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Abstract. We propose a convex framework for silhouette and stereo
fusion in 3D reconstruction from multiple images. The key idea is to
show that the reconstruction problem can be cast as one of minimizing
a convex functional where the exact silhouette consistency is imposed as
a convex constraint that restricts the domain of admissible functions. As
a consequence, we can retain the original stereo-weighted surface area
as a cost functional without heuristic modifications by balloon terms or
other strategies, yet still obtain meaningful (nonempty) global minimiz-
ers. Compared to previous methods, the introduced approach does not
depend on initialization and leads to a more robust numerical scheme
by removing the bias near the visual hull boundary. We propose an ef-
ficient parallel implementation of this convex optimization problem on
a graphics card. Based on a photoconsistency map and a set of im-
age silhouettes we are therefore able to compute highly-accurate and
silhouette-consistent reconstructions for challenging real-world data sets
in less than one minute.

1 Introduction

Recovering three-dimensional geometrical structure from a series of calibrated
images is among the fundamental problems in computer vision, with numer-
ous applications in computer graphics, augmented reality, robot navigation and
tracking. Among the multitude of existing methods for multiview reconstruction
one can identify two major classes of approaches: shape from silhouettes and
shape from stereo.

Historically, the first strategy for multiview 3D shape retrieval, dating back to
the 1970’s, has been to use the outlines of the imaged objects [1]. Most of these
shape from silhouettes approaches aim at approximating the visual hull [2] of
the observed solid. The visual hull is an outer approximation, constructed as the
intersection of the visual cones associated with all image silhouettes. In the course
of research, different shape representations have been proposed: volumetric [3],
surface-based [4] and polyhedral [5]. Apart from shape representation, research
has been also focused on the development of methods operating on raw image
data instead of predetermined silhouettes. Most of them are based on an energy
minimization framework allowing to impose regularization in the labeling process
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Fig. 1. Silhouette and stereo integration. (a) Two of the input images. While stereo-
based approaches (b) recover concavities but overcarve thin structures and areas of
specular reflections, silhouette-based methods (c) reconstruct small-scale details cap-
tured by the silhouettes but fill indentations. In contrast, techniques for silhouette and
stereo fusion (d) restore concave areas as well as fine geometric details.

[6]. The segmentation of each image is obtained through the evolution of a single
surface in 3D rather than separate contours in 2D. As a result, such approaches
exhibit considerable robustness to image noise and erroneous camera calibration.

The main drawback of silhouette-based approaches is their inability to recon-
struct concavities, since these do not affect the silhouettes. Stereo-based methods
capture such indentations by measuring photoconsistency of surface patches in
space. The fundamental idea is that under the Lambertian assumption only
points on the object’s surface have a consistent appearance in the input images,
while all other points project to incompatible image patches. The earliest algo-
rithms use carving techniques to obtain a volumetric representation of the scene
by repeatedly eroding inconsistent voxels [7]. They do not enforce the smooth-
ness of the surface and this often results in rather noisy reconstructions. This
drawback was overcome by energy minimization techniques [8,9,10], which typ-
ically aim at computing a weighted minimal surface, where the weights reflect
the local photoconsistency.

Ideally, one would therefore like to combine both types of techniques in or-
der to jointly achieve stereo and silhouette consistency (see Fig. 1). A simple
strategy to fuse these complementary features is to use a visual hull (computed
from silhouettes) as initialization for a stereo-based approach [11,12]. Firstly,
this requires to constrain the solution space to avoid the empty set, secondly,
the resulting reconstruction will generally not fulfill the silhouette constraint. Al-
ternatively, one can unify both information sources in a single formulation. Two
different techniques have been proposed to achieve this goal: One can integrate
in the evolution silhouette-aligning forces [13,14,15,16], or one can use prede-
termined surface points [17,18,19] to impose exact silhouette constraints. Both
strategies have their shortcomings. The first one could lead to a numerically un-
stable behavior and could introduce a bias near the visual hull boundary, while
the second one requires premature decisions about voxel occupancy. To address
these drawbacks [20] proposed a graph cut framework for silhouette and stereo
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fusion. Unfortunately, the practical applicability of this method is limited due
to its high memory requirements, which poses a severe restriction on the volume
resolution. As a consequence, the development of robust and efficient schemes
for silhouette and stereo integration remains an open challenge.

