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Abstract We tackle the problem of re�ectance estima-

tion from a set of multi-view images, assuming known

geometry. The approach we put forward turns the input

images into re�ectance maps, through a robust vari-

ational method. The variational model comprises an

image-driven �delity term and a term which enforces

consistency of the re�ectance estimates with respect

to each view. If illumination is �xed across the views,

then re�ectance estimation remains under-constrained:

a regularization term, which ensures piecewise-smooth-

ness of the re�ectance, is thus used. Re�ectance is pa-

rameterized in the image domain, rather than on the

surface, which makes the numerical solution much eas-

ier, by resorting to an alternating majorization-mini-

mization approach. Experiments on both synthetic and

real-world datasets are carried out to validate the pro-

posed strategy.
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1 Introduction

Acquiring the shape and the re�ectance of a scene is

a key issue, e.g., for the movie industry, as it allows

proper relighting. The current proposed solutions fo-

cus on small objects and stand on multiple priors [39]

or need very controlled environments [34, Chapter 9].

Well-established shape acquisition techniques such as

multi-view stereo exist for accurate 3D-reconstruction.

Nevertheless, they do not aim at recovering the surface

re�ectance. Hence, the original input images are usually

mapped onto the 3D-reconstruction as texture. Since

the image graylevel mixes shading information (induced

by lighting and geometry) and re�ectance (which is

characteristic of the surface), relighting based on this

approach usually lacks realism. To improve the results,

re�ectance needs to be separated from shading.

In order to more precisely illustrate our purpose,

let us take the example of a Lambertian surface. In

a 2D-point (pixel) p conjugate to a 3D-point x of a

Lambertian surface, the graylevel I(p) is written

I(p) = ρ(x) s(x) · n(x). (1)

In the right-hand side of (1), ρ(x) ∈ R is the albedo1,

s(x) ∈ R3 the lighting vector, and n(x) ∈ S2 ⊂ R3

the outer unit-length normal to the surface. All these

elements a priori depend on x i.e., they are de�ned

locally. Whereas I(x) is always supposed to be given,

di�erent situations can occur, according to which are

also known, among ρ(x), s(x) and n(x).

One equation (1) per pixel is not enough to simul-

taneously estimating the re�ectance ρ(x), the lighting

s(x) and the geometry, represented here by n(x), be-

cause there are much more unknowns than equations.

1 Since the albedo su�ces to characterize the re�ectance of
a Lambertian surface, we will name it �re�ectance� as well.
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(a) (b) (c) (d)

Fig. 1 The �workshop metaphor� (extracted from a paper by Adelson and Pentland [1]). Image (a) may be interpreted either
by: (b) incorporating all the brightness variations inside the re�ectance; (c) modulating the lighting of a white planar surface;
(d) designing a uniformly white 3D-shape illuminated by a parallel and uniform light beam. This last interpretation is one of
the solutions of the shape-from-shading problem.

Figure 1 illustrates this source of ill-posedness through

the so-called �workshop metaphor� introduced by Adel-

son and Pentland in [1]: among three plausible inter-

pretations (b), (c) and (d) of image (a), we are particu-

larly interested in (d), which illustrates the principle of

photometric 3D-reconstruction. This class of methods

usually assume that the lighting s(x) is known. Still,

there remains three scalar unknowns per equation (1):

ρ(x) and n(x), which has two degrees of freedom. As-

suming moreover that the re�ectance ρ(x) is known,

the shape-from-shading technique [16] uses the shading

s(x)·n(x) as unique clue to recover the shape n(x) from
Equation (1), but the problem is still ill-posed.

A classical way to make photometric 3D-reconstruc-

tion well-posed is to use m > 1 images taken using a

single camera pose, but under varying known lighting:

Ii(p) = ρ(x) si(x) · n(x), i ∈ {1, . . . ,m} (2)

In this variant of shape-from-shading called photomet-

ric stereo [40], the re�ectance ρ(x) and the normal n(x)

can be estimated without any ambiguity, as soon as

m ≥ 3 non-coplanar lighting vectors si(x) are used.

Symmetrically to (2), solving the problem:

Ii(p) = ρ(x) s(x) · ni(x), i ∈ {1, . . . ,m} (3)

allows to estimate the lighting s(x), as soon as the re-

�ectance ρ(x) and m ≥ 3 non-coplanar normals ni(x),

i ∈ {1, . . . ,m}, are known. This can be carried out, for

instance, by placing a small calibration pattern with

known color and known shape near each 3D-point x [32].

The problem we aim at solving in this paper is

slightly di�erent. Suppose we are given a series ofm > 1

images of a scene taken using a single lighting, but m

camera poses. According to Lambert's law, this ensures

that a 3D-point looks equally bright in all the images

where it is visible. Such invariance is the basic clue

of multi-view stereo (MVS), which has become a very

popular technique for 3D-reconstruction [12]. There-

fore, since an estimate of the surface shape is avail-

able, n(x) is known. Now, we have to index the pixels

by the image number i. Fortunately, additional data

provided by MVS are the correspondences between the

di�erent views, taking the form of m-tuples of pixels

(pi)i∈{1,...,m} which are conjugate to a common 3D-

point x.

Our problem is written2:

Ii(pi) = ρ(x) s(x) · n(x), i ∈ {1, . . . ,m} (4)

where pi is the projection of x in the i-th image, and

ρ(x) and s(x) are unknown. Obviously, this system re-

duces to Equation (1), since its m equations are the

same one: the right-hand side of (4) does not depend

on i, not more than the left-hand side Ii(pi) since, as

already noticed, the lighting s(x) does not vary from

one image to another, and the surface is Lambertian.

Multi-view helps estimating the re�ectance, because

it provides the 3D-shape via MVS. However, even if

n(x) is known, Equation (1) remains ill-posed. This is

illustrated, in Figure 1, by the solutions (b) and (c),

which correspond to the same image (a) and to a com-

mon planar surface. In the absence of any prior, Equa-

tion (1) has an in�nity of solutions in ρ(x) s(x). In ad-

dition, determining ρ(x) from each of these solutions

would give rise to another ambiguity, since s(x) is not

forced to be unit-length, contrarily to n(x).

Such a double source of ill-posedness probably ex-

plains why various methods for re�ectance estimation

have been designed, introducing a variety of priors in

order to disambiguate the problem. Most of them as-

sume that brightness variations induced by re�ectance

changes are likely to be strong but sparsely distributed,

while the lighting is likely to induce smoother changes [21].

2 Even if they look very similar, Problems (2), (3) and (4)
have completely di�erent peculiarities.
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Fig. 2 Overview of our contribution. From a set of n images of a surface acquired under di�erent angles, and a coarse geometry
obtained for instance using multi-view stereo, we estimate a shading-free re�ectance map per view.

This suggests to separate a single image into a piece-

wise smooth layer and a more oscillating one. In the

computer vision literature, this is often referred to as

�intrinsic image decomposition�, while the terminology

�cartoon + texture decomposition� is more frequently

used by the mathematical imaging community (both

these problems will be discussed in Section 2).

