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Abstract

In this paper, we make two contributions. Firstly, we
replace the generic balloon constraints widely used in 3D
reconstruction by a more sophisticated data-dependent re-
gional term. The key idea is to propagate classical photo-
consistency along visual rays into regional values describ-
ing voxel probabilities for being inside or outside the ob-
served object. Secondly, we cast the optimization as one of
minimizing a convex functional. Therefore (up to visibility)
the reconstruction problem can be solved in a globally opti-
mal manner in a spatially continuous setting. Compared to
graph cut methods, this approach does not suffer from dis-
cretization artifacts and exhibits considerable reduction in
memory requirements. Experimental comparisons clearly
show the advantages of the proposed technique.

1. Introduction
Recovering the geometrical structure of a scene from

multiple views is one of the most fundamental and exten-
sively studied problems in computer vision with numerous
applications. Here we concentrate on algorithms operating
on calibrated images, where the projection from 3D world
coordinates to image coordinates is assumed to be known.
There are two major classes of techniques according to the
exploited information: shape from silhouettes and stereo.

In case of sparsely textured objects, silhouettes exhibit
the dominant image feature. Most of the silhouette-based
methods for reconstruction aim at approximating the visual
hull [13] of the imaged object. The visual hull of an object
can be described as the maximal shape that yields the same
silhouettes as the actual object for all views. The earliest at-
tempts use polyhedral [2], volumetric representations [15]
or local surface models [4]. In a completely new approach
[20] and [17] formulate an energy minimization framework
for 3D region segmentation from a collection of images of a

scene using level sets and graph cuts, respectively. The au-
thors couple the segmentations of each image through the
evolution of a single 3D surface rather than separate 2D
contours. This allows to impose regularization making their
method robust to outliers and erroneous camera calibration.
In [10] the robustness to noise is increased by incorporating
all available image information into a probabilistic frame-
work.

In fact silhouette-based methods cannot recover surface
concavities as these do not affect the silhouettes. In order to
reconstruct non-convex surface details, stereo-based tech-
niques exploiting texture information are required. Here,
one matches points or patches from different images that
correspond to the same point in the scene. The earliest al-
gorithms that incorporate a large number of views use carv-
ing techniques to obtain a volumetric representation of the
scene assuming Lambertian properties of the objects [12].
Others have suggested to guide a deformable surface model
by a measure based on photoconsistency between different
views toward a steady state utilizing meshes [7], level sets
[9], or graph cuts [14].

Some recent approaches use a fusion of silhouette con-
straints and photoconsistency; [5] combines them into a sin-
gle cost function; [8] and [18] use silhouette points to con-
strain the computed surface based on stereo information.
However, simultaneous use of silhouettes and photoconsis-
tency may introduce a bias in the reconstruction near the
visual hull. Thus, [19] proposed a two-phase approach. In
the first phase the visual hull is computed, which is then
refined in the second phase considering photoconsistency.

Most previous methods aiming at dense stereo-based 3D
reconstruction involve integration of photoconsistency over
the sought surface exploiting the similarity of the projec-
tions of points lying on it in images, where they are vis-
ible. Although local optimization methods can produce
high-quality reconstructions [9, 8], their robustness is lim-
ited, since they are vulnerable to local minima. On the other



hand, global optimization of this model delivers the empty
set as a solution [14]. Currently, this problem is approached
by using an artificial ballooning term [19, 18, 14]. It can
be seen as a prior that favors surfaces with larger volumes.
However, this prior has a decisive limitation: setting the
weighting of the expanding force to large values causes fill-
ing of concavities, whereas lower weighting leads to cut-
ting of thin protrusive structures. Therefore, in this paper,
we propose to replace the generic balloon constraint by a
more sophisticated data-dependent regional term, which is
obtained by propagating stereo information into the entire
3D space. This avoids the globally optimum solution to
be the empty set without introducing a bias towards larger
volumes. Upon a closer look, the presented model reveals
some similarities with [6], however in a different context.

As a second contribution, we cast the optimization as one
of minimizing a convex functional. Therefore (up to visi-
bility) the reconstruction problem can be solved in a glob-
ally optimal manner while having a spatially continuous set-
ting. The continuous formulation has two important advan-
tages compared to alternative discrete graph cut approaches.
Firstly, the solution is free of discretization artifacts. Sec-
ondly, the memory requirements are smaller allowing for
reconstructions at higher resolutions.

