
Towards Illumination-invariant 3D Reconstruction using ToF RGB-D Cameras

Christian Kerl1, Mohamed Souiai1, Jürgen Sturm2, and Daniel Cremers1

1Technische Universität München, {christian.kerl,mohamed.souiai,cremers}@in.tum.de
2metaio GmbH, juergen.sturm@metaio.com

Abstract

Creating textured 3D scans of indoor environments has
experienced a large boost with the advent of cheap com-
modity depth sensors. However, the quality of the acquired
3D models is often impaired by color seams in the re-
construction due to varying illumination (e.g., shadows or
highlights) and object surfaces whose brightness and color
vary with the viewpoint of the camera. In this paper, we
propose a direct and simple method to estimate the pure
albedo of the texture, which allows us to remove illumina-
tion effects from IR and color images. Our approach first
computes the illumination-independent albedo in the IR do-
main, which we subsequently transfer to the color albedo.
As shadows and highlights lead to over- and underexposed
image regions with little or no color information, we apply
an advanced optimization scheme to infer color informa-
tion in the color albedo from neighboring image regions.
We demonstrate the applicability of our approach to vari-
ous real-world scenes.

1. Introduction
Novel depth sensors have recently led to many novel al-

gorithms for the 3D reconstruction of objects, persons, and
indoor environments. KinectFusion [15] demonstrated that
3D reconstruction was feasible in real-time on commodity
hardware. Shortly after, the original approach was extended
to allow for texture estimation [17]. However, most ap-
proaches are prone to color seams in the reconstruction due
to variations in illumination. As these seams are partially
the result of auto-exposure on the camera, their influence
can be reduced by jointly estimating shutter and gain from
the input images [12]. However, most natural scenes ex-
hibit shadows and highlights due to non-uniform scene illu-
mination which then also becomes part of the texture of the
3D model. For many applications, like object classification,
augmented reality, and image-based remodelling it is desir-
able to remove these illumination effects completely from

(a) Color image C (b) Recovered albedo image U

(c) Infrared image I (d) Depth image Z

Figure 1: Complex real world illumination introduces artifacts in
the 3D reconstruction of textured indoor scenes. In this paper,
we propose a method that allows to recover an illumination inde-
pendent albedo texture. (a) input color image,(b) estimated color
albedo image, (c) input infrared and (d) depth image from ToF
camera.

the 3D reconstruction. An illumination independent model
facilitates scene re-lighting and the addition or removal of
objects without interfering shadows.

When the light sources in a scene are unknown, the re-
moval of shades is computationally highly involved as next
to the 3D geometry of the room also the positions of all light
sources (including indirect light) have to be estimated. Ad-
ditionally, it is impossible to tell effects caused by lights and
shadows, and material properties apart. Therefore, previous
approaches rely on strong priors [1]. The problem can be
simplified if the scene geometry is known [5, 18].

We suggest to use even more information obtained by
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modern time-of-flight (ToF) cameras such as the Kinect One
from Microsoft. These provide next to the depth and color
image a so-called active image: This image only measures
the light emitted by the modulated light source of the ToF
camera, i.e., all ambient light of other light sources is al-
ready filtered out.

In this paper, we propose an approach to infer the in-
frared and color albedo from data of the Microsoft Kinect
One sensor. To this end, we characterize the noise of this
sensor both for the intesity images and the depth measure-
ments. In sum, the contributions of this paper are:

1. an illumination model for the IR light source of the
Kinect One,

2. a noise model for the infrared image and the depth im-
age of the Kinect One,

3. a method to estimate the IR albedo from infrared and
depth images,

4. a method to register and fuse multiple image frames
into a single keyframe to improve the quality of depth
maps and the IR albedo,

5. a method to transfer the IR albedo to color images,

6. a qualitative evaluation on several indoor scenes.

The result of our approach is an illumination-independent
estimate of the albedo of a scene, i.e., where shadows and
highlights from all light sources have been removed. With
this work, our goal is to pave the way for illumination-free
3D reconstructions of indoor spaces.