Contributions. In this work, we show the relevance of

using multi-view images for re�ectance estimation. In-

deed, this enables a prior shape estimation using MVS,

which essentially reduces the decomposition problem to

the joint estimation of a set of re�ectance maps, as il-

lustrated in Figure 2. We elaborate on the variational

approach to multi-view decomposition into re�ectance

and shading, which we initially presented in [26]. The

latter introduced a robust l1-TV framework for the joint

estimation of piecewise-smooth re�ectance maps and of

spherical harmonics lighting, with an additional term

ensuring the consistency of the re�ectance maps. The

present paper extends this approach by developing the

theoretical foundations of this variational model. In this

view, our parameterization choices are further discussed

and the underlying ambiguities are exhibited. The vari-

ational model is motivated by a Bayesian rationale, and

the proposed numerical scheme is interpreted in terms

of a majorization-minimization algorithm. Finally, we

conclude that, besides a preliminary measurement of

the incoming lighting, varying the lighting along with

the viewing angle, in the spirit of photometric stereo,

is the only way to estimate the re�ectance without re-

sorting to any prior.

Organization of the Paper. After reviewing related ap-

proaches in Section 2, we formalize in Section 3 the

problem of multi-view re�ectance estimation. Section 4

then introduces a Bayesian-to-variational approach to

this problem. A simple numerical strategy for solving

the resulting variational problem, which is based on

alternating majorization-minimization, is presented in

Section 5. Experiments on both synthetic and real-world

datasets are then conducted in Section 6, before sum-

marizing our achievements and suggesting future re-

search directions in Section 7.

2 Related Works

Studied since the 1970s [21], the problem of decom-

posing an image (or a set of images) into a piecewise-

smooth component and an oscillatory one is a funda-

mental computer vision problem, which has been ad-

dressed in numerous ways.

Cartoon + Texture Decomposition. Researchers in the

�eld of mathematical imaging have suggested various

variational models for this task, using for instance non-

smooth regularization and Fourier-based frequency anal-

ysis [3], or l1-TV variational models [23]. However, such

techniques do not use an explicit photometric model

for justifying the decomposition, whereas photometric

analysis, which is another important branch of com-

puter vision, may be a source of inspiration for moti-

vating new variational models.

Photometric Stereo. As discussed in the introduction,

photometric stereo techniques [40] are able to unam-

biguously estimate the re�ectance and the geometry,

by considering several images obtained from the same

viewing angle but under calibrated, varying lighting.

Photometric stereo has even been extended to the case

of uncalibrated, varying lighting [5]. In the same spirit
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as uncalibrated photometric stereo, our goal is to esti-

mate re�ectance under unknown lighting. However, the

problem is less constrained in our case, since we cannot

ensure that the lighting is varying. Our hope is that this

can be somewhat compensated by the prior knowledge

of geometry, and by the resort to appropriate priors.

Various priors for re�ectance have been discussed in

the context of intrinsic image decomposition.

Intrinsic Image Decomposition. Separating re�ectance

from shading in a single image is a challenging prob-

lem, often referred to as intrinsic image decomposition.

Given the ill-posed nature of this problem, prior in-

formation on shape, re�ectance and/or lighting must

be introduced. Most of the existing works are based

on the �retinex theory� [21], which states that most of

the slight brightness variations in an image are due to

lighting, while re�ectance is piecewise-constant (as for

instance a Mondrian image). A variety of clustering-

based [13,36] or sparsity-enhancing methods [14,29,36,

37] have been developed based on this theory. Among

others, the work of Baron and Malik [4], which presents

interesting results, stands on multiple priors to solve

the fundamental ambiguity of shape-from-shading, that

we aim at revoking in the multi-view context. Some

other methods disambiguate the problem by requiring

the user to �brush� uniform re�ectance parts [8,29], or

by resorting to a crowdsourced database [7]. Still, these

works require user interactions, which may not be de-

sirable in certain cases.

Multi-view 3D-reconstruction. Instead of introducing pos-

sibly unveri�able priors, or relying on user interactions,

ambiguities can be reduced by assuming that the geom-

etry of the scene is known. Intrinsic image decomposi-

tion has for instance been addressed using an RGB-D

camera [9] or, closer to our proposal, multiple views of

the same scene under di�erent angles [19,20]. In the

latter works, the geometry is �rst extracted from the

multi-view images, before the problem of re�ectance es-

timation is addressed. Geometry computation can be

achieved using multi-view stereo (MVS). MVS tech-

niques [35] have seen signi�cant growth over the last

decade, an expansion which goes hand in hand with the

development of structure-from-motion (SfM) solutions

[27]. Indeed, MVS requires the parameters of the cam-

eras, outputs of the SfM algorithm. Nowadays, these

mature methods are commonly used in uncontrolled en-

vironments, or even with large-scale Internet data [2].

For the sake of completeness, let us also mention that

some e�orts in the direction of multi-view and photo-

metrically consistent 3D-reconstruction have been de-

voted recently [17,18,22,24,25]. Similar to these meth-

ods, we will resort to a compact representation of light-

ing, namely the spherical harmonics model.

Spherical Harmonics Lighting Model. Let us consider

a point x lying on the surface S ⊂ R3 of the observed

scene, and let n(x) be the outer unit-length normal vec-

tor to S in x. Let H(x) be the hemisphere centered in

x, having as basis plane the tangent plane to S in x.

Each light source visible from x can be associated to a

point ω on H(x). If we describe by the vector s(x, ω)

the corresponding elementary light beam (oriented to-

wards the source), then by de�nition of the re�ectance

(or BRDF) of the surface, denoted r, the luminance of

x in the direction v is given by

L(x,v) =

∫
H(x)

r(x,n(x),
s(x, ω)

‖s(x, ω)‖
,v) [s(x, ω) · n(x)] dω,

(5)

where [s(x, ω) ·n(x)] is the surface illuminance. In gen-

eral, r depends both on the direction of the light s(x, ω),

and on the viewing direction v, relatively to n(x).

This expression of the luminance is intractable in

the general case. However, if we restrict our attention

to Lambertian surfaces, the re�ectance reduces to the

albedo ρ(x), which is independent of any direction, and

L(x,v) does not depend on the viewing direction v any-

more. If the light sources are further assumed to be

distant enough from the object, then s(x, ω) is inde-

pendent of x i.e., the light beams are the same for the

whole (supposedly convex) object, and thus the light-

ing is completely de�ned on the unit sphere. Therefore,

the integral (5) acts as a convolution on H(x), hav-
ing as kernel s(ω) · n(x). Spherical harmonics, which

can be considered as the analogue to the Fourier series

on the unit sphere, have been shown to be an e�cient

low-dimensional representation of this convolution [6,

33]. Many vision applications [18,41] use second order

spherical harmonics, which can capture over 99% of the

natural lighting [11] using only nine coe�cients. This

yields an approximation of the luminance of the form

L =
ρ

π
σ · ν, (6)

where ρ ∈ R is the albedo (re�ectance), σ ∈ R9 is a

compact lighting representation, and ν ∈ R9 stores the

local geometric information. The latter is deduced from

the normal according to:

ν =



n

1

n1 n2
n1 n3
n2 n3
n21 − n22
3n23 − 1


. (7)
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In (6), the lighting vector σ is the same in all the

points of the surface, but the re�ectance ρ and the geo-

metric vector ν vary along the surface S of the observed
scene. Hence we will write (6) as:

L(x) =
ρ(x)

π
σ · ν(x), ∀x ∈ S. (8)

Our aim in this paper is to estimate the re�ectance

ρ(x) in each point x ∈ S, as well as the lighting vector

σ, given a set of multi-view images and the geomet-

ric vector ν(x). We formalize this problem in the next

section.

