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Abstract

Event cameras offer the capacity to asynchronously cap-
ture brightness changes with low latency, high temporal res-
olution, and high dynamic range. Deploying deep learning
methods for classification or other tasks to these sensors
typically requires large labeled datasets. Since the amount
of labeled event data is tiny compared to the bulk of labeled
RGB imagery, the progress of event-based vision has re-
mained limited. To reduce the dependency on labeled event
data, we introduce Masked Event Modeling (MEM), a self-
supervised pretraining framework for events. Our method
pretrains a neural network on unlabeled events, which can
originate from any event camera recording. Subsequently,
the pretrained model is finetuned on a downstream task
leading to an overall better performance while requiring
fewer labels. Our method outperforms the state-of-the-art
on N-ImageNet, N-Cars, and N-Caltechl01, increasing the
object classification accuracy on N-ImageNet by 7.96%.
We demonstrate that Masked Event Modeling is superior to
RGB-based pretraining on a real world dataset.

1. Introduction

Event cameras are promising imaging sensors for
robotics and virtual reality applications. Event cameras
contain independent pixels which trigger asynchronously
once the observed brightness changes by a threshold [19].
They offer advantageous properties such as high temporal
resolution, high dynamic range, low latency, and low power
consumption. In recent years, the sensor’s spatial resolu-
tion and signal-to-noise ratios have significantly improved,
and researchers are increasingly using it in various appli-
cations. Due to the camera’s different working principles,
event cameras enable applications previously inaccessible
for frame-based cameras, e.g. object classification in high-
speed autonomous driving settings or eye and hand-tracking
in low-power virtual reality systems.

The most successful frame-based approaches for high-
level computer vision tap into large labeled training
datasets. In fact, the remarkable progress in the field over
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Figure 1. Classification accuracy on N-Caltech101 [44] with lim-

ited labeled data. We compare our self-supervised pretraining
method (MEM) with a baseline. The original train set is split
into subsets of decreasing size (100%, 50%, 20%, and 10%).
(blue) MEM is pretrained on N-Caltech101 and uses the labeled
subsets for finetuning. (red) Our baseline, ViT-from-scratch, uses
the same architecture as MEM, however with a random weight ini-
tialization instead of pretrained weights. Both models have access
to the same data and labels during finetuning. MEM consistently
outperforms the ViT-from-scratch. The benefit of the proposed
self-supervised pretraining becomes increasingly pronounced for
tiny amounts of labeled data. The 10% subset only contains 650
samples for 101 classes.

the last decade can greatly be attributed to the availabil-
ity of large labeled datasets, as well as improved network
architectures with more parameters and increased compute
power [58].

While the event camera community can profit from many
advances made in the frame-based domain, progress is still
being held back by a lack of labeled event data [19,55], as
demonstrated by numerous approaches trying to solve this
problem [7, 13,27,41,45,59,62,68,72,73]. Even with re-



cently released large-scale datasets like N-ImageNet [32],
and N-EPIC-Kitchens [46], containing 1.3 million and 1
million event frames, all currently available event data still
only makes up a tiny fraction of all vision data [41]. The
need for larger datasets is amplified even more with the rise
of the vision transformer (ViT) architecture [16] since it of-
ten requires significantly more training data to achieve su-
perior performance over traditional CNNs [16]. However,
ViTs are, in principle, well-suited for event data, as they do
not make assumptions about a frame-like input structure but
operate on general input sequences of tokens.

One solution to counteract the dependency on enormous
labeled datasets is self-supervised pretraining. It has re-
cently shown promising results in the NLP domain with
BERT [14] as well as in the frame-based vision commu-
nity [3,4,8,9,23,26,30]. Self-supervised pretraining divides
training in two stages. In the first stage, a neural network
is pretrained without labels solving a pretext task. For ex-
ample, BERT performs pretraining on a large corpus of un-
labeled text by masking several words and predicting them
as the pretext task. In the second stage, the network is fine-
tuned on a downstream task. Using pretraining can result
in improved performance and often requires fewer epochs
and labels than training a network from scratch (with ran-
dom weight initialization). Fig. 1 visualizes the benefit of
pretraining.