In this paper, we propose a novel mathematical framework for silhouette and
stereo fusion in 3D reconstruction. The idea is to cast multiview stereovision as a
convex variational problem where the exact silhouette consistency is imposed as
a convex constraint that restricts the domain of admissible functions. Silhouette-
consistent reconstructions are computed by convex relaxation, finding global min-
imizers of the relaxed problem and subsequent projection to the original non-
convex set. Compared to existing fusion techniques, we thus compute guaranteed
silhouette-consistent reconstructions without constraining the search space and
without extending the original stereo-weighted cost functional by heuristic bal-
looning terms or more sophisticated balancing terms. Compared to classical local
fusion techniques, the proposed formulation does not depend on initialization and
leads to a more tractable numerical scheme by removing the bias near the visual
hull boundary. In experiments on several challenging real data sets we show the ad-
vantages of silhouette-consistency in the reconstruction of small-scale structures
which cannot be restored by state-of-the-art stereo algorithms.

In the next section, we will briefly review the formulation of stereo-based
multiview reconstruction as a weighted minimal surface problem. In Section 3
we will show that the integration of stereo and silhouette constraints can be
formulated as a problem of minimizing a convex functional over the convex set
of silhouette-consistent functions. In Section 4 we provide details on the numer-
ical implementation of the constrained convex optimization. In Section 5, we
show experimental results on several real data sets which demonstrate the ad-
vantages of silhouette consistency for the reconstruction of fine-scale structures.
We conclude with a brief summary.

2 3D Reconstruction as a Minimal Surface Problem

Let V ⊂ R
3 be a volume, which contains the scene of interest, and I1, . . . , In :

Ω → R
3 a collection of calibrated color images with perspective projections

π1, . . . , πn. Let S1, . . . , Sn ⊂ Ω be the observed projections of the 3D object and
ρ : V → [0, 1] be a photoconsistency map measuring the discrepancy among
various image projections. In particular, low values of ρ(x) indicate a strong
agreement from different cameras on the observed image patches, indicating a
high likelihood that the surface passes through the given point. More details on
the computation of photoconsistency will be given in Section 4.1.

With the above definitions, multiview reconstruction can be done by mini-
mizing the classical energy [8]:

E(S) =
∫

S

ρ(x) dS. (1)

The reconstruction is therefore given by a minimal surface measured in a Rie-
mannian metric that favors boundaries along photoconsistent locations. While
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local optimization techniques (using coarse-to-fine strategies) provide useful re-
constructions, there is little guarantee regarding optimality of the solutions. In
fact, the question of optimality is somewhat meaningless, as the global minimum
of (1) is obviously the empty set. A remedy to this problem is to either constrain
the search space around the visual hull [12], or to add regional balancing terms
to the cost functional using balloon forces [10] or heuristically constructed re-
gional terms [21,22,23]. Global optima of respective cost functionals can then be
computed either in a spatially discrete setting using graph cuts [12,10,23] or in
a spatially continuous setting using convex relaxation techniques [22].

Nevertheless, two limitations of such methods are that firstly, the balancing
regional terms are typically based on a number of somewhat heuristic assump-
tions and can often introduce a bias in the resulting segmentation. Secondly,
the resulting reconstructions are not guaranteed to be silhouette-consistent in
the sense that the projections of the surface do not necessarily coincide with the
observed silhouettes.

3 Convex Integration of Silhouettes and Stereo

An alternative strategy to avoid trivial solution in the optimization of (1) is
to impose silhouette alignment of the computed shape yielding the following
constrained optimization problem:

E(S) =
∫

S

ρ(x) dS,

s. t. πi(S) = Si ∀ i = 1, . . . , n.