3 Multi-view Re�ectance Estimation

In this section, we describe with more care the problem

of re�ectance estimation from a set of multi-view im-

ages. First, we need to explicit the relationship between

graylevel, re�ectance, lighting and geometry.

3.1 Image Formation Model

Let x ∈ S be a point on the surface of the scene. Assume

that it is observed by a graylevel camera with linear re-

sponse function and let I : Ω ⊂ R2 → R be the image,

where Ω is the projection of S onto the image plane.

Then, the graylevel in the pixel p ∈ Ω conjugate to x

is proportional to the luminance of x in the direction

of observation v:

I(p) = γ L(v,x), (9)

where the coe�cient γ > 0, referred to in the follow-

ing as the �camera coe�cient�, is unknown3. By assum-

ing Lambertian re�ectance and the light sources distant

enough from the object, Equations (8) and (9) yield:

I(p) = γ
ρ(x)

π
σ · ν(x). (10)

Now, let us assume that m images Ii of the surface,

i ∈ {1, . . . ,m}, obtained while moving a single camera,

are available, and discuss how to adapt (10).

Case 1: unknown, yet �xed lighting and camera coef-

�cient. If all the automatic settings of the camera are

disabled, then the camera coe�cient is independent from

the view. We can thus incorporate this coe�cient and

the denominator π into the lighting vector: σ := γ
π σ.

Moreover, if the illumination is �xed, the lighting vec-

tor σ is independent from the view. In any point x

3 This coe�cient depends on several factors such as the lens
aperture, the magni�cation, the exposure time, etc.

which is visible in the i-th view, Equation (10) becomes:

Ii(πi(x)) = ρ(x)σ · ν(x), (11)

where we denote by πi the 3D-to-2D projection as-

sociated to the i-th view. In (11), the unknowns are

the re�ectance ρ(x) and the lighting vector σ. Equa-

tions (11), i ∈ {1, . . . ,m}, constitute a generalization

of (4) to more complex illumination scenarios. For the

whole scene, this is a problem with n + 9 unknowns

and up to nm equations, where n is the number of

3D-points x which have been estimated by multi-view

stereo. However, as for System (4), only n equations are

linearly independent, hence the problem of re�ectance

and lighting estimation is under-constrained.

Case 2: unknown and varying lighting and camera coef-

�cient. If lighting is varying, then we have to make the

lighting vector view-dependent. If it is also assumed to

vary, the camera coe�cient can be integrated into the

lighting vector with the denominator π i.e., σi := γi

π σi,

since the estimation of each σi will include that of γi.

Equation (10) then becomes:

Ii(πi(x)) = ρ(x)σi · ν(x). (12)

There are even more unknowns (n+9m), but this time

the nm equations are linearly independent, at least as

long as the σi are not proportional i.e., if not only the

camera coe�cient or the lighting intensity vary across

the views, but also the lighting direction4. Typically, n

is of the order of [103, 106], hence the problem is over-

constrained as soon as at least two out of them lighting

vectors are non-collinear. This is a situation similar to

uncalibrated photometric stereo [5], but much more fa-

vorable: the geometry is known, hence the ambiguities

arising in uncalibrated photometric stereo are likely to

be reduced. However, contrarily to uncalibrated pho-

tometric stereo, lighting is not actively controlled in

our case. Lighting variations are likely to happen e.g.,

in outdoor scenarios, yet they will be limited. The m

lighting vectors σi, i ∈ {1, . . . ,m}, will thus be close to
each other: lighting variations will not be su�cient in

practice for disambiguation (ill-conditioning).

Since (11) is under-constrained and (12) is ill-condi-

tioned, additional information will have to be intro-

duced either ways, and we can restrict our attention

to the varying lighting case (12).

4 Another case, which we do not study here, is when the
lighting and camera coe�cient are both varying, yet only
lighting is calibrated. This is known as �semi-calibrated� pho-
tometric stereo [10].
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So far, we have assumed that graylevel images were

available. To extend our study to RGB images, we abu-

sively assume channel separation, and apply the frame-

work independently in each channel ? ∈ {R,G,B}. We

then consider the expression:

Ii?(π
i(x)) = ρ?(x)σ

i
? · ν(x) (13)

where ρ?(x) and σi? denote, respectively, the colored re-

�ectance and the i-th colored lighting vector, relatively

to the response of the camera in channel ?. A more

complete study of Model (13) is presented in [31].

Since we will apply the same framework indepen-

dently in each color channel, we consider hereafter the

graylevel case only i.e., we consider the image formation

model (12) instead of (13). The question which arises

now is how to estimate the re�ectance ρ(x) from a set

of equations such as (12), when the geometry ν(x) is

known but the lighting σi is unknown.

3.2 Re�ectance Estimation on the Surface

We place ourselves at the end of the multi-view 3D-

reconstruction pipeline. Thus, the projections πi are

known (in practice, they are estimated using SfM tech-

niques), as well as the geometry, represented by a set

of n 3D-points xj ∈ R3, j ∈ {1, . . . , n}, and the cor-

responding normals n(xj) (obtained for instance using

SFM techniques), from which the n geometric vectors

νj := ν(xj) are easily deduced according to (7).

The unknowns are then the n re�ectance values ρj :=

ρ(xj) ∈ R and the m lighting vectors σi ∈ R9, which

are independent from the 3D-point number j due to

the distant light assumption. At �rst glance, one may

think that their estimation can be carried out by si-

multaneously solving (12) in all the 3D-points xj , in a

purely data-driven manner, using some �tting function

F : R→ R:

min
{ρj∈R}j
{σi∈R9}i

m∑
i=1

n∑
j=1

vij F
(
ρj σ

i · νj − Iij
)
, (14)

where we denote Iij = Ii(πi(xj)), and v
i
j is a visibility

boolean such that vij = 1 if xj is visible in the i-th

image, and vij = 0 otherwise.

Let us consider, for the sake of pedagogy, the sim-

plest case of least-squares �tting (F (x) = x2) and per-

fect visibility (vij ≡ 1). Then, Problem (14) is rewritten

in matrix form:

min
ρ∈Rn

S∈R9×m

‖N (ρ⊗ S)− I‖2F , (15)

where the Kronecker product ρ⊗S is a matrix of R9n×m,

ρ being a vector of Rn which stores the n unknown re-

�ectance values, and S a matrix of R9×m which stores

the m unknown lighting vectors σi ∈ R9, column-wise,

N ∈ Rn×9n is a block-diagonal matrix whose j-th block,

j ∈ {1, . . . , n}, is the row vector ν>j , matrix I ∈ Rn×m
stores the graylevels, and ‖ · ‖F is the Frobenius norm.