We want to leverage the methodology of pretraining in
the event domain. Hence, we present Masked Event Mod-
eling (MEM), a method that performs self-supervised pre-
training on arbitrary event data recordings to alleviate the
need for labeled event data at a large scale. Our approach
is close to the recently proposed frame-based method BEIT
[3] and inspired by the multitude of proposed extensions
for other data modalities [2, 60, 63, 67]. After pretraining a
ViT with our framework and finetuneing it on a downstream
task, we consistently outperform all baselines from the lit-
erature.

The main contributions of this paper:

* We present the first framework for self-supervised pre-
training on event data. During pretraining, our method
does not require any labels or access to RGB image
data, which makes it applicable to any event recording.

* We set a new state-of-the-art accuracy for image classi-
fication on all the datasets we used. Using our method,
N-Imagenet surpassed the previous state-of-the-art by
+7.96%, N-Cars +1.49%, and N-Caltech101 +9.5% (or
+14% if using extra unlabeled event data).

* We show that the common practice of transferring
RGB pretrained weights to the event domain is not al-
ways optimal. For example, on the N-Cars dataset,
where the data originates from real-world record-
ings, we demonstrate that Masked Event Modeling

achieves better performance than RGB-based pretrain-
ing, which relies on labels from ImageNet [ 12].

* The code and pretraining training checkpoints will be
made available upon acceptance.

2. Related Work

This is the first work for self-supervised pretraining on
event data. We thus present related work which performs
self-supervised pretraining on frame-based data and meth-
ods that overcome the lack of annotated event data.

Self-supervised pretraining The idea of self-supervised
pretraining is to first train a network on an unlabeled dataset
by solving a pretext task [30] and then finetuning the net-
work on a downstream task. The pretext task is defined such
that the network learns basic visual features and intricacies
of the data. After pretraining, the network is finetuned on
a downstream task with a small labeled dataset in a super-
vised fashion. Examples of pretext tasks in vision are image
reconstruction from masked or transformed input patches
[1,26], re-ordering of image patches [43], or predicting pa-
rameters of image rotations [22]. Early self-supervised ap-
proaches focused on CNNs as summarized in the survey by
Jing et al. [30], whereas recently, a plethora of methods have
been proposed for ViT architectures [3, 10,26,31].

One notable framework for ViTs is BEIT [3], which was
largely inspired by the recent success of BERT [14] in the
NLP domain. Like BERT, the pretext task of BEIT masks
sections of the frame, intending to reconstruct these masked
patches. However, instead of directly predicting the pix-
els of the high-dimensional masked patches, BEIT predicts
visual tokens, which encode the semantic information of a
patch in a single vector.

While BEIT and related methods [15, 18,26,61,65,71]
essentially apply BERT-style pretraining onto images, sev-
eral extensions to different data modalities have recently
been proposed, e.g. Point-BERT [67] for point clouds,
BEVT [63], VIMPAC [60] for video, and MultiMAE [2]
for RGB images and depth or semantic maps. BEIT and
its related methods largely inspire our method. However,
in contrast to these methods, we investigate the proposed
BERT-style pretraining strategy for the first time on event
data. Ultimately, our method can be employed in domains
where standard RGB cameras fail, e.g., in high dynamic
range conditions or if high temporal resolution is required
in a downstream task.