(2)

In order to cast (2) as a convex optimization problem, the surface S is rep-
resented implicitly by the characteristic function u : V → {0, 1} of the surface
interior Sint. Hence, changes in the topology of S are handled automatically
without reperametrization. With the implicit surface representation, we have
the following constrained, convex energy functional equivalent to (2):

E(u) =
∫

V

ρ(x)|∇u(x)| dx

s. t. u ∈ {0, 1}
∫

Rij

u(x) dRij ≥ δ if j ∈ Si∫
Rij

u(x) dRij = 0 if j /∈ Si,

(3)

where Rij denotes the visual ray through pixel j of image i and δ > 0 denotes the
thickness, below which the given material becomes translucent. In the following
we will set δ = 1. Here we have rewritten the constraint in (2) in following form:
For a silhouette-consistent shape at least one of the voxels along a visual ray
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Fig. 2. Silhouette constraints. (a) For a silhouette consistent shape at least one voxel
along a visual ray through a silhouette pixel is occupied, whereas all voxels along
a ray through a non-silhouette pixel are empty. The bold area on the image plane
indicates the outlines of the observed object and the shaded voxel is an occupied one
along the given viewing ray. (b) Multiview stereovision can be formulated as a convex
optimization problem, where silhouette constraints determine a convex domain (shaded
area) of admissible functions. Hence, global minimization is possible by using classical
techniques like gradient descent.

through a silhouette pixel should be occupied, whereas all voxels along a ray
determined by a non-silhouette pixel should be empty (see Fig. 2(a)).1

Due to the constraint that u is a binary-valued function, the minimization
problem (3) is non-convex (because the space of binary functions is non-convex).
By relaxing the binary constraint and allowing the function u to take on values
in the interval [0, 1], the optimization problem becomes that of minimizing a
convex functional over a bounded convex set (see Fig. 2(b)):

min
u∈D

∫
V

ρ(x) |∇u(x)| dx, (4)

where

D :=

⎧⎨
⎩u : V → [0, 1]

∣∣∣∣∣
∫

Rij
u(x) dRij ≥ 1 if j ∈ Si ∀i, j

∫
Rij

u(x) dRij = 0 if j /∈ Si ∀i, j

⎫⎬
⎭ (5)

is the set of continuous valued functions u which fulfill the silhouette constraints
for all images i and all rays j.

Proposition 1. The set D of all silhouette-consistent functions defined in (5)
forms a compact and convex set.

Proof. D is obviously compact, since it is determined by multiple restricting
inequalities.

In order to show the convexity, let u1, u2 ∈ D be two elements of D. Then
any convex combination u = αu1 + (1 − α)u2 with α ∈ [0, 1] is also an element
in D. In particular, u(x) ∈ [0, 1] for all x. Moreover,
1 Note that in case of imperfect silhouettes the above constraints can be applied only

to the areas of high confidence.
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∫
Rij

u dRij = α

∫
Rij

u1 dRij + (1 − α)
∫

Rij

u2 dRij ≥ 1 if j ∈ Si,

and similarly
∫

Rij

u dRij = α

∫
Rij

u1 dRij + (1 − α)
∫

Rij

u2 dRij = 0 if j /∈ Si.

Thus u ∈ D. �

The above statement implies that a global minimum u∗ of the relaxed prob-
lem (4) exists and can be computed, for example by a simple gradient descent
procedure or by more efficient numerical schemes. A necessary condition for a
minimum of (4) is stated by the associated Euler-Lagrange equation

0 = div
(

ρ
∇u

|∇u|
)

= ρ div
( ∇u

|∇u|
)

+ 〈∇ρ,
∇u

|∇u| 〉. (6)

A numerical solution to this partial differential equation within the domain of
admissible functions specified by the convex constraints in (4) will be detailed
in Section 4.