The paper is organized as follows. In the next section
the variational formulation is presented. Its conversion to a
convex optimization problem and efficient implementation
by SOR are explained in Section 3. In Section 4 experi-
mental results demonstrate in particular that the proposed
volumetric extension of stereo information compares favor-
ably to the traditional ballooning approach. We conclude
the paper with a brief summary in Section 5.

2. Variational Formulation

Let V ⊂ R3 be a volume, which contains the scene of
interest, and I1, . . . , In : Ω → R3 a collection of calibrated
color images with perspective projections π1, . . . , πn. We
are looking for some surface Ŝ ⊂ V that gives rise to these
images. According to a certain surface estimate S, all points
in V can be divided into two classes: lying inside S or be-
longing to the background, i.e. V = RS

obj ∪ RS
bck, where

RS
obj denotes the interior and RS

bck the exterior. Consider-
ing the given image content we can assign each point x ∈ V
a photoconsistency value ρ(x) ∈ [0, 1] describing the prob-
ability of a voxel for lying on the surface (figure 1(a)), based
on its projections onto the images, where it is visible. Note
that in the classical photoconsistency definition small values
correspond to photoconsistent points. In a similar manner,
we can compute values ρobj(x), ρbck(x) ∈ [0, 1] describing
probabilities of a point x to belong to RS

obj and RS
bck, re-

spectively. We will refer to these functions as interior and
exterior photoconsistency (figure 1(c)). Hence, we can for-

mulate the following energy minimization problem:

E(S) =
∫

RS
obj

ρobj(x) dx +
∫

RS
bck

ρbck(x) dx + ν

∫
S

ρ(x) dx

Ŝ = arg min
S⊂V

E(S).
(1)

The first two terms of the functional impose correct
subdivision of the volume into interior/exterior according
to the respective photoconsistency functions. The last term
acts as a constraint both for smoothness and photocon-
sistency by seeking the minimal surface with respect to
a Riemannian metric. Hence, it can be considered as a
weighted smoothness term. Note that the photoconsistency
functions may also depend on the orientation of the surface
estimate S in order to take distortion of the compared
image patches into account. This dependency is suppressed
here for simplicity.

In classical energy minimization methods using stereo,
the regional terms are omitted [9] or replaced by an arti-
ficial ballooning term in order to avoid the empty surface
as a solution [14] or to reconstruct protrusive details [19].
In the first case only local optimization is possible, since
the global minimum is the empty surface. In the second
case concavities are oversmoothed, since greater volumes
are preferred [18]. Clearly, the proposed model (1) is more
appropriate for global optimization, since it naturally over-
comes such limitations based on image observations only.
This is validated in the experimental section. In the fol-
lowing, we explain how the classical surface-based photo-
consistency measure can be used to define interior/exterior
photoconsistency.

Based on an initialization SI , computed by using [10],
we can define a signed distance function φ : V → R as the
Euclidean distance to the closest point on SI with negative
values inside and positive values outside SI . The distance
function allows to compute the normal vector at each voxel
x ∈ RSI

obj as Nx = ∇φ(x)
|∇φ(x)| . Additionally, it allows to per-

form efficient global visibility computations. In the follow-
ing global visibility is suppressed for simplicity. At a given
location x ∈ V a matching score of cameras i and j in terms
of normalized cross-correlations is defined as

C(x) =
1
N

∑
i

∑
j

NCC(Ii(πi(x)), Ij(πj(x))), (2)

where N denotes the number of relevant camera pairs. The
summation is performed only over front-facing cameras ac-
cording to the estimated normal direction Nx. That is, if
Vi(x) denotes the normalized viewing direction of cam-
era i, it is considered if arccos(Vj(x), Nx) ≤ γmax for
some angle γmax. We used γmax = 60◦ in our experi-
ments. The corresponding image patches are distorted us-
ing a local planar surface approximation as described in [9].
The normalized cross correlation measure was chosen due
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Figure 1. Volumetric propagation of photoconsistency. (a) Classical photoconsistency ρ for the ”bunny” data set in Figure 4. Dark values
correspond to consistent points. Photoconsistency is usually best for surface points. (b) Illustration of the proposed approach to spread
photoconsistency inside a volume. (c) Resulting regional photoconsistency ρbck.

to its invariance to additive and multiplicative illumination
changes. The resulting value between -1 and 1 is mapped to
the interval [0, 1] by applying

f(s) = 1− exp
(
−

tan(π
4 (s− 1))2

σ2

)
, (3)

as proposed in [19]. We used σ = 0.25 in our experi-
ments. Hence, the photoconsistency function can be written
as ρ(x) = f(C(x)).