Overcoming the lack of labeled event data Although
self-supervised pretraining has not been attempted for event
cameras, numerous other works have proposed solutions
against the lack of labeled events. Rebecq et al. [50] show
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Figure 2. Overview of Masked Event Modeling (MEM). The proposed method consists of a three-stage pipeline. () In the first stage, we

train a discrete variational autoencoder (dVAE) [47,

] to compress the event histograms (input) to a list of discrete visual tokens. Each

token — described by a fixed vector in the codebook — represents one input patch. The training objective in this stage is event histogram
reconstruction. (/1) In the second stage, we perform self-supervised pretraining of a ViT. The event histogram is divided into patches. We
mask 50% of these patches, and the ViT predicts their corresponding (masked) visual tokens, similar to BERT [14], and BEIT [14]. The
masked patches are replaced by a learnable embedding. Since the event tokenizer generates the ground truth, no labeling is needed. (/1) In
the final stage, the previously pretrained ViT can be finetuned on a downstream task. This is the only stage that requires labeled data.

that it is possible first to reconstruct grayscale frames from
events and then perform object classification using standard
frame-based networks. The drawback is increased compu-
tational demand and reconstruction artifacts, which can be
severe for the event-to-image conversion.

Simulations can be used to leverage frame-based datasets
by converting labeled frames to events. Model-based simu-
lators such as ESIM [48] and v2e [28], supervised networks
[20], or generative networks [72] can be used. The draw-
back of these methods is the large sim2real gap of the syn-
thetic events. Furthermore, the video-to-event conversion
only accurately simulates events with high framerate and
current synthetic events still lack accurate noise character-
istics [28].

Self-supervised training has been used to solve low-level
event vision tasks. Zhu et al. [73] perform self-supervised
learning of optical flow using events and images from a
DAVIS camera [0]. Their approach is limited to esti-
mating optical flow and requires a camera with access to
time-synchronized and pixel-aligned grayscale frames and
events. Parede-Vallés et al. [45] perform self-supervised in-
tensity reconstruction using a generative event model as-
suming photometric constancy. In contrast to these works,
we focus on the high-level object classification task, as
this is a problem where traditional deep learning with large
datasets can excel.

Zanardi et al. [68] use semi-supervised learning by start-
ing from a supervised RGB teacher network which transfers
its knowledge to an event-based student network. Similarly,
Hu et al. [27] use the features of a pretrained RGB network
as a backend and train a frontend network that translates
event inputs to feature space. Both approaches [27, 69] re-
quire synchronous recordings of events and frames.

Recently, Wang et al. [62] and Messikommer et al. [41]
proposed to leverage unpaired datasets of labeled frames
and unlabeled events. Both approaches transfer knowl-
edge from a powerful network in the RGB domain to the
event domain. Sun et al. [59] proposed a similar approach
designed explicitly for semantic segmentation. However,
these methods depend on labels in the image domain and
require both modalities” datasets to be captured in a similar
scenario, which is not applicable in many applications.

In contrast to the above methods, we propose a gen-
eral framework that performs self-supervised pretraining
on event data, requiring no additional labels and no corre-
sponding image data. In most applications, obtaining such
unlabeled event data is very easy, whereas generating labels
or accessing labeled image datasets from the same domain
can be very costly and is often not possible in practice.



3. Masked Event Modeling

To overcome the lack of labeled event data, we adapt
BERT-style pretraining to events. Masked Event Modeling
closely follows the method by Bao et al. [3]. The events are
preprocessed and then passed through the MEM pipeline,
consisting of three main stages (see Fig. 2). The first two
stages (dVAE and pretraining) operate on a potentially very
large unlabeled event dataset. In the finetuning stage, we
use the weights from the pretraining stage as initializa-
tion and train the neural network supervisedly on a target
dataset.

3.1. Event Processing

The raw event data is preprocessed to an event histogram
before entering the MEM pipeline, see Fig. 3 for examples.
Since an event camera asynchronously reports brightness
changes at a pixel, the sensor’s output is a stream of indi-
vidual events. Each event includes a polarity that indicates
an increase or decrease in the observed brightness. For a
moving camera and under constant illumination, brightness
changes mainly occur at edges in the image plane. To obtain
an image-like data structure with visible edges, we accu-
mulate the events separated by polarities into a two-channel
image H € RMW*2) ysing up to Npax_evs €vents. We per-
form various data augmentations on this event histogram,
which we detail in the supplementary material.