Since we are interested in minimizers of the non-convex binary labeling prob-
lem (3), a straightforward methodology is to threshold the solution of the convex
problem appropriately. Although this will not guarantee finding the global min-
imum of (3), the proposed strategy entails a series of advantages compared to
classical local optimization techniques. Intuitively, extending the set of admissi-
ble functions, computing the global minimum over this domain and subsequently
projecting to the nearest point within the original set is expected to give a more
accurate estimate than a simple gradient descent procedure for smooth function-
als. In particular, this approach always gives an upper bound for the energetic
deviation of the computed solution from the global minimum.

Proposition 2. Let u∗ be a minimizer of (4) and let D′ ⊂ D be the set of
binary silhouette-consistent functions. Let u′ ∈ D′ be the (global) minimum of
(3) and ũ the solution obtained with the above procedure. Then, a bound γ(u�, ũ)
exists such that

E(ũ) − E(u′) � γ(u�, ũ).

Proof. The claim follows directly from the construction of the approach:

E(ũ) − E(u′) � E(ũ) − E(u�) =: γ(u�, ũ).

The inequality is due to E(u�) � E(u′), since D′ ⊂ D. �

The projection ũ ∈ D′ of a minimizer u∗ onto D′ can be computed by simple
thresholding

ũ(x) =
{

1, if u∗(x) ≥ μ
0, otherwise , (7)
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where

μ = min
{(

min
i∈{1,...,n},j∈Si

max
x∈Rij

u∗(x)
)

, 0.5
}

. (8)

This threshold μ provides the closest silhouette-consistent binary function to the
solution of the relaxed problem.

Proposition 3. Thereconstructedsurfaceexactly fulfills all silhouetteconstraints,
i.e. ũ ∈ D′.

Proof. Let Rpq be a given ray. For q /∈ Sp the silhouette constraint is fulfilled for
any threshold μ ∈ (0, 1), since the labels ũ(x) of all voxels x along the respective
ray are 0. For q ∈ Sp, we have:

μ ≤ min
i∈{1,...,n},j∈Si

max
x∈Rij

u∗(x) ≤ max
x∈Rpq

u∗(x).

This implies ∃x ∈ Rpq : u∗(x) ≥ μ and hence ∃x ∈ Rpq : ũ(x) = 1. �

Thus, the proposed methodology has the following advantages:

– It allows to incorporate exact silhouette constraints without making prema-
ture hard decisions about voxel occupancy along each viewing ray passing
through a silhouette pixel.

– It does not depend on initialization, since the relaxed functional is optimized
globally.

– It leads to a simple and tractable numerical scheme, which does not rely on
a locally estimated surface orientation, and thus does not introduce a bias
near the visual hull boundary.

All these benefits will be investigated in the experimental section.

4 Implementation

This section will give more details on the implementation of the proposed ap-
proach.

4.1 Photoconsistency Estimation

In this paper, we propose a novel strategy for integration of silhouette and stereo
information. The presented method operates on a precomputed photoconsistency
map ρ : V → [0, 1] and is independent of its particular implementation. To vali-
date its concept, we used the voting scheme proposed in [14] for photoconsistency
computation. The choice of this technique was motivated by its robustness even
without explicit visibility estimation and increased accuracy compared to tradi-
tional methods. See [14] for more details.
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4.2 Constraint Realization

The minimization of (4) should be performed within the specified domain of
admissible functions. To this end, one has to enforce the fulfillment of all con-
straints during the optimization process. A straightforward way to achieve this
is to project the current estimate after each iteration to the next point in the
restricted domain. For the first constraint in (4) this corresponds to just clipping
values lying outside of the interval [0, 1]. The last constraint could be realized by
starting with the visual hull as initialization (1 if the voxel is part of the visual
hull and 0 otherwise) and keeping function values fixed outside of it. Since (4) is
optimized globally, the initial guess has no impact on the result but only on the
number of iterations needed until convergence. However, the second constraint
in (4) requires more efforts. It states that the sum of the function values along
each visual ray passing through a silhouette pixel should be at least 1. If this
requirement is violated, the values of all voxels along the ray lying within the
visual hull should be uniformly increased. Note that enforcing this constraint
in a different order will generally produce a different result. However, when the
evolution step is small enough, this issue is not crucial and can be ignored. In
particular, the realization of this constraint can be done in parallel. In order
to avoid computations of ray-volume intersections any time the constraint is
checked, one can compute the set of relevant voxels to each viewing ray in a pre-
processing step and store them in lists. However, the size of this data structure
could grow significantly when the resolution of input images is high. For this
reason, in our implementation we stored only the first and last voxel along each
ray. Another important issue when using constraints is the frequency of enforcing
them. In our implementation, we achieved a stable behavior when applying the
first constraint after each optimization iteration and the silhouette constraints
after each 10 iterations.

