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1 Introduction

In this supplementary material, we firstly show the details of the network architecture of MFGAN.
Then, we introduce more information regarding how Oxford RobotCar dataset [1] is used to evalu-
ate our method and present the qualitative results of flow estimation on different light environment.
Next, we show the experiments of New Tsukuba dataset [2] and additional results on Oxford Robot-
Car dataset. Additionally, we also provide a supplementary video to demonstrate the performance
of MFGAN for the frame consistency as well as the improvement for stereo VO methods.

2 Network Details

The detailed architecture for the encoder and decoder of the generators is shown in Figure 1 and
Figure 2, respectively. We extend the architecture of [3] to take into account temporal consistency
and stereo image pairs. During training, the networks share the weights in Siamese networks fashion
[4] to push consistency over frames and optimize the parameters all together after forwarding two
temporally neighboring stereo pairs. Note that we do not separately train the networks for optical
flow estimation but use the supervision of the estimated optical flow only in the training phase.

3 Details of using Oxford RobotCar Dataset

The Oxford RobotCar dataset [1] contains a large amount of data collected while traversing approx-
imately 10km in central Oxford, UK for a year in different time slots and weathers. We divide the
entire sequence into 10 sub-sequences where each sequence is around 700m distance and has certain
characteristics of the trajectories. These sub-sequences are shown on Oxford map in Figure 3. Most
of sequences contain one or more curves, Seq. 3 has difficult U-turn route, and Seq. 6 is straight-
shaped road. For training, we split the sequences such that they are equally distributed on the entire
map. We use Seq. 0, 2, 3, 5, 8 as training set and Seq. 1, 4, 6, 7, 9 as testing sequences. Note that
there are no overlaps between the training set and the test.

We take the same sequences from different conditions using GPS/INS data from the Oxford Robot-
Car dataset. First, we fix the start point of each sequence according to GPS location from Day set
and take the corresponding sequence from Night set using the fixed GPS position. Then, we set
the end of each sequence by measuring the same distance. To generate ground-truth poses for the
evaluation of VO methods, since the timestamps of frames are not synchronized with GPS/INS data,
we interpolated the pose of timestamps based on GPS/INS data. In addition, we cut the car head part
fixed at the bottom in the frames because the fixed objects unrelated with the scene cause difficulties
to run VO methods.
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Figure 1: Encoder architecture of the genera-
tor network. The encoder takes the concatenated
stereo image pair at the same timestamp and gen-
erates the corresponding feature. The convolu-
tional layers are shown with the kernel size and
the number of output channels followed by 9
residual blocks.

Figure 2: Decoder architecture of the generator
network. We generate the features from two con-
secutive temporal stereo pairs and concatenate the
features to feed into the decoder part. Transposed
convolutional layers for upsampling are presented
in yellow color.

Figure 3: The entire route of the Oxford RobotCar dataset (left image) is represented in green route
and 10 sub-sequences taken from the whole trajectory (right image) are marked in yellow color
respectively.
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4 Flow Estimation on Different Lighting Images

We check that FlowNet2 in general shows good performance for not only bright lighting but also
dark illumination images. The predicted optical flow on Day and Night scene of the Oxford Robot-
Car dataset is shown in Figure 4 with a warped image based on the flow. Additionally, the evaluation
results on the main paper show that, with the estimation quality delivered by FlowNet2, MFGAN is
able to generate temporal as well as stereo consistent sequences.

Figure 4: Flow estimation and warped images of Day and Night scene in the Oxford RobotCar
dataset. The first row is made of images of Day set and the second row consists of images from Night
set. The estimated flows show the fair quality of warped images leading to reasonable supervision
for consistency.

5 More Experiments

5.1 New Tsukuba Dataset

This synthetic dataset [2] captures static office scene. The dataset contains 1800 stereo image pairs
with ground-truth camera pose, disparity maps, occlusion maps and discontinuity maps. The stereo
camera travels the fixed trajectory under different lighting such as Daylight, Fluorescent, Lamps and
Flashlight, and the camera poses demonstrate strong rotation change. We test our method on one
pair of unpaired sets, Fluorescent and Flashlight, and used 1000 images as a training set and 800
images for the evaluation. Although the images in Fluorescent and Flashlight set are paired, we
utilize them in unpaired setting when training.

The experiments about frame consistency and VO performance on test sequences are shown in Table
1 and 2, respectively. The enhanced sequence by the model cy, tmp trained with temporal consis-
tency as well as cycle consistency shows better frame consistency and improves the VO performance
of both direct and indirect methods compared to when using original Flashlight and the cy outputs.
Further adding the stereo consistency did not improve the results on this dataset.

cy cy, tmp
median 0.75 0.54
mean 2.20 1.68

Table 1: EPE Etmp of the New Tsukuba dataset for temporal consistency.