3.2. Discrete Variational Autoencoder

To reconstruct the masked event histograms during the
pretraining phase, we first have to reduce the model’s out-
put space. Directly predicting raw histogram values of input
patches would lead to a higher computational cost and can
cause overfitting on low-level visual details [60]. Instead,
we use visual tokens which summarize high-level semantic
information in a single vector per patch. Additionally, the
tokens are discrete and thus predicting a multi-modal distri-
bution over tokens is straight forward.

To do this, we employ a discrete variational autoencoder
(dVAE) following Ramesh et al. [47]. The essential idea is
that each input patch of size P, x P, is compressed to a
codebook vector z € R?, which summarizes the visual fea-
tures of the patch. Each codebook vector has a unique in-
dex, called a visual token, which is later predicted by the
ViT in the pretraining phase. Since the codebook is fixed
during pretraining, the visual token (a single number) is suf-
ficient to represent the semantic information of the patch.

The dVAE consists of three parts: the event tokenizer
(encoder), the codebook bottleneck Z € RN*9 and the
decoder (refer to phase I in Fig. 2). The event tokenizer
go(z | h) takes the full event histogram as input. Each in-
put patch h € R¥=*P4*2 j5s mapped to a latent codebook
vector z. The decoder pg (h | z) learns to recover the event
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Figure 3. Example histograms from the datasets used in this
work. In each row, we show three examples of N-Imagenet [32]
(first row), N-Caltech101 [44] (second row) and N-Cars [55] (third
row). Note that N-Cars is the only real event dataset and hence
features different event statistics and noise distribution than the
two other semi-synthetic dataset (refer Sec. 4 for details). Positive
events are visualized in red, negative events in blue.

patch given the visual tokens. The training objective can be
written as Eyq, (zjn) [l0g(ps (h | z))]. We place a uniform
prior on the token distribution. This corresponds to max-
imizing the evidence lower bound (ELBO [34,51]) of the
log-likelihood of p(h) [47]

zwqgﬂ(zlh)[log(m(h | 2))] — Dkrlge(z | h),pa(z)]. (1)

Due to the tokens being discrete, we employ the Gumbel
softmax relaxation technique [29, 39] for obtaining the gra-
dient (also used in related tasks [3,47,67]). We found that
using gradient clipping often leads to more stable training
when training dVAE on event histograms. We visualize the
decoded tokens in Fig. 5, which shows that the tokens cap-
ture visual features such as lines and wedges.

3.3. Pretraining

The goal of pretraining is to train the backbone archi-
tecture (in our case, a ViT [16]) on self-supervised inputs
for the network to gain an understanding of the data. First,
the event histogram is divided into patches, and 50% of the
patches are masked and replaced by a learnable mask em-
bedding. The partially masked input is then used to train the
pretraining network, which consists of the ViT and a tem-
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Figure 4. From left to right: We visualize the masked input his-
tograms, the reconstructions during pretraining, and the ground
truth, for N-Caltech101 [44] (top) and for N-Imagenet [32] (bot-
tom). Note how the ground truth can be recovered even if large
parts of the input to the ViT are masked. The ViT predicts the
tokens for all patches, which are then decoded into the predicted
event histogram by the decoder of the dVAE. Also note that these
visualizations are rendered from the test set.

porary Masked Event Modeling (MEM) layer (inspired by
[3], [14]). The MEM layer predicts the visual tokens z;m
of the masked patches h™™' during training. The training ob-
jective can be written as

max Z E [ Z log(pmem (2 | hM))], 2)

heD keM

where D is the dataset and pyeyv models the distribution of
the visual tokens given the masked patches h™™'. By infer-
ring the tokens only from the non-masked patches, the ViT
learns to model the semantic and spatial information of the
event histograms. We visualize the predictions of the ViT
on the masked event histogram in Fig. 4 on the test set .