Using the pseudo-inverse N† of N, (15) is rewritten:

min
ρ∈Rn

S∈R9×m

∥∥ρ⊗ S−N† I
∥∥2
F
. (16)

Problem (16) is a nearest Kronecker product problem,

which can be solved by singular value decomposition

(SVD) [15, Theorem 12.3.1].

However, this matrix factorization approach su�ers

from three shortcomings:

1) It is valid only if all 3D-points are visible under all

the viewing angles, which is rather unrealistic. In

practice, (15) should be replaced by

min
ρ∈Rn

S∈R9×m

‖V ◦ [N (ρ⊗ S)− I]‖2F , (17)

where V ∈ {0, 1}n×m is a visibility matrix contain-

ing the values vij , and ◦ is the Hadamard product.

This yields a Kronecker product problem with miss-

ing data, which is much more arduous to solve.

2) It is adapted only to least-squares estimation. Con-

sidering a more robust �tting function would pre-

vent a direct SVD solution.

3) If lighting is not varying (σi = σ,∀i ∈ {1, . . . ,m}),
then it can be veri�ed that (15) is ill-posed. Among

its many solutions, the following trivial one can be

exhibited:

Strivial = σdi�use 11×m, (18)

ρtrivial =
[
Ei[I

i
1], . . . , Ei[I

i
n]
]>
, (19)

where:

σdi�use = [0, 0, 0, 1, 0, 0, 0, 0, 0]
>

(20)

and Ei is the mean over the view indices i. This

trivial solution means that the lighting is assumed

to be completely di�use5, and that the re�ectance is

equal to the image graylevel, up to noise only. Ob-

viously, this is not an acceptable interpretation. As

discussed in the previous subsection, in real-world

scenarios we will be very close to this degenerate

case, hence additional regularization will have to be

introduced, which makes things even harder.

5 In the computer graphics community, this is referred to
as �ambient lighting�.
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Overall, the optimization problem which needs to be

addressed is not as easy as (16). It is a non-quadratic

regularized problem of the form:

min
{ρj∈R}j
{σi∈R9}i

p∑
i=1

n∑
j=1

vij F
(
ρj σ

i ·νj−Iij
)
+

n∑
j=1

∑
k|xk∈V(xj)

R(ρj , ρk),

(21)

where V(xj) is the set of neigbors of xj on surface S,
and the regularization function R needs to be chosen

appropriately to ensure piecewise-smoothness.

However, the sampling of the points xj on surface S
is usually non-uniform, because the shape of S is po-

tentially complex. It may thus be di�cult to design ap-

propriate �delity and regularization functions F and R,

and to design an appropriate numerical solving. In ad-

dition, some thin brightness variations may be missed if

the sampling is not dense enough. Overall, direct esti-

mation of re�ectance on the surface looks promising at

�rst sight, but rather tricky in practice. Therefore, we

leave this as an interesting future research direction and

follow in this paper a simpler approach, which consists

in estimating re�ectance in the image domain.

3.3 Re�ectance Estimation in the Image Domain

Instead of trying to colorize the n 3D-points estimated

by MVS i.e., of parameterizing the re�ectance over the

(3D) surface S, we can also formulate the re�ectance

estimation problem in the (2D) image domain.

Equation (12) is equivalently written, in each pixel

p := πi(x) ∈ Ωi := πi(S):

Ii(p) = ρi(p)σi · νi(p), (22)

where we denote ρi(p) := ρ(πi
−1

(p)) and νi(p) :=

ν(πi
−1

(p)). Instead of estimating one re�ectance value

ρ(x) per estimated 3D-point, the re�ectance estimation

problem is thus turned into the estimation of m �re-

�ectance maps�

ρi : Ωi ⊂ R2 → R. (23)

On the one hand, the 2D-parameterization (23) does

not enforce the consistency of the re�ectance maps.

This will have to be explicitly enforced later on. Be-

sides, the surface will not be directly colorized, but the

estimated re�ectance maps have to be back-projected

and fused over the surface in a �nal step.

On the other hand, the question of occlusions (vis-

ibility) does not arise, and the domains Ωi are subsets

of a uniform square 2D-grid. Therefore, it will be much

easier to design appropriate �delity and regularization

terms. Besides, there will be as many re�ectance esti-

mates as pixels in those sets: with modern HD cam-

eras, this number is much larger than the number of

3D-points estimated by multi-view stereo. Estimation

will thus be much denser.

With such a parameterization choice, the regular-

ized problem (21) will be turned into:

min
{ρi:Ωi→R}i
{σi∈R9}i

p∑
i=1

∑
p∈Ωi

F
(
ρi(p)σi ·νi(p)−Ii(p)

)

+

p∑
i=1

∑
p∈Ωi

∑
q∈Vi(p)

R(ρi(p), ρi(q))

s.t. C({ρi}i) = 0, (24)

with C some function to ensure multi-view consistency,

and where Vi(p) is the set of neighbors of pixel p which

lie inside Ωi. Note that, since Ωi is a subset of a square,

regular 2D-grid, this neighborhood is much easier to

handle than that appearing in (21).

In the next section, we discuss appropriate choices

for F , R and C in (24), by resorting to a Bayesian

rationale.

4 A Bayesian-to-variational Framework for

Multi-view Re�ectance Estimation

Following Mumford's Bayesian rationale for the varia-

tional formulation [28], let us now introduce a Bayesian-

to-variational framework for estimating re�ectance and

lighting from multi-view images.

4.1 Bayesian Inference

Our problem consists in estimating the m re�ectance

maps ρi : Ωi → R and the m lighting vectors σi ∈ R9,

given the m images Ii : Ωi → R, i ∈ {1, . . . ,m}. As
we already stated, a maximum likelihood approach is

hopeless, because a trivial solution arises. We rather

resort to Bayesian inference, estimating ({ρi}i, {σi}i)
as the maximum a posteriori (MAP) of the distribution

P({ρi}i, {σi}i|{Ii}i)

=
P({Ii}i|{ρi}i, {σi}i)P({ρi}i, {σi}i)

P({Ii}i)
, (25)

where the denominator is the evidence, which can be

discarded since it depends neither on the re�ectance

nor on the lighting, and the factors in the numerator

are the likelihood and the prior, respectively.
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Likelihood. The image formation model (22) is never

strictly satis�ed in practice, due to noise, cast-shadows

and possibly slightly specular surfaces. We assume that

such deviations from the model can be represented as

independent (with respect to pixels and views) Laplace

laws6 with zero mean and scale parameter α:

P({Ii}i|{ρi}i, {σi}i)

=

m∏
i=1

(
1

2α

)|Ωi|
exp

{
− 1

α

∥∥ρi σi · νi − Ii∥∥
i,1

}

=

(
1

2α

)∑m
i=1|Ω

i|

exp

{
− 1

α

m∑
i=1

∥∥ρi σi · νi − Ii∥∥
i,1

}
(26)

where ‖ · ‖i,p, p ≥ 0, is the `p-norm over Ωi and |Ωi| is
the cardinality of Ωi.

