if

rZ(ξ, x) < −∆Zocc . (8)

Next, we formulate a minimization problem to obtain the
background segmentation. The energy to be minimized is
composed of four terms:

E(b) = ED(b, δ) + ER(b) + ET (b, bT ) + EZ(b, Z̄) , (9)

where b is the only unknown (dependencies with δ, bT and
Z̄ are shown for clarity).

The dataterm ED pushes the clusters to be segmented as
background when their residuals are low, and vice versa. To
this end, we need to define a mapping between δ and b,
and specify thresholds for low and high residuals (δL and
δH respectively). For the sake of simplicity, we employ the
following piece-wise linear function:

g(δi) =


0 δi < δL

(δi − δL)/(δH − δL) δL ≤ δi ≤ δH
1 δi > δH

, (10)

and define the dataterm ED as

ED(b, δ) =

N∑
i=1

wD(δi) (bi − g(δi))
2
, (11)

with

wD(δi) =

√(
2δi − (δH + δL)

δH − δL

)2

+ 1 . (12)

The function wD(δi) increases the weight of the dataterm
when the residuals are far from the area of uncertainty (δL <
δi < δH ), giving more strength to clusters which are clearly
either part of the background or a moving object.

The regularization term ER tries to force neighbouring
clusters to get a similar segmentation, and is defined as

ER(b) = λR

N∑
i=1

N∑
j=i+1

Gij (bi − bj)2
. (13)

We have chosen to minimize a quadratic term in (13) because
it helps to smooth occasional wrong labellings of clusters
with misleading residuals. We have also tried to minimize
the absolute value of the differences (total variation), which
allows for sharp discontinuities between connected clusters,
but it did not provide better results.



Temporal regularization (ET ) is also imposed, since both
static and dynamic parts of the scene are very likely to remain
still and moving (respectively) through time:

ET (b, bT ) = λT

N∑
i=1

(bi − bTi )2 . (14)

Last, we include an extra term that introduces a bias towards
the background (bi → 0) for all the clusters which are
far from the camera. This models the fact that, in indoor
scenarios, moving objects tend to be at the foreground while
distant observations are likely to capture the fix elements of
the environment (walls, ceiling, floor, furniture, etc.).

EZ(b, Z̄) = λZ

N∑
i=1

max
(

0, eZ̄i − eZMin

)
b2i . (15)

Since all the terms in E(b) are squares with respect to b,
the optimization problem (9) is convex and its solution can
be obtained in closed-form. Detailed information about the
parameters introduced here is given in section VIII.

VII. SCENE FLOW ESTIMATION AND ODOMETRY
REFINEMENT

Once the scene is segmented, we divide the motion estima-
tion into two separate processes. All the clusters segmented
as background will be considered as a single rigid block
and used to re-estimate the odometry. On the other hand,
the rigid body motions of the moving clusters ξi will be
computed independently. Knowing ξi, the scene flow s(x)
associated to each point p(x) of the cluster i is calculated
as

s(x) = (T (ξi)− I)p(x) . (16)

Since b are continuous in the range [0, 1], we need to create a
partition of that interval to separate static and moving objects.
Instead of imposing a simple binary threshold at 0.5, we
consider the following three regions:
• If bi < 1/3, the cluster i is assumed to be static and is

only utilized for the odometry estimation.
• If bi > 2/3, the cluster i is assumed to be moving and is

only utilized for scene flow estimation.
• If 1/3 < bi < 2/3, the state of the cluster i is uncertain

and therefore it is utilized for both the odometry and the
scene flow estimation.

In this way, clusters that are not clearly segmented contribute
the odometry estimation (because they could be background),
but we also compute their own independent motion.

The rigid motions of the moving clusters are obtained by
minimizing the following energy:

ξi = arg min
ξ

{
Si∑
k=1

[
F (wk

Zr
k
Z(ξ)) + F (αIw

k
I r

k
I (ξ))

]}
.