3.4. Finetuning

In the last stage, we use the knowledge learned during
pretraining to bootstrap the learning of the labeled dataset.
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Figure 5. We visualize examples of decoded codebook vectors
with the codebook index 393, 422, 4248, 4752 and 7138. Notice
how each codebook index corresponds to a specific visual feature,
e.g. a wedge of positive and negative polarity in the first row (393),
or a diagonal red line in the third row (4428). Also note how the
codebook employs the polarity information. The codebook size is
8092. These visualizations are rendered from the test set.
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This is done by transferring the weights of the pretrained
network to initialize the ViT. Only the final MEM layer is
replaced by a task-specific layer. The dVAE is no longer
used. Since the ViT has learned to complete a partially
masked event histogram during pretraining, its weights can
already effectively process event data for high-level vision
tasks. Our method only requires labeled data when finetun-
ing on a specific task.

4. Experiments

We evaluate the proposed Masked Event Modeling on
object classification, a high-level vision task with estab-
lished benchmarks and well defined performance measures.
We report the top-1 classification accuracy on N-ImageNet

32], N-Caltech101 [44], and N-Cars [55]. We compare
our method for each dataset (i) to multiple baselines from
the literature and multiple of our baselines to investigate
Masked Event Modeling in more detail. (ii) We compare
MEM to training the same model with random weight ini-
tialization (ViT-from-scratch), and (iii) to supervisedly pre-
trained RGB-networks on ImageNet-1k and ImageNet-21k
[12,52] (ViT-1k, ViT-21k). For MEM and all three proposed
baseline methods (ViT-from-scratch, ViT-1k, and ViT-21k)
we use the same implementation and hence share the data
preprocessing. Please refer to the supplementary material
for more details, such as comprehensive hyperparameters
tables, train vs. test splits, and network architecture.



4.1. Object Classification
4.1.1 N-ImageNet

N-ImageNet [32] contains 1.78 million event streams
recorded with a 480 x 640 Samsung DVS-Gen3 [56]. The
event camera is moved in front of an LCD monitor, which
displays images from ImageNet-1k [12]. Hence it contains
1000 classes. It is the largest event camera dataset for object
classification. The second largest dataset ASL-DVS [5], is
an order of magnitude smaller and features only 24 classes.
N-ImageNet is a very challenging benchmark, as the best
architecture so far has only achieved 48.94%, which is sub-
stantially below the 90% accuracy currently achieved on
ImageNet-1k [66, 70].

In Tab. 1, we show that our proposed Masked Event
Modeling outperforms the baseline method N-Imnet-EST
[21] on N-ImageNet by +7.96%. Our baseline ViT-from-
scratch can not reach on-par performance with the state-of-
the-art because training a ViT on ImageNet is challenging
due to the issue of overfitting [57] and the huge amount of
computing required to reasonably sample the hyperparam-
eter space on this large dataset. This demonstrates that em-
ploying MEM pretraining is an effective way to boost the
performance for a very challenging event-based classifica-
tion task, where a naive hyperparameter search might be too
costly.

In the upper part of Tab. 1, which is colored in light gray,
we show that our baseline implementations ViT-1k and ViT-
21k achieve even better results. Note that the employed
checkpoints for ViT-1k and ViT-21k perform pretraining on
RGB ImageNet-1k and ImageNet-21k for 300 epochs (af-
ter an extensive hyperparameter search [57])!. Also note
that N-ImageNet is the conversion of ImageNet-1k to the
event modality’. Due to computational reasons, we only
perform pretraining on N-ImageNet for 75 epochs. We be-
lieve longer training and hyperparameter optimization could
further reduce the gap between RGB-based and event-only
pretraining.

4.1.2 N-Caltech101

Similar to N-ImageNet, Neuromorphic-Caltech101 [44]
features event streams recorded with an event camera mov-
ing in front of an LCD monitor while displaying images

IFurthermore, the baseline model ViT-21k has access to 14 million
samples from ImageNet-21k [52].