Prior. Since the re�ectance maps {ρi}i are independent
from the lighting vectors {σi}i, the prior can be fac-

torized to P({ρi}i, {σi}i) = P({ρi}i)P({σi}i). Since
the lighting vectors are independent from each other,

the prior distribution of the lighting vectors factorizes

to P({σi}i) =
∏m
i=1 P(σi). As each lighting vector is

unconstrained, we can consider the same uniform dis-

tribution i.e., P(σi) = τ , independently from the view

index i. This distribution being independent from the

unknowns, we can discard the lighting prior from the

inference process. Regarding the re�ectance maps, we

follow the retinex theory [21], and consider each of them

as piecewise-constant. The natural prior for each such

map is thus the Potts model:

P(ρi) = Ki exp

{
− 1

βi
∥∥∇ρi∥∥

i,0

}
(27)

where∇ρi(p) =
[
∂xρ

i(p), ∂yρ
i(p)

]>
represents the gra-

dient of ρi at pixel p (approximated, in practice, using

�rst-order forward stencils with a Neumann boundary

condition), and with Ki a normalization coe�cient and

βi a scale parameter. Note that we use the abusive `0-

norm notation ‖∇ρi‖i,0 to denote:∥∥∇ρi∥∥
i,0

=
∑
p∈Ωi

∑
q∈Vi(p)

f
(
ρi(p)− ρi(q)

)
(28)

with f(x) = 1 if x 6= 0, and f(x) = 0 otherwise.

The m re�ectance maps are obviously not indepen-

dent: the re�ectance, which characterizes the surface,

should be independent from the view. It follows that

6 We consider the Laplace law here because: i) since it has
higher tails than the Gaussian, it allows for sparse outliers to
the Lambertian model such as cast-shadows or specularities;
ii) it yields convex optimization problems, unlike other heavy-
tailed distributions such as Cauchy or t distributions.

the parameters (Ki, βi) are the same for each Potts

model (27), and that the re�ectance prior P({ρi}i) can
be taken as the product of m independent distributions

with the same parameters (K,β):

P({ρi}i) = Km exp

{
− 1

β

m∑
i=1

∥∥∇ρi∥∥
i,0

}
(29)

but only if the coupling between the re�ectance maps

is enforced by the following linear constraint:

Ci,j(ρi − ρj) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (30)

where Ci,j is a Ωi×Ωj → {0, 1} �correspondence func-
tion�, which is easily created from the (known) projec-

tion functions {πi}i and the geometry, and which is

de�ned as follows:

Ci,j(pi,pj)=


1 if pixels pi and pj correspond

to the same surface point,

0 otherwise.

(31)

Since maximizing the MAP probability (25) is equiv-

alent to minimizing its negative logarithm, we eventu-

ally obtain the following constrained variational prob-

lem, which explicits the functions F , R and C in (24):

min
{ρi:Ωi→R}i
{σi∈R9}i

m∑
i=1

∥∥ρi σi · νi − Ii∥∥
i,1

+ λ

m∑
i=1

∥∥∇ρi∥∥
i,0

s.t. Ci,j(ρi − ρj) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (32)

where λ = α/β and where we neglect all the normal-

ization coe�cients.

4.2 Relationship with Cartoon + Texture

Decomposition

Applying a logarithm transformation to both sides of (22),

we obtain:

Ĩi(p) = ρ̃i(p) + log
(
σi · νi(p)

)
, (33)

where the tilde notation is used as a shortcut for the

logarithm.

By applying the exact same Bayesian-to-variational

rationale, we would end up with the following varia-

tional problem:

min
{ρ̃i:Ωi→R}i
{σi∈R9}i

m∑
i=1

∥∥∥ρ̃i + log
(
σi · νi

)
− Ĩi

∥∥∥
i,1

+ λ

m∑
i=1

∥∥∇ρ̃i∥∥
i,0

s.t. Ci,j(ρ̃i − ρ̃j) = 0, ∀(i, j) ∈ {1, . . . ,m}2, (34)

The variational problem (34) can be interpreted as a

multi-view cartoon + texture decomposition problem,
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where each log-image Ĩ is decomposed into a component

Ci := ρ̃i which is piecewise-smooth (�cartoon�, here the

log-re�ectance), and a component T i := log
(
σi · νi

)
which contains higher-frequency details (�texture�, here

the log-shading). In contrast with conventional methods

for such a task, the present one uses an explicit shading

model for the texture term.

Note however that such a decomposition is justi-

�ed only if the log-images Ĩi are considered. If using

the original images Ii, our framework should rather be

considered as a multi-view cartoon �×� texture decom-

position framework.

4.3 Bi-convex Relaxation of the Variational Model (32)

Problem (32) is a non-convex (due to the `0-regularizers),

non-smooth (due to the `0-regularizers and to the `1-

�delity term). Although some e�orts have recently been

devoted to the resolution of optimization problems in-

volving `0-regularizers [38], we prefer to keep the op-

timization simple, and approximate these by (convex,

but non-smooth) anisotropic total variation terms:

m∑
i=1

∥∥∇ρi∥∥
i,0
≈

m∑
i=1

∥∥∇ρi∥∥
i,1
. (35)

Besides, the correspondence function may be slightly

inaccurate in practice, due to errors in the prior geom-

etry estimation obtained via multi-view stereo. There-

fore, we turn the linear constraint in (32) into an addi-

tional term. Eventually, we replace the non-di�erentia-

ble absolute values arising from the `1-norms by the

(di�erentiable) Moreau envelope i.e., the Huber loss7:

|x| ≈ φδ(x) :=


x2

2 δ
, |x| ≤ δ

|x| − δ

2
, |x| > δ

(36)

Altogether, this yields the following smooth, bi-convex

variational problem:

min
ρ:={ρi:Ωi→R}i
σ:={σi∈R9}i

ε(ρ,σ) :=

m∑
i=1

∑
p∈Ωi

φδ
(
ρi(p)σi ·νi(p)− Ii(p)

)

+ λ

m∑
i=1

∑
p∈Ωi

[
φδ
(
∂xρ

i(p)
)
+ φδ

(
∂yρ

i(p)
)]

+ µ
∑∑
1≤i<j≤m

∑
pi∈Ωi

∑
pj∈Ωj

Ci,j(p
i,pj)φδ

(
ρi(pi)− ρj(pj)

)
.

(37)

In Equation (37), the �rst term ensures photometric

consistency (in the sense of the Huber loss function), the

7 We use δ = 10−4, in the experiments.

second one ensures re�ectance smoothness (smoothed

anisotropic total variation), and the third term ensures

multi-view consistency of the re�ectance estimates (again,

in the sense of the Huber loss function). At last, λ

and µ are tunable hyper-parameters controlling the re-

�ectance smoothness and the multi-view consistency,

respectively.

5 Alternating Majorization-minimization for

Solving (37)

To solve (37), we propose an alternating majorization-

minimization method, which combines alternating and

majorization-minimization optimization techniques. As

sketched in Figure 3, this algorithm works as follows.