The main difficulty in defining spatial likelihoods is the
fact that the state of each voxel in space (inside/outside
the object) is affected by potentially distant points. We
solve this problem by measuring photoconsistency along
visual rays exploiting the following property of silhouette-
consistent shapes:

Property: Let S be an arbitrary surface, which is
consistent with the silhouettes of a set of input images
I1, . . . , In. Then, each visual ray passing through a point
x in the interior of S intersects the real observed surface Ŝ
at least once.

If there exists a visual ray through a point x, which
does not intersect the real surface Ŝ, x does not project
within the silhouette of the respective image. Hence, this
point cannot lie in the interior of a silhouette-consistent
shape. Note that the above property is fulfilled for the
maximal consistent shape as well as for any subset of it.
This leads to the following idea. We can compute photo-
consistency along each visual ray and take the position,
where its maximum is reached, as a potential intersection
with the real surface Ŝ; see figure 1(b).

Based on this observation, we can convert classical pho-
toconsistency into interior/exterior photoconsistency. More
precisely, we consider all voxels x lying in the interior RSI

obj

of the surface SI , used as initialization. Let rj(x, t) be the
visual ray of camera j through voxel x, parametrized by t
starting at the camera position. Let tcur be the position of x
along the ray. We measure photoconsistency along the ray
according to another camera i:

Cj
i (x, t) = NCC(Ii(πi(rj(x, t))), Ij(πj(rj(x, t)))). (4)

Here, the computation of the NCC score is based on the
normal vector at x only, used to estimate image patch dis-
tortion. Note that the second term in (4) stays constant for
varying t, since points on the ray rj always project onto
the same location in image Ij . This formulation can be ex-
tended to multiple cameras:

Cj(x, t) =
m∑

i=1

wj
i (x)Cj

i (x, t). (5)

We sum only over neighboring cameras according to
the normalized viewing direction Vj(x) from x to cam-
era j. That is, camera i is excluded if αj

i (x) :=
arccos(Vi(x), Vj(x)) > αmax for some bounding angle
αmax. The weights wj

i are computed as

wj
i (x) =

αmax − αj
i (x)

m∑
k=1

αmax − αj
k(x)

(6)

in order to compensate for non-linear projective warping
and violations of the occlusion approximation. We set
αmax = 45◦ in our experiments. As mentioned above, we
determine the maximal photoconsistency along rj together
with the location, where it is reached:

Cj
max(x) = max

t
Cj(x, t)

tmax = arg max
t

Cj(x, t).
(7)

The sampling rate along the ray was set to the current vol-
ume resolution. Finally, we can define interior/exterior pho-
toconsistency according to ray rj as
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Figure 2. Continuous vs. discrete optimization. (a) A slice through the data volume. Increasing intensities denote regions with ρobj(x) <
ρbck(x), ρobj(x) > ρbck(x) and ρobj(x) = ρbck(x) respectively. Surface photoconsistency function ρ is constant throughout the volume.
(b) Reconstruction obtained with the continuous optimization technique. (c) Reconstruction computed by graph cuts. In contrast to the
graph cut solution, the proposed continuous optimization does not suffer from discretization artefacts.

ρj
obj(x) = H(tmax − tcur) · (1− f(Cj

max))
+ (1−H(tmax − tcur)) · f(Cj

max)
ρj

bck(x) = H(tmax − tcur) · f(Cj
max)

+ (1−H(tmax − tcur)) · (1− f(Cj
max)),

(8)

where H is the Heaviside function

H(z) =
{

1, if z ≥ 0
0, otherwise (9)

and f is defined in (3). Note that the computed values
depend on whether the maximal photoconsistency location
tmax lies before or behind the current voxel tcur. If for
example tmax < tcur, ρj

obj decreases and ρj
bck increases

with the maximal photoconsistency Cj
max accounting for

uncertainties because of mismatches. Averaging photocon-
sistency values according to single rays rj yields

ρobj(x) =
1
l

l∑
j=1

ρj
obj(x)

ρbck(x) =
1
l

l∑
j=1

ρj
bck(x).

(10)

In practice, only visual rays of front-facing cameras due
to the normal Nx are considered, as previously described.
Note that ρobj(x) + ρbck(x) = 1 for all x ∈ V . In case of
photometrically difficult scenes containing highlights and
shading effects a more sophisticated weighting could be
used. For example, the weight of each visual ray can be
chosen to be inversely proportional to the variance of the
photoconsistency values.