(17)
The final odometry ξO is computed similarly by minimizing
(17) for the background pixels. These optimization problems
are almost the same as the one described in Section V; the
only difference is the pre-weighting strategy. Once the scene

is segmented, we use pre-weights that penalize occlusions
and discontinuities, favouring smooth regions in the opti-
mization process to find a precise solution:

wZ =
1

KZ + (∇xZ1)2 + (Z1 − Z2)2
, (18)

wI =
1

KI + (∇xI1)2 + (I1 − I2)2
. (19)

The weights wZ and wI penalize pixels where either the
spatial or the temporal gradients are high. Although we do
not provide an explicit comparison in the paper, this pre-
weighting strategy provides better results than pure robust
minimization without pre-weights, and also helps the IRLS
solver to converge in fewer iterations.

VIII. IMPLEMENTATION DETAILS

In this section we describe important details of our al-
gorithm which are not part of its theoretical core but have
an impact on its performance, and set the values of the
parameters introduced throughout the paper.

The Cauchy M-estimator includes the parameter c that
controls how robustly the residuals are minimized. In all
cases, this parameter is set proportional to the average
photometric and geometric residuals (r̄), which are evaluated
after each iteration of the IRLS solver:

c =


0.2 r̄ Robust odometry (section V)
r̄ Scene flow (section VII)
2 r̄ Odometry refinement (section VII)

. (20)

Another important aspect is the selection of the parameters
δL and δH in the segmentation stage. To obtain them, we
compute the median of the robust residuals associated to
the clusters (δ̂). Since the clusters of moving objects will
typically have residuals considerably higher than δ̂, we set
this value as a threshold. We have also observed that average
residuals grow with the motion of the camera and, therefore,
we also make δL and δH to be dependent on the norm of
the camera motion:

δ̂t = min(tM ,max(tB , δ̂)) , (21)

δL = δ̂t + 10 ‖ξR‖2 , δH = 2δ̂t + 10 ‖ξR‖2 . (22)

The median residual δ̂ has to be truncated because clusters
with residuals below a certain low threshold (tB) are always
assumed to belong to the background and those above a high
threshold (∼ 2 tM ) are assumed to be moving objects.

The rest of the parameters introduced in sections V, VI
and VII are set as follows:

• αI is set to 0.15 so that photometric and geometric
residuals contribute equally.

• The occlusion threshold (∆Zocc) is set to 0.2 meters,
and the ZMin of the geometric prior in the background
segmentation is set to the mean depth of the scene
divided by four.

• The weights of the different terms in the segmentation
stage are set to λR = 0.5, λT = 1.5 and λZ = 0.15.



• The constants of the pre-weights in (18) and (19) are
set to KI = 0.1 and KZ = 10−4.

These values are the ones used for all the experiments
presented in the paper and, although they have been obtained
empirically, they provide good results for the indoor scenar-
ios typically found when using RGB-D cameras. However,
these values are not optimal in general and would need to
be retuned if this method is applied with different sensors
and/or configurations (e.g. stereo system and outdoor).

IX. EXPERIMENTS

This section is divided into two main parts: evaluation of
the odometry and evaluation of the scene flow estimation.
In all the experiments, we used registered RGB-D images at
QVGA resolution (240×320). The experiments has been run
on a laptop with an Intel Core i7-4712 HQ CPU at 2.3 GHz
and Ubuntu 14.04. Besides analyzing the results presented
herein, we encourage the reader to watch the demonstration
video of our method (link above).

A. Odometry Evaluation

We test the accuracy of our algorithm with several se-
quences of the TUM dataset [25]. Some of the selected
sequences do not contain moving objects (Freiburg1), while
others (Freiburg3) are very challenging and present, at least
for some time intervals, scenes mostly composed of moving
objects or where the percentage of pixels with null depth
goes beyond 50%. For all the tested sequences, we compare
our method with DIFODO [3], DVO [1] and the semi-rigid
scene flow (SR-Flow) [16] (which is the only method, apart
form ours, providing both odometry and scene flow). The
accuracy of each method is measured with the root mean
square (RMS) translational and rotational drifts per seconds,
as proposed in [25]. Besides this quantitative evaluation, and
since only pixels with valid depth can be used to estimate
the camera motion, we compute two additional statistics per
sequence: the average percentage of pixels with valid depth,
and the minimum percentage of pixel with valid depth among
all the frames (i.e. the RGB-D image with the highest number
of null depth measurements).