Given an estimate (ρ(k),σ(k)) of the solution at itera-

tion (k), the lighting vectors and the re�ectance maps

are successively updated according to:

ρ(k+1) = argmin
ρ

ε(k)ρ (ρ), (38)

σ(k+1) = argmin
σ

ε(k)σ (σ), (39)

where ε
(k)
ρ and ε

(k)
σ are local quadratic majorants of

ε(·,σ(k)) and ε(ρ(k+1), ·) around, respectively, ρ(k) and
σ(k). Then, the process is repeated until convergence.

(ρ (k)
,σ (k)

)

(ρ (k+1)
,σ (k)

)

(ρ (k+1)
,σ (k+1)

)

. . .

ε(ρ, σ)

ε
(k)
ρε

(k+1)
ρ ε

(k)
σ

Fig. 3 Sketch of the proposed alternating majorization-
minimization solution. The partially freezed energies ε(·,σ)
and ε(ρ, ·) are locally majorized by the quadratic functions ερ
(in red) and εσ (in blue). Then, these quadratic majorants
are (globally) minimized and the process is repeated until
convergence is reached.
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To this end, let us �rst remark that the function

ψδ(x; x0) =


x2

2 δ
, |x0| ≤ δ,

x2

2 |x0|
+
|x0|
2
− δ

2
, |x0| > δ,

(40)

is such that ψδ(x0; x0) = φδ(x0), and is a proper local

quadratic majorant of φδ around x0, ∀x0 ∈ R. This is
easily veri�ed if |x0| ≤ δ, from the de�nition (36) of φδ.

If |x0| > δ, the di�erence ψδ(x; x0)− φδ(x) writes:
(|x0| − δ)

(
|x0| δ − x2

)
2 |x0| δ

, |x| ≤ δ,

(|x| − |x0|)2

2 |x0|
, |x| > δ,

(41)

which is positive in any case.

Therefore, the function

ε(k)ρ (ρ) :=

m∑
i=1

∑
p∈Ωi

ψδ

(
ρi(p)σi,(k)·νi(p)−Ii(p); ri,(k),(k)

)
+ λ

m∑
i=1

∑
p∈Ωi

[
ψδ

(
∂xρ

i(p); ∂xρ
i,(k)(p)

)
+ψδ

(
∂yρ

i(p); ∂yρ
i,(k)(p)

)]
+ µ

∑∑
1≤i<j≤m

∑
pi∈Ωi

∑
pj∈Ωj

Ci,j(p
i,pj)

ψδ

(
ρi(pi)− ρj(pj); ρi,(k)(pi)− ρj,(k)(pj)

)
, (42)

with

ri,(k1),(k2) = ρi,(k1)(p)σi,(k2) · νi(p)− Ii(p), (43)

is a local quadratic majorant of ε(·,σ(k)) around ρ(k)

which is suitable for the update (38).

Similarly, the function

ε(k)σ (σ) :=

m∑
i=1

∑
p∈Ωi

ψδ

(
ρi,(k+1)(p)σi·νi(p)−Ii(p);ri,(k+1),(k)

)
+ λ

m∑
i=1

∑
p∈Ωi

[
φδ

(
∂xρ

i,(k+1)(p)
)
+ φδ

(
∂yρ

i,(k+1)(p)
)]

+ µ
∑∑
1≤i<j≤m

∑
pi∈Ωi

∑
pj∈Ωj

[
Ci,j(p

i,pj)

φδ

(
ρi,(k+1)(pi)− ρj,(k+1)(pj)

) ]
(44)

is a local quadratic majorant of ε(ρ(k+1), ·) around σ(k)

which is suitable for the update (39).

The update (38) then comes down to solving a large

sparse linear least-squares problem, which we achieve

by applying conjugate gradient iterations to the associ-

ated normal equations. Regarding (39), it comes down

to solving a series of m independent small-scale linear

least-squares problems, for instance by resorting to the

pseudo-inverse.

We iterate the optimisation steps (38) and (39) until

convergence or a maximum iteration number is reached,

starting from the trivial solution of the non-regularized

(λ = µ = 0) problem. This non-regularized solution is

attained by considering di�use lighting (see (20)) and

using the input images as re�ectance maps. In our ex-

periments, we found 50 iterations were always su�cient

to reach a stable solution (10−3 relative residual be-

tween two consecutive energy values ε(ρ(k),σ(k)) and

ε(ρ(k+1),σ(k+1))).

Proving convergence of our scheme is beyond the

scope of this paper, but the proof could certainly be

derived from that in [31], where a similar alternating

majorization-minimization called �alternating reweigh-

ted least-squares� is used. Note, however, that the con-

vergence rate seems to be sublinear (see Figure 4), hence

possibly faster numerical strategies could be explored in

the future.
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(k
) ,
σ
(k
) )

Fig. 4 Top: evolution of the energy ε(ρ(k),σ(k)) de�ned
in (37), in function of iterations (k), concerning the test pre-
sented in Figure 8. Bottom: absolute value of the relative
variation between two successive energy values. Our algo-
rithm stops when this value is less than 10−3, which hap-
pens in less than 50 iterations and takes around 3 minutes on
a recent i7 processor, with non-optimized Matlab codes for
m = 13 images of size 540× 960.
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6 Results

In this section, we evaluate the proposed variational

method for multi-view re�ectance estimation, on a va-

riety of synthetic and real-world datasets. We start by a

quantitative comparison of our results with two single-

view methods, namely, the cartoon + texture decom-

position method from [23] and the intrinsic image de-

composition method from [14].

6.1 Quantitative Evaluation on a Synthetic Dataset

We �rst test our re�ectance estimation method using

m = 13 synthetic images, of size 540×960, of an object

whose geometry is perfectly known (see Figure 5-a).

Two scenarios are considered:

• In Figure 6, a purely-Lambertian, piecewise-constant

re�ectance is mapped onto the surface of the ob-

ject, which is then illuminated by a �skydome� i.e.,

an almost di�use lighting. Shading e�ects are thus

rather limited, hence applying to each image an es-

timation method which does not use an explicit re-

�ectance model e.g., the cartoon + texture decom-

position method from [23], should already provide

satisfactory results. The re�ectance being perfectly

piecewise constant, applying sparsity-based intrinsic

image decomposition methods such as [14] to each

image should also work well.

• In Figure 7, a more complicated (non-uniform) re-

�ectance is mapped onto the shirt, the hair is made

partly specular, and the di�use lighting is replaced

by a single extended light source, which induces

much stronger shading e�ects. It will thus be much

harder to remove shading without an explicit re-

�ectance model (cartoon + texture approach), while

the single-view image decomposition approach should

be non-robust to specularities.

In both cases, the competing methods [23] and [14]

are applied independently to each of the m = 13 im-

ages. The estimates are thus not expected to be consis-

tent, which may be problematic if the re�ectance maps

should be further mapped onto the surface for, e.g.,

relighting applications. On the contrary, our approach

simultaneously, and consistently, estimates the m re-

�ectance maps.