2. Related Work
Scene illumination and shading models have been inten-

sively studied in computer vision and computer graphics
[14]. Early work by Yu et al. [19] shows that it is possible
to accurately recover surface properties, if the scene geom-
etry, light sources and camera positions are known. Work
by Jachnik et al. [9] shows that it is possible to recover sur-
face properties and ambient illumination, if the geometry is
known and sufficient observations are obtained.

Another direction of research is concerned with a similar
problem called intrinsic image decomposition, which tries
to invert the image formation process and estimate depth,
illumination, and surface albedo [1]. As this is an ill-posed
problem strong priors and involved optimization algorithms
are required. Subsequently, other approaches tried to sim-
plify the problem by including scene geometry from RGB-
D cameras [1, 5]. Recently, Chen et al. proposed in addi-
tion to model shadows explicitly [18]. Similarly, we argue
to include even more information provided by ToF RGB-D
cameras.

ToF cameras have been studied for a while and applied to
different research problems. Foix et al. [7] give an overview
of the measurement principle of ToF cameras and com-
mon errors observed in their depth measurements. Kolb et
al. [11] provide a survey about the application areas. The
authors in [2, 6] use a similar shading model for active in-
frared light sources, but apply it to geometry refinement of
ToF and Kinect depth images.

Salamati et al. [16] propose to capture a color and an in-
frared image to detect and remove shadows. However they
use no active infrared illumination, but capture the ambient
infrared light.

In Section 3 we describe the camera system, the image
formation model and the noise characteristics. Section 4
details how we use the infrared camera to estimate the cam-
era motion and estimate an illumination free scene model in
the infrared spectrum. Afterwards Section 5 shows how to
employ the information from the infrared model to separate
illumination and color information in the visible light spec-
trum. Finally Section 6 gives a qualitative evaluation of our
approach on real world data.

3. ToF RGB-D Camera
An integral part of our approach is the use of a ToF-

based RGB-D camera, because it provides several advan-
tages. First, the infrared intensity image shows only illu-
mination effects due to the integrated light source. Further-
more, the infrared intensity image shows almost no shad-
ows, because the infrared camera and LEDs are mounted
close to eachother. These properties alllow us to efficiently
remove the illumination from the infrared image by mod-
eling the effects of the single light source. Furthermore,
the infrared intensity and depth images are perfectly time-
synchronized and registered.

Next we introduce the Kinect One RGB-D camera sys-
tem. Then we describe the image formation model. Af-
terwards, we present a noise characterization of the camera
system derived from empirical measurements.

3.1. Kinect One Camera

The Microsoft Kinect One consists of two cameras,
namely a standard color camera and a time-of-flight (ToF)
depth camera. The color camera has a resolution of 1920×
1080 and the infrared camera has a resolution of 512× 424
pixels.

The Kinect One provides for every frame a color image
C, a depth image Z at a framerate of 30 Hz, and — and this
is in contrast to the previous Kinect — a so-called active
infrared intensity image I. This active image captures only
the illumination induced by the modulated light source of
the Kinect One. All unmodulated light, i.e., such as day-
light or room light is filtered out by the sensor. The key
idea behind our approach is now as follows: As the active



(a) Diffuse term kd (b) Depth dependent attenuation
‖v‖−2

(c) Pixel dependent attenuation K (d) Infrared albedo A

Figure 2: Example of the shading model for the infrared intensity image in Figure 1c: (a) the diffuse component, (b) the depth dependent
attenuation term, (c) the calibrated, constant factor, and (d) the infrared albedo image calculated with (6).

image is only illuminated by a known light source, we can
reconstruct the albedo (or reflection coefficient) of all sur-
faces in the scene. Under the assumption that the albedo
in the IR spectrum is comparable to the albedo in the visi-
ble spectrum (RGB), we can remove shading from the color
image and thus create an illumination-free RGB image.