4.3 Linearization and Fixed-Point Iteration

In order to solve (6), we suggest to use a fixed point iteration scheme that
transforms the nonlinear system into a sequence of linear systems. These can be
efficiently solved with an iterative solver like successive over-relaxation (SOR).

The only source of nonlinearity in (6) is the diffusivity g := ρ
|∇u| . Starting

with an initialization u0, we can compute g and keep it constant. For constant
g, (6) is linear and discretization yields a linear system of equations, which we
solve with the SOR method. This means, we iteratively compute an update of
u at voxel i by

ul,k+1
i = (1 − ω)ul,k

i + ω

∑
j∈N (i),j<i

gl
i∼ju

l,k+1
j +

∑
j∈N (i),j>i

gl
i∼ju

l,k
j

∑
j∈N (i)

gl
i∼j

, (9)

where N (i) denotes the 6-neighborhood of i. Finally, gi∼j denotes the diffusivity
between voxel i and its neighbor j. It is defined as
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gl
i∼j :=

gl
i + gl

j

2
, gl

i :=
ρi√

|∇ul
i|2 + ε2

, (10)

where ε := 0.001 is a small constant that prevents the diffusivity to become
infinite when |∇ul

i|2 = 0 and |∇ul
i|2 is approximated by standard central differ-

ences. The over-relaxation parameter ω has to be chosen in the interval (0, 2)
for the method to converge. The optimal value depends on the linear system to
be solved. Empirically, for the specific problem at hand, we obtained a stable
behavior for ω = 1.5. After the linear solver yields a sufficiently good approxi-
mation (we iterated for k = 1, ..., 10), one can update the diffusivities and solve
the next linear system. Iterations are stopped as soon as the energy decay in one
iteration is in the area of number precision.

5 Experimental Results

We validate the proposed approach on a scene of a head statue with complex
reflection properties containing thin structures (the pedestal); see Fig. 32. Scenes
of this type are a known challenge for variational stereo-based methods due to
the violation of the Lambertian assumption and the presence of a regularizer,
which introduces a bias towards shapes with small area. In particular, we imple-
mented two classical paradigms in multiview stereovision: a weighted minimal
surface formulation with a ballooning constraint [12] and a stereo propagat-
ing scheme [21,22]. The first method produces clear oversmoothing effects at
concavities and small-scale structures. The second approach retrieves shape in-
dentations but also leads to erroneous carving at thin parts and specularities.
In contrast, the introduced technique produces accurate reconstructions of thin
structures (the pedestal) as well as concave areas by incorporating silhouette
constraints in the optimization process. Note that all three models are based on
a classical minimal surface formulation but use different methodologies to avoid
the empty surface as a solution. Note also that all three methods use silhouette
information to restrict the ballooning, for initialization or to constrain the do-
main of admissible functions. Fig. 4 shows intermediate steps in the evolution
process of the proposed approach. Although global minimization is used, which
makes the choice of the initial guess irrelevant, we initialized with the visual hull
to emphasize the basic difference of our method to classical local optimization
procedures. Usually, local minimization techniques use the surface orientation to
identify locations to deform the current shape in order to minimize the result-
ing reprojection error. However, this could lead to instabilities and introduce a
bias near the visual hull boundary by involving surface points beyond the con-
tour generator. In contrast, the introduced method recovers shape indentations
effortlessly, while retaining silhouette alignment during the optimization process.