As we dispose of the re�ectance ground truth, we

can numerically evaluate these results by estimating

the root mean square error (RMSE) for each method,

over the whole set of m = 13 images. The values are

presented in Table 1. In order to compare compara-

ble things, the re�ectance estimated by each method

is scaled, in each channel, by a factor common to the

m = 13 re�ectance maps, so as to minimize the RMSE.

This should thus highlight inconsistencies between the

re�ectance maps.

Based on the qualitative results from Figures 6 and 7,

and the quantitative evaluations shown in Table 1, we

can make the following three observations:

1) Considering an explicit image formation model im-

proves cartoon + texture decomposition. Actually, the

cartoon part from the cartoon + texture decomposition

is far less uniform than the re�ectance estimated using

both other methods. Shading is only blurred, and not

really removed. This could be improved by augmenting

the regularization weight, but the price to pay would be

a loss of detail in the parts containing thinner details

(as the shirt, in the example of Figure 7).

2) Simultaneously estimating the multi-view re�ectance

maps makes them consistent and improves robustness

to specularities. When estimating each re�ectance map

individually, inconsistencies arise, which is obvious for

the hair in the third line of Figure 6, and explains the

RMSE values in Table 1. In contrast, our results con�rm

our basic idea i.e., that re�ectance estimation bene�ts

in two ways from the multi-view framework: this allows

us not only to estimate the 3D-shape, but also to con-

strain the re�ectance of each surface point to be the

same in all the pictures where it is visible. In addition,

since the location of bright spots due to specularity de-

pends on the viewing angle, they usually occur in some

places on the surface only under certain viewing an-

gles. Considering multi-view data should thus improve

robustness to specularities. This is con�rmed in Fig-

ure 7 by the re�ectance estimates in the hair, where

the specularities are slightly better removed than with

single-view methods.

3) A sparsity-based prior for the re�ectance should be

preferred over total variation. As we use a TV-smoothing

term, which favors piecewise-smooth re�ectance, the

satisfactory results of Figure 6 were predictable. How-

ever, some penumbra remains visible around the neck.

Since we also know the object geometry, it seems that

we could compensate for penumbra. However, this would

require that the lighting is known as well, which is

not the case in the framework of the targeted usecase,

since an outdoors lighting is uncontrolled. Moreover, we

would have to consider not only the primary lighting,

but also the successive bounces of light on the di�erent

parts of the scene (these were taken into account by the

ray-tracing algorithm, when synthesizing the images).

In contrast, the sparsity-based approach [14] is able to
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(a) (b) (c) (d)

Fig. 5 (a) 3D-shape used in the tests (the well-known �Joyful Yell� 3D-model), which will be imaged under two scenarios (see
Figures 6 and 7). (b) Same, after smoothing, thus less accurate. (c)-(d) Zooms of (a) and (b), respectively, near the neck.

Table 1 RMSE on the re�ectance estimates (the estimated and ground truth re�ectance maps are scaled to [0, 1]), with
respect to each channel and to the whole set of images, for our method and two single-view approaches. Our method overcomes
the latter on the two considered datasets. See text for details.

Test Channel Cartoon + texture [23] Intrinsic decomposition [14] Ours
Purely-Lambertian surface

+ Piecewise-constant re�ectance
+ Skydome lighting

(see Figure 6)

R
G
B

0.62
0.23
0.38

0.26
0.14
0.24

0.07

0.04

0.07

Non-uniform shirt re�ectance
+ Partly specular hair re�ectance
+ Single extended light source

(see Figure 7)

R
G
B

0.60
0.32
0.24

0.29
0.22
0.21

0.22

0.13

0.12

eliminate penumbra rather well, without modeling se-

cundary re�ections. It is also able to more appropriately

remove shading on the face in the example of Figure 7,

while not degrading as much as total variation the thin

structures of the shirt. Hence, the relative simplicity

of the numerical solution, which is a consequence of

the choice of replacing the Potts prior by a total vari-

ation one (see Section 4.3), comes with a price. In fu-

ture works, it may be important to design a numerical

strategy handling the original non-smooth, non-convex

problem (32).

6.2 Handling Inaccurate Geometry

In the previous experiments, the geometry was perfectly

known. In real-world scenarios, errors in the 3D-shape

estimation using SfM and MVS are unavoidable. There-

fore, it is necessary to evaluate the ability of our method

to handle inaccurate geometry.

Thus, we use for the next experiment the surface

shown in Figure 5-b (zoomed in Figure 5-d), which is

obtained by smoothing the original 3D-shape of Fig-

ure 5-a (zoomed in Figure 5-c), using a tool from the

meshlab software. The results provided in Figure 8 show

that our method seems robust to such small inaccura-

cies in the object geometry, and is thus relevant for the

intended application.

In Figure 9, we qualitatively evaluate our method on

the outputs of an SfM/MVS pipeline applied to a real-

world dataset, which provides estimates of the camera

parameters and a rough geometry of the scene. These

experiments con�rm that small inaccuracies in the ge-

ometry input can be handled. The specularities are

also appropriately removed, and the re�ectance maps

present the expected cartoon-like aspect. However, the

re�ectance is under-estimated in the sides of the nose

and around the chin. Indeed, since lighting is �xed,

these areas are self-shadowed in all the images. Two

workarounds could be used: forcing the regularization

term (and, possibly, losing �ne-scale details), or actively

controlling the lighting in order to be sure that no point

on the surface is shadowed in all the views. This is fur-

ther discussed in the next subsection.
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Input images

Cartoon + texture [23]

Intrinsic decomposition [14]

Ours

Ground truth

Fig. 6 First row: three (out of m = 13) synthetic views of the object of Figure 5-a, computed with a purely-Lambertian
re�ectance taking only four di�erent values (hair, face, shirt and plinth), illuminated by a �skydome�. Second row: estimation
of the re�ectance using the cartoon + texture decomposition described in [23] (with its parameter �xed to 0.4). Third row:
estimation of the re�ectance using the method proposed in [14] (with 4 clusters). Forth row: estimation of the re�ectance using
the proposed approach (with λ = 8 and µ = 1000). Fifth row: ground truth.
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Input images

Cartoon + texture [23]

Intrinsic decomposition [14]

Ours

Ground truth

Fig. 7 First row: three (out of m = 13) synthetic views of the object of Figure 5-a, computed with a non-uniform shirt
re�ectance, a uniform, but partly specular hair re�ectance, illuminated by a single extended light source. Second row: estimation
of the re�ectance using the cartoon + texture decomposition described in [23] (with its parameter �xed to 0.4). Third row:
estimation of the re�ectance using the method proposed in [14] (with 6 clusters). Forth row: estimation of the re�ectance using
the proposed approach (with λ = 2.5 and µ = 1000). Fifth row: ground truth.
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Fig. 8 Same test as in Figure 7, using a coarse version of the 3D-shape (see Figures 5-b and 5-d), with λ = 2.5 and µ = 1000.
Results are qualitatively similar to those shown in Figure 7, obtained with perfect geometry. The RMSE in the RGB channels
are, respectively: 0.24, 0.14 and 0.13, which are only slightly higher than those attained with perfect geometry (see Table 1).