In the following we briefly describe the depth mea-
surement principle and the specific implementation of the
Kinect One. The working principle of ToF cameras is that
the device sends out amplitude modulated light and mea-
sures the reflected light at different position of the light
wave, i.e., different phases. From multiple measurements
one can derive three quantities: the signal amplitude, the
phase shift and the offset. The amplitude is the amount of
reflected light originating from the active light source. The
amplitude image is also called active image. The phase shift
is used to compute the depth of the scene. The offset not
only includes reflected light from the active source, but also
ambient light. The depth can only be computed up to an
ambiguity from the phase shift, because depending on the
wavelength, the same phase shift repeats for multiples of a
certain distance. This ambiguity can be resolved by using
multiple modulation frequencies and selecting the distance
on which all phase shifts agree.

Most popular ToF cameras use four measurements to
compute amplitude and phase shift [7]. In contrast, the
Kinect One only uses three measurements. Additionally,
it uses three different signal frequencies. Hence a single
amplitude and depth image pair are computed from 9 raw
measurement images. An additional 10th measurement is
acquired without any active illumination. The infrared cam-
era uses global shutter. Nevertheless, motion artifacts still
occur during fast motion, because the active and depth im-
age comprise 9 raw images captured at different time in-
stances. To acquire images, we use the Microsoft SDK, but
the free Linux driver also gives access to the intermediate
raw images.

3.2. Camera Model

We model both cameras using a standard pinhole cam-
era model, which describes the projection of 3D points to
2D pixel coordinates. Every pixel x is defined by its 2D
coordinates (x, y)T, while a 3D point p consists of three
coordinates (X,Y, Z)T. The projection function π relates
the pixel coordinates and the 3D coordinates of a point in
the camera coordinate system

x = π(p) =

(
Xfx
Z

+ ox,
Y fy
Z

+ oy

)T

(1)

where fx and fy are the focal length and ox and oy the pixel
coordinates of the camera center. Given a pixel x and its
depth measurement z = Z(x) we can reconstruct the cor-
responding 3D point by inverting the projection function π,
i.e.,

p = π−1(x, z) =

(
x− ox
fx

z,
y − oy
fy

z, z

)T

. (2)

As the color, infrared and depth images exhibit radial dis-
tortion, we apply a standard distortion model to undistort
them. Furthermore, we performed an extrinsic calibration
between the color and IR camera so that we can register the
color images to the infrared intensity and depth images.

In this section we established the relationship between
3D scene geometry and the depth measurements. Next we
describe how the infrared albedo of the scene is related to
the observed intensities.

3.3. Infrared Shading Model

Our goal is to specify a shading model, which describes
how the albedo A of a surface point p is related to the ob-
served infrared intensity I(x) in the active image. For this,
we assume the diffuse shading model, i.e.,

I(x) = kakdA(x) (3)



where kd is the diffuse term due to Lambert’s law, and ka is
a factor describing the light attenuation due to the distance
to the light source. Note this model only applies to diffuse
(Lambertian) surfaces, i.e., we currently do not model spec-
ularities. The diffuse term kd is defined as

kd = n · v

‖v‖
(4)

with n the surface normal and v the vector from the point to
the camera center. In our case, the camera center coincides
with the origin of the world coordinate system. Therefore,
we can set v = −p. For the attenuation term ka, we use

ka = ‖v‖−2K(x) (5)

where the first term is the standard light attenuation model
for a point light. It describes that the observed intensity
of a point decreases with the squared distance to the light
source. Note that we approximate the distance to the light
source with the distance to the camera center, because on
the Kinect One, the modulated light source and the ToF
sensor are only a few centimeters apart. From additional
experiments, we found that the infrared LEDs are not an
ideal point light source (i.e., uniform light in all directions).
Therefore, we introduce an additional per pixel factorK(x).
The factor accounts for this deviation and other intensity
changes introduced by the camera optics such as vignetting.
Note that this correction factor is fixed per pixel, because
the relative pose of the pixel and the light source never
changes.