3. Continuous Global Optimization
A discrete version of energy (1) can be globally opti-

mized via graph cuts [11], provided the visibility of spa-
tial points is given. Instead of using graph cuts, however,
our optimization is based on a novel technique for find-
ing the global minimum of certain continuous energy func-
tionals. In [3], the authors show how certain binary non-
convex minimization problems can be transformed into con-
vex minimization problems and therefore be globally solved

by means of variational techniques. The method has been
applied so far in the context of image segmentation and de-
noising. In this work we adopt it for the minimization prob-
lem stated in (1).

Compared to graph cuts, the proposed technique does
not suffer from metrication errors while computing a glob-
ally optimal solution. This is emphasized by a synthetic
experiment shown in Figure 2. Both optimization methods
were applied on a sphere with a missing piece of data. At
such locations the difference between both models becomes
obvious. Some discretization artefacts in terms of blocky
structures are available in the graph cut reconstruction even
with a 26-neighborhood system. In contrast, the continuous
technique yields a nice, smooth continuation of the missing
part of the surface. In addition, the proposed optimization
method exhibits considerable reduction in memory require-
ments compared to graph cuts (in our implementation about
factor 20), which can be decisive when processing volumes
of high resolution.

3.1. Convex Formulation

In order to cast (1) as a convex optimization problem,
the surface S is represented implicitly by the characteristic
function u : V → {0, 1} of RS

bck, i. e. u = 1RS
bck

and
1 − u = 1RS

obj
. Hence, changes in the topology of S are

handled automatically without reparametrization. With the
implicit surface representation, we have the following con-
strained, non-convex energy functional equivalent to (1):

E(u) =
∫

V

(ρbck(x)− ρobj(x))u(x)dx + ν

∫
V

ρ(x)|∇uε|dx,

s. t. u ∈ {0, 1} , (11)

where uε is a smoothed version of u.
Due to the constraint that u is a binary function, the min-

imization problem (11) is non-convex (because the space of
binary functions is non-convex). However, when minimiz-
ing the total variation norm over all functions u : V → R
where also intermediate values can be taken, the values of
u(x) converge to ±∞ almost everywhere. By enforcing



0 ≤ u(x) ≤ 1 via a convex penalizer θ(u) := max{0, 2|u−
1
2 | − 1} one obtains the energy

E(u) =
∫

V

(ρbck(x)− ρobj(x))u(x)

+ νρ(x)|∇u|+ α θ(u(x)) dx,
(12)

where α has to be chosen sufficiently large in order to en-
sure that u does not leave the interval [0, 1]. Since this un-
constrained version of (11) is convex, it can be globally
minimized via standard variational methods. This mini-
mization already yields a binary function u almost every-
where. Moreover, as proven in [3], by applying almost any
threshold µ ∈ (0, 1), the resulting u will be a global min-
imizer of the non-convex functional (11). In our experi-
ments, we chose µ = 0.5, but we obtained virtually the
same results with µ ∈ [0.1, 0.9].

In summary, the optimization can be split into two steps:

1. Find a minimizer u of (12).

2. Threshold the result:
RS

obj = {x ∈ V | u(x) < µ for some µ ∈ (0, 1)}.

A necessary condition for a minimum of (12) is stated by
the associated Euler-Lagrange equation

0 = (ρbck − ρobj)− ν div
(

ρ
∇u

|∇u|

)
+ α θ′ε(u), (13)

where θε is a regularized version of the derivative of θ with
respect to its argument. Since (12) is convex, all minimiz-
ers are global minimizers of (12). For the application at
hand, this is an important property, as it avoids suboptimal
solutions of local optimization techniques, due to the spatial
jaggedness of the normalized cross correlation measure.

3.2. Implementation by SOR

Discretization of the Euler-Lagrange equation leads to
a sparse nonlinear system of equations. We suggest to
solve this nonlinear system by a fixed point iteration scheme
that transforms the nonlinear system into a sequence of lin-
ear systems. Those can be efficiently solved with iterative
solvers, such as Gauss-Seidel, successive over-relaxation
(SOR), or even multi-grid methods. Neglecting the term
αθ′ε(u), which can in practice be replaced by simply clip-
ping values of u that fall out of the interval [0, 1], the only
source of nonlinearity in (13) is the diffusivity g := 1

|∇u| .
Starting with an initialization u0 = 0.5, we can compute
g and keep it constant. For constant g, (13) yields a linear
system of equations, which we solve with SOR. This means,

we iteratively compute an update of u at voxel i by

ul,k+1
i = (1− ω)ul,k

i +

ω

ν
∑

j∈N (i),j<i

ρjg
l
i∼ju

l,k+1
j + ν

∑
j∈N (i),j>i

ρjg
l
i∼ju

l,k
j − bi

ν
∑

j∈N (i)