Fig. 9 Test on a real-world dataset. First row: three (out of m = 8) views of the scene. Second row: estimated re�ectance
maps using the proposed approach (with λ = 2 and µ = 1000). Geometry and camera parameters were estimated using an
SfM/MVS pipeline.

6.3 Tuning the Hyper-parameters λ and µ

In the previous experiments, we arbitrarily chose the

values of parameters λ and µ which provided the �best�

results. Of course, such a tuning, which may be tedious,

must be discussed.

In order to highlight the in�uence of these param-

eters, let us �rst question what would happen with-

out neither regularization nor multi-view consistency

i.e., when λ = µ = 0. In that case, only the photo-

metric term would be optimised, which corresponds to

the maximum likelihood case. If lighting is not vary-

ing, then we are in a degenerate case which may result

in estimating di�use lighting (see Equation (20)) and

replacing the re�ectance maps by the images. Lighting

will thus be �baked in� the re�ectance maps, which is

precisely what we pretend not to do.

To avoid this e�ect, the smoothness term must be

activated by setting λ > 0. If we still consider µ = 0,

then the variational problem (37) comes down to m in-

dependent image restoration problems. In fact, these

problems are similar to `1-TV denoising problems, ex-

cept that a physically plausible �delity term is used to

help removing the illumination artifacts not only from

the total variation regularization, but also by incorpo-

rating prior knowledge of the surface geometry. How-

ever, because the photometric term is invariant by the

transformation (ρi,σi) := (κiρi,σi/κi), κi > 0, each

re�ectance map ρi is estimated only up to a scale fac-

tor, hence the m maps will not be consistent, as this is

the case for the competing single-view methods.
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Fig. 10 Quantitative in�uence of parameter λ, using images from the same dataset as that of Figure 7, with µ = 1000.

The latter issue is solved by activating the multi-

view consistency term i.e., by setting µ > 0. In that

case, there is still an ambiguity {ρi,σi}i := {κρi,σi/κ},
κ > 0, but it is now global i.e., independent from i.

To solve this ambiguity, it is enough in practice to set

one re�ectance value arbitrarily, or to normalize the

re�ectance values.

Overall, it is necessary to ensure that both λ and µ

are strictly positive. The choice of µ is not really critical.

Indeed, the multi-view consistency regularizer which is

controlled by µ arises from relaxing a hard constraint

(compare (32) and (37)). Hence, µ only needs to be cho-

sen �high enough� so that the regularizer approximates

fairly well a hard constraint. In all the experiments, we

used µ = 1000 and did not face any particular prob-

lem. Obviously, if the correspondences were not appro-

priately computed by SfM, then this value should be

reduced, but SfM solutions such as [27] are now mature

enough to provide accurate correspondences.

The choice of λ is much more critical. This is illus-

trated in Figure 10, which shows the RMSE in each

channel, using images from the same dataset as that of

Figure 7, at convergence of our algorithm, as a func-

tion of λ. This graph shows that the �optimal� value of

λ is very hard to �nd: in this example, a high value of

λ would diminish the RMSE in the face and the hair

(which are mostly red), because this would make them

uniform as expected (see Figure 11, last rows). However,

a much lower value of λ is required in order to preserve

the thin shirt details, which mostly contain green and

blue components (see Figure 11, �rst rows).

There is one situation where this tuning is much

easier. It is when the lighting is not �xed, but strongly

varying. As discussed in Section 3, the problem of jointly

estimating re�ectance and lighting is then over-deter-

mined, which theoretically makes the regularization un-

necessary. In Figure 12, we show the results obtained in

the case where each image is obtained under a di�erent

lighting. In that case, the thin structures of the shirt are

preserved, while shading on the face is largely reduced,

despite the choice of a very low regularization weight

λ = 1. Note that we cannot use the limit case λ = 0 be-

cause not all pixels have correspondences in all images:

there may thus be a few pixels for which the problem

remains under-determined, and for which di�usion is

required. Overall, this experiment shows that, without

any prior knowledge on the lighting, the only way to

avoid introducing an empirical prior on the re�ectance,

and thus its tuning, is to actively control lighting during

the acquisition process. This means, combining multi-

view and photometric stereo.

It happens that this problem is actively being ad-

dressed by the computer vision community [30]. Inter-

estingly, in this research the focus is put on highly ac-

curate geometry estimation, and not so much on re-

�ectance estimation (no re�ectance estimation result is

shown). Therefore, it may be an interesting future re-

search direction to incorporate our re�ectance estima-

tion framework in such multi-view, multi-lighting ap-

proaches. Both highly accurate geometry and re�ectance

could indeed be expected.

7 Conclusion and Perspectives

We have proposed a variational framework for estimat-

ing the re�ectance of a scene from a series of multi-

view images. We advocate a 2D-parameterization of

re�ectance, turning the problem into that of convert-

ing the input images into re�ectance maps. Invoking

a Bayesian rationale leads to a variational model com-

prising a `1-norm-based photometric data term, a Potts

regularizer and a multi-view consistency constraint. For

simplicity, both the latter are relaxed into a total varia-

tion term and a `1-norm term, respectively. Numerical

solving is carried out using an alternating majorization-

minimization algorithm. Empirical results on both syn-

thetic and real-world datasets demonstrate the interest

of considering multi-view images for re�ectance estima-

tion, as it allows to bene�t from prior knowledge of the

geometry, to improve robustness to specularities and to

guarantee consistency of the re�ectance estimates.



Variational Re�ectance Estimation from Multi-view Images 17

λ = 1

λ = 2

λ = 3

λ = 5

λ = 10

Fig. 11 Qualitative in�uence of parameter λ, using images from the same dataset as that of Figure 7, with µ = 1000.
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Fig. 12 First row: three (out of m = 13) synthetic images computed under varying lighting (which comes here from the right,
from the front and from the left, respectively). Second row: estimated re�ectance maps using the proposed approach (with
λ = 1 and µ = 1000). The thin structures of the shirt are preserved, while shading on the face is largely reduced. These results
must be compared with those of the �rst row in Figure 11, obtained with the same value of λ but under �xed lighting.

However, the critical analysis of our results also high-

lighted some limitations and possible future research

directions. For instance, avoiding the relaxation of the

non-smooth, non-convex regularization, seems to be nec-

essary in order to really ensure that the estimated re-

�ectance maps are piecewise-constant. In addition, the

choice of parameterizing re�ectance in the image (2D)

domain is advocated for reasons of numerical simplic-

ity, yet it seems somewhat more natural to work directly

on the surface (this would avoid the multi-view consis-

tency constraint). However, this would require turning

our simple variational framework into a more arduous

optimization problem over a manifold.

Finally, we could disambiguate the problem by mea-

suring upstream the incoming light, using, for instance,

environment maps. Without prior measurement, it seems

that the only way to avoid resorting to an arbitrary

prior for limiting the arising ambiguities consists in ac-

tively controlling the lighting (this would avoid resort-

ing to spatial regularization). Therefore, another exten-

sion of our work consists in estimating re�ectance from

multi-view, multi-lighting data, in the spririt of multi-

view photometric stereo techniques. However, this would

require appropriately modifying the SfM/MVS pipeline,

which relies on the constant brightness assumption.
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