Figure 2 illustrates the different components of the pro-
posed infrared shading model. Given an infrared intensity
image and a corresponding depth map we compute kd and
ka and solve (3) for A. The formula for each pixel is

A(x) =
I(x)

kdka
. (6)

To calibrate the pixel-wise factorsK, we need to observe
a scene with known albedo a. Therefore, we took a series of
N images of a white wall, for which we assume a constant
albedo value of a = 1. We fit a plane to every depth map
to obtain practically noise-free estimates of n and v. Sub-
sequently, we compute the coefficient K(x) for every pixel
x as the weighted average of the N normalized intensity
samples, i.e.,

K(x) =
1∑N

j=1 wj

N∑
j=1

wj
‖vj‖2

kd,j
Ij(x) (7)

wherewj is the inverse of the transformed intensity variance

wj =
k2
d,j

‖vj‖4 σ2
i,j

. (8)
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Figure 3: Empirical noise models and analytical fits for the vari-
ance of the infrared intensity (a) and depth values (b). Colors indi-
cate how often a certain variance was observed (dark blue: never,
red: often).

We give a definition for the intensity variance σ2
i in Sec-

tion 3.4. The same shading model was used for depth map
enhancement in [2].

3.4. Camera Noise Model

Different steps in our pipeline require an estimate of the
noise of the measured infrared intensity and depth values.
For both quantities, we assume a corruption by zero mean
Gaussian noise. To empirically determine the mean and
variance for the Kinect One sensor, we recorded sequences
of static scenes. The plot in Figure 3a shows the relation-
ship between the mean intensity and its variance σ2

i . The
variance in dark regions [0, 0.16] is almost constant, while
in brighter regions [0.16, 0.3], we observed a substantial in-
crease of up to a factor of 10. Note we only observed few
pixels above 0.3. Therefore, we decided to model the inten-
sity variance as follows:

σ2
i (i) =

{
0.7 · 10−5, if i < 0.16

0.8 · 10−4, otherwise
(9)

For the variance of the depth measurements, Frank et
al. [8] establish the relationship σ(x)2

z ∝ I(x)−2, i.e, the
variance of the depth measurements is inversely propor-
tional to the square of the measured intensity. We experi-
mentally verified this relationship. Figure 3a shows the dis-
tribution of the empirical depth variance w.r.t. the inverse
squared intensity. We use the following linear model to pre-
dict the depth variance σ2

z from the inverse squared intensity

σ2
z(i) = (0.0018i−2 + 0.1) · 10−5 m2. (10)

The red line in Figure 3b represents this model. Our model
is a conservative estimate of the true depth variance. We
found that the depth variance is higher than predicted for
i−2 ∈ [1, 39], which corresponds approximately to i ∈
[0.16, 1]. In this intensity interval we observed an increase
in the intensity variance as well. We attribute this to special
characteristics of the sensor.



4. Camera Motion Estimation and Fusion
We apply a dense, direct motion estimation algorithm

on the illumination free infrared and depth images, which
we obtain by inverting the previously detailed image for-
mation model. Once we know the camera motion, we fuse
multiple infrared albedo and depth images to reduce the
noise. For efficient fusion we represent the scene as a set
of keyframes. The following explanations describe our ap-
proach for one keyframe, but it can be easily extended to
multiple keyframes.

4.1. Camera Motion Estimation

To estimate the camera motion we use a dense, direct
image alignment approach, which minimizes the intensity
and depth error [10]. Instead of using the intensity image
provided by the color camera we use the infrared intensity
image. This has the advantage that the intensity and depth
image are time synchronized and spatially registered, which
improves the performance of the tracking algorithm. The
motion estimation algorithm assumes constant illumination,
which holds for the intensity image obtained with the color
camera, but not for the infrared image. Therefore, we nor-
malize each intensity image by inverting the shading model
using (6).