Results are shown in Table II. It can be noticed that, for
the static scenes, DIFODO shows the lowest translational
drift and our approach has the lowest rotational error. The
worst results are provided by the SR-Flow, being on average
between 2 and 4 times less accurate than the other methods.
As far as the dynamic sequences are concerned, the best
results are always obtained with our approach. However, the
drift is quite high in all cases, a fact that can be explained by
analyzing the number of valid/used points in each sequence.
While static sequences present, on average, 75% of valid
depth measurement, this number drops to 55% in the non-
static sequences. Moreover, within the non-static sequences,
some RGB-D frames contain even less than 20% of valid
depth measurements which, together with the fact that some
of them are observing moving objects, renders the odometry
problem extremely complicated. For the “Freiburg3/walk
static” sequence, the percentage of used pixels never goes

TABLE I
PERCENTAGE OF PIXELS WRONGLY SEGMENTED AS BACKGROUND OR

AS UNCERTAIN REGIONS IN THE Freiburg1 SEQUENCES.

Sequence Moving objects Uncertain
Freiburg1/desk 1.95% 3.73%

Freiburg1/desk2 2.53% 4.44%
Freiburg1/teddy 1.2 % 1.58%

below 45%, and therefore our approach can still provide
reasonable results. In the other two cases, the presence of
RGB-D pairs with very low percentages of valid depth leads
to much higher RMS errors.

We also show some of the segmentations provided by our
method (Fig. 2) and, for the static sequences, we compute the
percentage of pixels wrongly segmented as background, and
also those considered as uncertain (Table I). Results show
that these percentages are quite low for the three sequences
considered.

B. Scene Flow Evaluation

In this section we compare our approach with three of
the most recent works on scene flow estimation: primal-
dual scene flow (PD-Flow) [15], the semi-rigid scene flow
(SR-Flow) [16] and the smooth piecewise rigid flow (MC-
Flow) presented in [18]. Given the lack of RGB-D datasets
with ground truth for the evaluation of scene flow, we have
selected a set of RGB-D pairs observing different objects
with varied motions. Some of the tested images have been
used in previous works [16] [18], while others are new and
will be published together with the code. Half of these RGB-
D pairs were recorded with a moving camera, while the
camera stood still in the other half. The accuracy of the
different methods is assessed by warping the RGB-D pairs
according to the estimated scene flow and measuring the
RMS residuals (geometric and photometric) after alignment.
The only inconvenient associated to this procedure is the fact
that occluded pixels always generate high residuals even if
the images are perfectly aligned, and therefore distort the
error metric. To prevent this, for every method we discard
pixels with geometric residuals below a certain threshold,
i.e., a pixel x is disregarded if rZ(x) < −∆Zocc after
warping. Thus, the resulting RMS residuals become a more
faithful metric of precise image alignment.

The testing images, together with the segmentations es-
timated by our approach, are shown in Fig. 3. It can be
observed that the segmentations are precise but not perfect,
mostly because pixels are not segmented independently but
in clusters, and clusters sometimes contain points of different
objects (e.g. in the “cleaning whiteboard” image, the hand
with the eraser is segmented as a moving object together
with a small part of the whiteboard). Quantitative results
are presented in Table III. It can be noticed that MC-
Flow provides the best results for almost every RGB-D pair,
followed by our method. This is to be expected because MC-
Flow uses as strategy similar to the one described here to
estimate motion, but it also optimizes for the clusters in an
alternating scheme. Consequently, its results are more precise



TABLE II
ODOMETRY - SEQUENCE STATISTICS AND TRANSLATIONAL/ROTATIONAL DEVIATIONS PER SECOND.