Fig. 5 shows a comparison between the proposed method and the approach
of [19] on an image sequence of a statue of a Greek goddess. Note the visible
2 The image sequences used in Figures 3 and 7 will be made available at http://www-

cvpr.iai.uni-bonn.de/data/
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multiview stereo with a ballooning constraint

spatial propagation of stereo information

proposed approach

Fig. 3. Head sequence. First row: 3 of 33 input images of resolution 1024×768. Second
row: Multiple views of the reconstruction with a model based on the combination of
multiview stereo with a ballooning constraint [12]. Third row: Multiple views of the
reconstruction obtained with a more elaborate model based on spatial propagation of
stereo information [21,22]. Fourth row: Multiple views of the reconstruction with the
proposed approach. While both methods fail to recover the pedestal of the statue due to
oversmoothing effects or erroneous carving, the proposed approach recovers accurately
all relevant details.
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Fig. 4. Minimization process. Surface evolution starting from the visual hull, obtained
by projecting the current estimate onto the original domain. Note that the presented
method is able to generate accurate shapes starting from this initialization, since it
does not take the local surface orientation into account.

reconstruction of [19]

proposed approach

Fig. 5. Hygia sequence. 3 of 36 input images of resolution 2008 × 3040 and multiple
views of the reconstructed surface compared to the reconstruction of [19]. Our result
exhibits a higher grade of smoothness, while recovering surface details more accurately
(for example the face and the creases of the cloth). Note that even the legs of the statue
are reconstructed.

improvements of our reconstruction in the area of the face and the creases of the
cloth. Note that even the legs of the statue are recovered. On the other hand,
however, image noise is suppressed by increasing the grade of surface smoothness.

Fig. 6 and 7 illustrate two additional challenging image sequences. The first
one is publicly available and captures a figurine of an ancient warrior. See
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Fig. 6. Warrior sequence. 2 of 24 input images of resolution 1600 × 1600 and multiple
views of the reconstructed surface. Note that thin structures (for example the handle
of the hammer) as well as concavities (for example at the chest) are reconstructed
accurately.

Fig. 7. Sow sequence. First row: 3 of 27 input images of resolution 1024× 768. Second
row: Multiple views of the reconstructed surface. Note the accurately reconstructed
tits.

http://www-cvr.ai.uiuc.edu/ yfurukaw/research/mview/index.html for the data
set including a reconstruction with the approach of [15]. Our result exhibits a
high grade of smoothness, while preserving all fine geometric details. Similarly,
the proposed approach generates a high-quality reconstruction of the sow fig-
urine in Fig. 7 (see the accurately recovered tits). It is important to note that
the absence of texture results in a minimal surface fulfilling silhouette consis-
tency being generated, which allows to restore also homogeneous objects.

Apart from robustness, another crucial issue for a silhouette and stereo inte-
gration approach is the computational time needed. To this end, we used a GPU
implementation of the presented method, where the SOR optimization in a red-
black strategy as well as the imposed silhouette constraints run on the GPU.
On a PC with 2.8 GHz and 4 GB of main memory, equipped with a NVIDIA
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GeForce 8800 GTX graphics card, we measured computational times in the range
of 30-60 seconds for all demonstrated experiments. Note that photoconsistency
estimation is not included in these runtimes.

6 Conclusion

We proposed a novel framework for integrating silhouette and stereo information
in 3D reconstruction from multiple images. The key idea is to cast multiview
stereovision as a convex variational problem and to impose exact silhouette con-
straints by restricting the domain of feasible functions. Relaxation of the result-
ing formulation leads to the minimization of a convex functional over the convex
set of silhouette-consistent functions, which can be performed in a globally opti-
mal manner using classical techniques. A solution of the original problem is ob-
tained by projecting the computed minimizer onto the corresponding restricted
domain. In contrast to classical techniques for silhouette and stereo integra-
tion, it does leads to a more robust and tractable numerical scheme by avoiding
hard decisions about voxel occupancy and removing the bias near the visual
hull boundary. The proposed approach allows to compute accurate silhouette-
consistent reconstructions for challenging real-world problems in less than one
minute.
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