Note that for the normalization of a new infrared image,
we have to use the raw depth map because we do not know
the relative position to our fused world model yet. How-
ever, the noise of the raw depth map disturbs the normals,
from which the diffuse shading coefficient kd is computed.
Therefore, we exclude the diffuse coefficient kd in this nor-
malization step.

After the normalized infrared image has been computed,
we estimate the relative transformation T by minimizing
the following error over all pixels

E(T ) =

∫
Ω

w(x)e(x,T )TΣ−1
e e(x,T )dx. (11)

The error for one pixel comprises the intensity and depth
error

e(x,T ) =

(
I2(π(p′))
ka,2

− I1(x)
ka,1

Z2(π(p′))− [p′]Z

)
(12)

where
p′ = T π−1(x,Z1(x)) (13)

is the point p transformed into the view of the second cam-
era and [ · ]Z selects the Z coordinate of a point. Note that
we denote the image domain by Ω ⊂ R2. As π(p′) is non-
linear in the camera motion T , we apply a non-linear Gauss-
Newton method to find the minimum. Furthermore, the per
error weight wj and the error covariance matrix Σe are de-
rived from a robust, bivariate Student’s t-distribution and
estimated during the optimization of (11).

4.2. Albedo and Depth Map Fusion

We represent our 3D model as a set of keyframes simi-
lar to [10, 13]: Each keyframe comprises an infrared albedo
imageAkf, a depth image Zkf and a color image Ckf. For the
albedo and depth map we additionally store images Σz,kf
and Σa,kf containing a per-pixel variance estimate. We fuse
all raw infrared and depth images that we could success-
fully register to a keyframe, to obtain a denoised albedo and
depth image for each keyframe. Assuming the measure-
ment noise model presented in Section 3.4 the fusion for
both images can be performed efficiently using a weighted
average.

Given the keyframe depth image Zkf and the relative
transformation T to the current camera position we can
compute for every pixel x in the keyframe its corresponding
pixel coordinates x′ = π(p′) in the current camera using p′

from (13). With this relationship we can update our current
estimates of the infrared albedo Akf and the depth Zkf. The
per-pixel update for the keyframe depth image is

Ẑkf(x) =
Σ−1
z,kf(x)Zkf(x) + Σ−1

z,t (x
′)Zt(x′)

Σ̂−1
z,kf(x)

. (14)

The updated variance estimate is

Σ̂z,kf(x) =
(

Σ−1
z,kf(x) + Σ−1

z,t (x
′)
)−1

. (15)

We calculate the variance of the current depth image
Σz,t according to the noise model (10), i.e., Σz,t(x) =
σ2
z (It(x)). We only update the depth estimate, if the fol-

lowing chi-square test is successful

0.5
(
Zkf(x)−Zt(x′)

)2
Σ−1
z,kf(x) + Σ−1

z,t (x
′)

< 10.83 (16)

The value 10.83 corresponds to 99.9% confidence that both
measurements belong to the same distribution. This allows
us to reject outliers caused by occlusions or sensor failures.
In practice we warp Zt with T−1 to the keyframe instead of
using the inverse warping described by (13). The forward
warping is efficiently done using a hardware-accelerated
rendering pipeline like OpenGL.

To update the infrared albedo image Akf we first have to
remove the shading effects from the current infrared image
to obtain the current albedo image At. Using the current
depth image for this task would introduce additional noise.
Therefore, we use the keyframe depth image. We warp all
depth values with a variance σ2

z < 0.0012 m2 to the view-
point of the current image. Afterwards, we invert the shad-
ing model with these warped depth values using (6) to ob-
tain At. Then we can look up the current albedo value and
its variance estimate for every pixel in the keyframe albedo



image and fuse them using the following weighted average
formula

Âkf(x) =
Σ−1
a,kf(x)Akf(x) + Σ−1

a,t(x
′)At(x′)

Σ̂−1
a,kf(x)

. (17)

Similar to (15) we update each infrared albedo variance es-
timate

Σ̂a,kf(x) =
(

Σ−1
a,kf(x) + Σ−1

a,t(x
′)
)−1

. (18)

We compute the current infrared albedo variance as:

Σa,t(x) =
σ2
i (I(x))

(kdka)2
. (19)

We employ the same chi-square test as in (16) to check
whether both pixels belong to the same surface point.