Sequence Average % Min % Translational RMSE (cm/s) Rotational RMSE (deg/s)
valid depth valid depth DIFODO DVO Ours SR-Flow DIFODO DVO Ours SR-Flow

Freiburg1/desk 74.49% 60.07% 3.66 4.08 3.79 11.6 2.56 2.18 1.88 7.44
Freiburg1/desk2 74.52% 60.95% 5.28 6.45 5.33 12.7 3.31 3.55 2.51 9.96
Freiburg1/teddy 77.53% 64.73% 5.18 9.67 6.51 17.7 2.77 2.46 2.04 13.47

Freiburg3/walk static 54.59% 45.20% 45.4 31.2 11.1 23.7 10.2 4.56 1.83 5.42
Freiburg3/walk xyz 52.77% 17.67% 69.4 48.1 30.4 50.1 12.49 8.45 5.69 11.43

Freiburg3/walk halfsphere 58.59% 30.46% 70.0 41.2 34.1 46.5 19.21 7.22 6.77 13.8

A B C D E F

Fig. 2. Segmentations obtained for some of the RGB-D frames in the tested sequences. Clusters segmented as background are depicted in blue and
moving objects in red. It can be noticed that different moving parts can be segmented properly: (A) is segmented perfectly and image (B) is not perfect
but quite reasonable. (C) shows that, despite the geometric prior (15), our method can also detect moving objects which are at the background, far from
the camera. (D) and (E) are examples of clusters wrongly segmented as moving parts. This sometimes occurs with clusters which observe non-smooth
surfaces with scattered points and depth discontinuities, but they do not have any negative effect on the odometry estimation as long as there are enough
clusters segmented as background. Last, (F) shows one of the mentioned cases where more than half of the image has null depth and, among the pixels
with valid depth, only half of them are observing static parts. In this case, our method fails to segment the scene properly and hence also fails to estimate
the camera motion.

but its computational burden is much higher. The average
runtimes of the compared methods are:

• PD-Flow: 40 milliseconds on GPU or 2 seconds on CPU.
• SR-Flow: 105 seconds on a single CPU core.
• MC-Flow: 20 seconds running on CPU and GPU.
• Our approach: 80 milliseconds on multiple CPU cores.

In summary, our approach provides the second best scene
flow estimates after MC-Flow (residuals are 12% higher on
average), and it is 50% and 21% more accurate than PD-
Flow and SR-Flow, respectively. Moreover, it is 250 times
faster than MC-Flow and 1300 times faster than SR-Flow
(only PD-Flow on GPU is faster than our method).

X. CONCLUSIONS

In this paper we have presented a method to estimate
both odometry and scene flow with RGB-D cameras. Results
demonstrate that our method performs similarly or better
than other state-of-the-art approaches, which normally focus
either on odometry or on scene flow, but do not estimate both.
The only method which also addresses the joint estimation
problem (SR-Flow [16]) is significantly less accurate with
the camera motion and 20% less accurate with scene flow,
as well as more than 1000 times slower. The main strength of
our approach is that it provides accurate results with a very
low runtime (80 milliseconds). To the best of our knowledge,
this is the first method providing precise odometry and scene
flow at a frame rate (>10Hz) that is sufficiently high to work
in real-world scenarios.

Nevertheless, some aspects can still be improved. The
K-Means clustering sometimes mix different objects in the
same cluster, which leads to inaccurate scene flow estimates.
As a solution, we will consider ways to exploit color
(superpixels) or orientation in the segmentation process to
obtain clusters that are more meaningful and still fast to
compute. On the other hand, the temporal propagation of the
background segmentation could be improved by introduc-
ing probabilistic/weighted models that are more consistent
through longer periods of time. Last, we want to optimize
the implementation of our algorithm so that it reaches real-
time performance.
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