ρjgl
i∼j (14)

whereN (i) denotes the neighborhood of i, gi∼j denotes the
diffusivity between voxel i and its neighbor j, and the vec-
tor bi contains the constant part of (13) that does not depend
on u, i.e. the fidelity term bi = ρbck,i − ρobj,i. The over-
relaxation parameter ω has to be chosen in the interval (0, 2)
for SOR to converge. The optimal value depends on the lin-
ear system to be solved. Empirically we obtained the fastest
convergence rate for ω = 1.85. After being sufficiently
close to a fixed point ul, (we iterated for k = 1, ..., 10),
we update the diffusivities and solve the next linear system.
Iterations are stopped as soon as the energy decay in one
iteration is in the area of number precision.

4. Experiments
We applied our method on volumetric grids of about 15-

20 million voxels. Computation of the photoconsistency
functions and optimization of the surface were iterated for
taking the more accurate visibility estimate of the most re-
cent surface into account. In order to accelerate the ap-
proach, we used a multi-resolution scheme of 2-3 levels
and performed 1-2 iterations at each level. In addition,
the values of the photoconsistency functions at successive
levels were updated only locally in a small vicinity around
the current surface estimate. However, in contrast to some
banded graph cut techniques, the surface evolution is not lo-
cally bounded, since the local band is adapted if the surface
touches its boundary.

In figure 3 we show results of our approach, when ap-
plied to two publicly available data sets used for bench-
marking purposes [16]. The data sets contain 48 and 47
input images, respectively, with resolutions of 640 × 480.
Deep indentations such as the area around the legs of dino
or the back of temple, which exhibit a difficulty for some
previous globally optimal approaches, are reconstructed ac-
curately. A direct quantitative comparison in [1] reveals
that the proposed method is among the most accurate ap-
proaches.

Figure 4 depicts a comparison of the proposed approach
to the commonly used technique based on a ballooning term
[19, 18, 14]. To this end, the first two terms in (1) were re-
placed by a constant expanding term preferring larger vol-
umes. The range of expansion was restricted by the ini-
tial surface estimate based on image silhouettes. Whereas
the proposed approach based on propagating photoconsis-
tency achieves accurate reconstruction of protrusive parts
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Figure 3. Dino and temple sequences. First row, from left to right: (a) One of the input images. (b)(c)(d) Different views of the
reconstructed surface. Second row: (e) Visual hull reconstruction obtained by employing the technique in [10]. (f)(g)(h) Successively
refined reconstructions with increasing resolutions of the volume (643, 1283, and 2563 for dino, 64 × 96 × 48, 128 × 192 × 96, and
256× 384× 192 for temple). Note the accurate reconstruction of the concavities between the legs of dino and on the back of temple. For
a qualitative and quantitative comparison with other approaches see [1].



Figure 4. Bunny sequence. First row: Some of the input images (3 of 33) with a resolution of 640 × 480. Second row: Reconstruction
using the proposed approach. Third row: Reconstruction obtained when the first two terms in (1) are replaced by a ballooning force.
Clearly, propagating photoconsistency produces favorable results, while the ballooning force tends to oversmooth the surface.

(the ears) as well as indentations (at the legs), the same
method based on the ballooning force oversmooths both of
them, although the surface photoconsistency was strength-
ened by a large value for σ in (3) (σ = 0.5). Increasing the
weighting constant ν in (1) relative to the ballooning force
leads to more accurate reconstruction of surface concavities
but further cutting of protrusions. On the other hand, de-
creasing it preserves the protrusions but closes the concavi-
ties. Similar observations were reported in [19] and [18].

Finally, Figure 5 shows a reconstruction on an image se-
quence of 33 images with resolution of 640 × 480. The
images are challenging due to the absence of texture and
the highly detailed surface. Despite these difficulties the
reconstruction is accurate including deep concavities under
the chin and at the ears as well as small protrusive structures
like the nose.

5. Conclusion

In this paper a new variational model for 3D reconstruc-
tion from multiple views is presented. The formulation is

based on propagating surface photoconsistency in space,
which allows to replace currently used artificial ballooning
terms by regional data terms. This results in more accu-
rate reconstructions, especially at surface protrusions and
concavities, as demonstrated by experiments on real data
sets. Moreover, up to the visibility constraint, we find a con-
tinuous, globally optimal solution according to our energy
model.
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