Note that in principle, the same strategy should apply to
fuse multiple color images into a single keyframe. In prac-
tice, however, we found that this degrades the quality of the
resulting color image more than it is enhanced. We believe
that this is due to the auto white balance feature, rolling
shutter effects and imprecise registration between the in-
frared and color camera. Therefore, in our current imple-
mentation, we keep for every keyframe the original color
image, but believe that these issues can be resolved when
better sensors become available in the near future.

5. Illumination Correction for Color Images
The main idea of our approach is to utilize the infrared

albedo imageA to remove the illumination effects from the
corresponding color image C. With this additional infor-
mation it should be easier to resolve the ambiguity inherent
in intrinsic decomposition approaches. With the infrared
albedo image we know which parts of the image have a
constant reflectance and we can use weaker priors. We as-
sume the albedo images are piecewise constant as is com-
monly done in intrinsic image decomposition [1]. There-
fore, the region boundaries in the color and infrared should
coincide. The corresponding, constant color albedo and in-
frared albedo values of a specific material are related by an
unknown, constant factor. However, this factor cannot be
recovered, because it depends on the material and the illu-
mination.

5.1. Color Shading Model

Our goal is to find the color albedo image U given a color
image C and a infrared albedo image A. Therefore, we use
the standard intrinsic image decomposition formulation:

C = S U , (20)

i.e. the observed color image C is composed of a shading
image S : Ω → R, which includes all illumination effects,

and the color albedo image U : Ω → R3. Furthermore, we
impose the following soft constraint

A = GU (21)

to couple the color and infrared albedo image. G(x) is a 1×
3 matrix, which combines the three color albedo values to a
single intensity value and is constant for the whole domain
Ω. We compute G as the average of the infrared albedo
imageA divided by the per channel average value of C. This
coupling leads to the same average value in the input color
image and the color albedo image.

We cast the problem of finding the color albedo image
U and the shading image S as a variational problem which
we solve using a state of the art first-order solver. The en-
ergy includes both constraints (20) and (21) and the total
variation of U and S in order to obtain spatially consistent
results.

E(U ,S) = λ

∫
Ω

‖C − SU‖22dx + γ

∫
Ω

‖A −GU‖2 dx

+

∫
Ω

g1(x)|∇U|+
∫

Ω

g2(x)|∇S|

s.t. U(x) ∈ [0, 1]3,S(x) ≥ 0 ∀x ∈ Ω (22)

Note that we utilize a weighted version of the total varia-
tion for both U and S. The weighting functions g1(x) =

exp
(
−|∇A(x)|

σ

)
and g2(x) = exp

(
−|∇L(x)|

σ

)
are depen-

dent on the the gradient of the albedo A and the gradient of
the luminance respectively. This ensures that the edges of
the obtained albedo image U and the shading image S are
aligned to the ones of the given images A and L. Addition-
ally, we constrain the values for the albedo color image U to
lie in the interval [0, 1] and assume that the shading function
U exhibits positive values in each pixel x ∈ Ω.