Flashlight cy cy, tmp
tabs rabs tabs rabs tabs rabs

DSO 2.055 39.35 0.194 2.34 0.144 2.06
ORB X X 0.284 8.63 0.239 7.86

Table 2: Evaluation on the New Tsukuba dataset. tabs(m) and tabs(
◦) are absolute translation and

rotational RMSE. The image translation model cy allows stereo VO methods outperform on dark
scene, and adding temporal consistency cy, tmp leads to even better performance.
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Note that we measure the absolute trajectory error because the test sequence is short, i.e., less than
50m.

5.2 Oxford RobotCar Dataset

The estimated trajectories of Seq. 1, 6, 7 by Stereo DSO are shown in the left side of Figure 5, 6 and
7, and those by stereo ORB-SLAM are shown in the right side of the figures.

Figure 5: Seq. 1 of Oxford RobotCar dataset from Stereo DSO (left) and stereo ORB-SLAM (right).

Figure 6: Seq. 6 of Oxford RobotCar dataset from Stereo DSO (left) and stereo ORB-SLAM (right).

Figure 7: Seq. 7 of Oxford RobotCar dataset from Stereo DSO (left) and stereo ORB-SLAM (right).
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5.3 Stereo Visual Odometry with Different Lighting

We evaluate the VO performance using both direct and indirect methods on different lighting condi-
tions, i.e., a bright optimal scene and a dark challenging scene without any image enhancement.

With New Tsukuba dataset, the results on Fluorescent and Flashlight are shown in Table 3. It is
clearly observed that that Stereo DSO and stereo ORB-SLAM on Fluorescent scene deliver accurate
as well as robust performance compared to on Flashlight scene e.g., losing tracking.

Fluorescent Flashlight
tabs rabs tabs rabs

DSO 0.092 1.30 2.055 39.35
ORB 0.177 5.61 X X

Table 3: Evaluation on the New Tsukuba dataset. X indicates the tracking is lost.

With Oxford RobotCat dataset, we evaluate the test sequences of a Day set, and the results are shown
in Table 4 with the results on Night scene. As proposed in the KITTI Odometry Benchmark [? ],
we evaluate the relative translational error (trel) and relative rotational error (rrel) as a function of
trajectory length. Specifically, the metrics are defined as

trel(F) =
1

|F|
∑

(i,j)∈F

||(p̂j 	 p̂i)	 (pj 	 pi)||2 (1)

rrel(F) =
1

|F|
∑

(i,j)∈F

∠[(p̂j 	 p̂i)	 (pj 	 pi)] (2)

where F is a set of frames (i, j), p̂ ∈ SE(3) and p ∈ SE(3) are estimated and true camera poses,
respectively, 	 denotes the inverse compositional operator and ∠[·] is the rotation angle.

The results show that a Day scene with bright illumination gives more accurate and reliable perfor-
mance of stereo VO methods than a Night scene.

Day Night
Seq. trel rrel trel rrel

01 DSO 7.86 1.71 7.16 2.91
ORB 7.16 2.10 X 4.80

04 DSO 7.13 2.01 24.78 5.28
ORB 3.78 1.90 X 11.00

06 DSO 9.07 0.71 9.86 0.87
ORB 5.73 0.61 5.52 0.86

07 DSO 6.07 1.79 6.38 2.38
ORB 3.52 2.26 6.35 2.58

09 DSO 5.32 2.07 7.87 4.96
ORB 4.27 2.20 14.16 9.21

mean DSO 7.09 1.80 11.21 3.28
ORB 4.89 1.81 16.94 5.69

Table 4: Comparison of Day and Night sequences of Oxford RobotCar dataset. trel(%) and rrel(
◦)

are the relative translational and rotational errors [5]. Note that although the corresponding Day
and Night sequences share similar trajectories, there are no 1-to-1 paired images. Overall, both VO
systems deliver more accurate results on Day sequences. For the sequences where Night is better
than Day, our observation is that these Night sequences are with fairly good lighting conditions and
contain less dynamic objects than the corresponding Day sequences.

5.4 Qualitative Results of Other Methods

In the paper, we compare MFGAN with other methods to evaluate VO performance. The example
frames of Oxford RobotCar dataset generated by other methods are shown in Figure 8. We tested
the enhanced sequence by photo enhancement methods: adaptive histogram equalization(AHE) [6],
low-light image enhancement(LIME) [7], and deep photo enhancer(DP) [8]. The frames translated
by style transfer methods such as ToDayGAN [9], DRIT [10], and LinearTransfer(LT) [11] are
presented as well.
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(a)

(b)

Figure 8: Enhanced frame examples. The top left image is the original Night image and the other
images in the first row are generated from photo enhancement methods. On the second row, the first
three images are translated by other style transfer methods, and the last image is by MFGAN.
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