5.2. Optimization

Note that functional (22) is a difficult non-convex opti-
mization problem. However, as the energy is convex in U
and S, it can be solved using an alternating optimization
scheme where one minimizes the energy E(U ,S) alterna-
tively for U and S by respectively fixing the other variable.
The overall procedure is illustrated in Algorithm 1:

Still, each sub-problem is a huge constrained non-
smooth optimization problem which cannot be solved using
standard solvers (e.g. the interior point method). However,
there has been a lot of development in devising first-order
solvers which can deal with this class of problems. In par-
ticular, we employ the recent primal-dual optimization al-
gorithm [4, 3], which essentially performs a gradient ascent
in the dual variable and a gradient descent in the primal vari-
able. For this we need to rewrite energy (22) in its respective



Algorithm 1 Alternating Optimization for Joint Albedo-
Shading Estimation
Initialize U0 and S0

1: for k = 0, 1, 2, ... do
2: Uk+1 = argminU E(U ,Sk)
3: Sk+1 = argminS E(Uk+1,S)
4: end for

saddle point formulation in order to tackle it via the primal-
dual optimization. The primal-dual formulation of energy
(22) can be written as follows:

E(U ,S) = λ

∫
Ω

‖C − SU‖ dx + γ

∫
Ω

‖A −GU‖ dx

+ sup
P

∫
Ω

< P(x),∇U(x) > dx

+ sup
Q

∫
Ω

< Q(x),∇S(x) > dx

s.t. U(x) ∈ [0, 1]3,S(x) ≥ 0,

|P(x)| ≤ g1(x), |Q(x)| ≤ g2(x) ∀x ∈ Ω
(23)

Note that the auxiliary dual variables P : Ω → R6 and
Q : Ω → R2 stem from incorporating the dual formulation
of the total variation which is differentiable in both the dual
variables and in the primal variables U and S, in contrast to
the original formulation in (22). Using formulation (23) we
can tackle each sub-problem in Algorithm 1 by the primal-
dual algorithm described in [3]. For details on how to solve
the sub-problems we refer the reader to the supplementary
materials.

6. Evaluation
We provide a qualitative evaluation for the proposed

approach, because there exists no benchmark for intrinsic
image decomposition, which also includes infrared image
data. For the evaluation of our approach we recorded dif-
ferent scenes with the Kinect One. Figure 4 shows three
different indoor scenes. The left column is the input color
image. The second column shows the estimated infrared
albedo image. The third column displays the recoverd color
albedo image U and the right column is the shading image
S. The scene in the first row is illuminated by a ceiling lamp
and shows only little shadows. For the desk scenes in the
second and third row we added a table lamp, which intro-
duces bright highlights and harsh shadows. In principle our
algorithm can remove both effects and recovers plausible
color albedo images, e.g, on the red box, table, wall and t-
shirt. In case of imperfections in the infrared albedo image,
the approach introduces some artifacts. Furthermore, the

smoothing effect is too strong for the color albedo image.
We hope to address these problems through non-local reg-
ularizers. Additionally, regularization on a gamma mapped
color image should be beneficial, because small gradients in
shadowed areas are amplified and the smoothing term gets
less influence. Finally, our simple coupling of the color and
infrared albedo images causes sometimes too bright colors
in the resulting albedo image. We hope to resolve this issue
by better modeling the assumption that both albedo images
share piecewise constant regions.

In the supplementary material we show additional scenes
and also provide results computed with the algorithm of
Chen et al. [5]. This algorithm reports state of the art per-
formance for RGB-D intrinsic image decomposition only
utilizing color and depth information.

7. Conclusion
The goal of this work is to derive illumination-free color

images using commodity RGB-D sensors. As the Kinect
One is such as sensor, we first analyzed and modeled the
light source, ToF sensor and color camera of the Kinect
One. Given these models, we were able to compute the
infrared albedo from the active image and the depth im-
age. Subsequently, we demonstrated that the IR albedo can
in many cases be transferred to the color domain, so that
an illumination-free RGB image can be obtained. As re-
gions with strong highlights or shadows contain only lit-
tle color information, we apply a state-of-the-art regulariza-
tion scheme to infer color information from neighboring re-
gions. With this, we hope to contribute to the development
of methods for illumination-free 3D reconstructions in the
near future.
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1. Introduction
The detailed procedure for solving problem E(Uk,S) is illustrated in Algorithm 1. Note that the point-wise constraints in

Algorithm 1 Primal-Dual Solver for Sub-Problem argminU E(U ,Sk)

Input: Sk
Initialize U0

for n = 0, 1, 2, ... do
P(x)n+1 = Π1

[
P(x)n + τ∇Ũ(x)n

]
U(x)n+1 = Π2

[
U(x)n − σ

(
S(x)k(C(x)− S(x)kU(x)n) + G(x)T(A− G(x)U(x)n)−∇TP(x)n+1

)]
Ũ(x)n+1 = 2U(x)n+1 + U(x)n

end for

energy (23) are handled by orthogonal projectors Π1 and Π2 which reproject the primal and dual variables in the respective
constraint sets by the following clipping operations:

Π1 (P(x)) =
P(x)

max{1, |P(x)|}
(1)

and
Π2 (U(x)) = max{0,min{U(x), 1}}. (2)

The step sizes σ and τ can be chosen according to [1]. Furthermore the inner optimization problem is performed point-wise.
Hence the algorithm can be run in parallel for each pixel x ∈ Ω. The gradient operator ∇ is a linear operator and the ∇T

denotes its adjoint operator. Similarly the inner optimization problem E(Uk,S) for a fixed Uk can be solved as in Algorithm
2. Where Π3 is the orthogonal projector into the respective constraint sets i.e.:

Π3 (S(x)) = max{0,S(x)}. (3)

The gradient operator ∇ used in Algorithm 1 is a linear operator which calculates the derivatives point-wise and can be
written as follows:

∇ =


∇x

∇y

∇x

∇y

∇x

∇y

 . (4)
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Algorithm 2 Primal-Dual Solver for Sub-Problem argminS E(Uk,S)

Input: Uk

Initialize S0

for n = 0, 1, 2, ... do
Q(x)n+1 = Π1

[
Q(x)n + τ∇S̃(x)n

]
S(x)n+1 = Π3

[
S(x)n − σ

(
U(x)k(C(x)− S(x)nU(x)k)−∇TQ(x)n+1

)]
S̃(x)n+1 = 2S(x)n+1 + S(x)n

end for

It calculates for each channel the derivative in x and y direction. The differential operators∇x ∇y can be implemented using
a difference scheme of choice. In our implementation we use forward differences. Since S is a single channel image, the
gradient operator used in Algorithm 2 composes of a difference operator ∇x and an operator ∇y i.e: Which calculates for
each channel the derivative in x and y direction. The differential operators ∇x ∇y can be implemented using a difference
scheme of choice. In our implementation we use forward differences. Since S is a single channel image, the gradient operator
used in Algorithm 2 composes of a difference operator∇x and an operator∇y i.e.:

∇ =

[
∇x

∇y

]
. (5)

2. Evaluation
The following figures show additional results of our approach on real world scenes, which we recorded with a Kinect One.

For every figure we show the input color image C, the infrared albedo image A after fusion, our color albedo image U , and
our estimated shading image S. As comparison we provide the results of the approach of Chen et al. [2]. We compute these
results using their publicly available implementation.



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 1: Paper Figure 4 row 1

(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 2: Paper Figure 4 row 2



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 3: Paper Figure 4 row 3

(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 4: Same scene as Figure 1 with additional spot light.



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 5: Desk scene with different objects. Note: our approach better removes shadows from the wall behind the boxes.

(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 6: Desk scene



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 7: Chairs

(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 8: Chair



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 9: Chair



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 10: Desk scene. Note that our algorithm maintains details in the color albedo image U , which are not present in the
infrared albedo image A, e.g., text on printed paper.



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 11: Desk scene

(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 12: Desk scene



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 13: Stand



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 14: Shelf



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 15: Stand



(a) Color image C (b) Our color albedo image U (c) Color albedo image Chen et al. [2]

(d) Infrared albedo image A (e) Our shading image S (f) Shading image Chen et al. [2]

Figure 16: Book shelf
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