2Note that the employed event datasets in this work solely contain
grayscale events. Overall, RGB values are more information-rich than
events because they contain (high-frequency) texture, color information,
and detailed shading. Furthermore, events contain derivative-like informa-
tion (changes in brightness) and hence carry much less information. Addi-
tionally, events are only triggered upon brightness changes above or below
a certain threshold (usually 15-30% [ ). Therefore, events are only
a rough discretization of brightness value derivatives, which makes event-
based object classification very challenging.

Method Pretraining Top-1
Data Labels
ViT-1k ImNet-1k v 61.90
ViT-21k ImNet-21k v 65.00
N-Imnet-Hist [40] X X 47.73
N-Imnet-DiST [32] X X 48.43
N-Imnet-EST [21] X X 48.93
ViT-from-scratch X X 43.13
MEM (ours) X X 57.89

Table 1. Top-1 classification accuracies on N-ImageNet-1k [32].
MEM (ours) outperforms all baseline methods which only have
access to event information. By using pretrained RGB-ImageNet
checkpoints in the baseline methods ViT-1k and ViT-21, we show
that an even higher accuracy can be achieved. All baseline num-
bers are taken from the N-ImageNet paper [32].

Method Pretraining Top-1
Data Labels
HATS-Resnet [55] ImNet-1k v 70.00
EST [21] ImNet-1k v 81.70
DVS-VIiT [64] ImNet-21k v 83.00
E2VID [49] ImNet-1k v 86.60
EventDrop [24] ImNet-1k v 87.14
ACE-BET [36] ImNet-1k v 89.95
ViT-1k ImNet-1k v 92.06
ViT-21k ImNet-21k v 91.10
HATS [55] X X 64.20
AEGNN [54] X X 66.80
AsynNet [42] X X 74.50
EvS-S [35] X X 76.10
ViT-from-scratch X X 66.94
MEM (ours) X X 85.60
MEM-NImNet (ours)  NImNet-1k X 90.10

Table 2. Top-1 classification accuracies on N-Caltech101 [44].
MEM (ours) outperforms all baseline methods which only have
access to event information. However, MEM (ours) does not fully
close the gap between event-only and supervised RGB-based pre-
training methods. By pretraining our method self-supervisedly
on N-ImageNet-1k (MEM-NImNet), it outperforms all baselines
from the literature.

of the original RGB version Caltech101 [17]. It contains
8246 samples of 300 milliseconds duration, with 101 object
classes. It has been a well-established benchmark dataset in
the event literature, as demonstrated by the various baseline
methods.

In Tab. 2, we show that our method outperforms all
baselines which have access only to the labeled events of



N-Caltech101 [44], setting a new state-of-the-art accuracy
by +9.5% in this setting. While methods that have ac-
cess to RGB-based pretraining do generally perform bet-
ter than event-only methods on N-Caltech101 (upper part
in light-gray vs. lower part of Tab. 2), our work signifi-
cantly reduces this gap. If we grant our method access to
the unlabeled event data of N-ImageNet in the pretraining
stage, we show that this gap can be closed by setting a new
state-of-the-art. We do this by pretraining MEM on the N-
ImageNet [32] dataset for 75 epochs and finetuning MEM
using the labeled event data from the N-Caltech101 train-
ing set. This method, called MEM-NImNet in the last row
of Tab. 2, gives an additional performance boost of +4.5%.
The fact that MEM can leverage event data from a differ-
ent dataset demonstrates the generalization capability of our
method. Note that MEM-NImNet only requires labels from
N-Caltech101 and no labels from N-ImageNet, and solely
has access to the event modality.

MEM-NImNet is only marginally outperformed by our
baseline methods ViT-1k and ViT-21k. Our baseline ViT
implementations perform slightly better than other meth-
ods using RGB ImageNet pretraining. We believe that this
can be explained by the fact that we use modern data aug-
mentations such as RandAugment [11], a cosine learning
rate scheduler, and various regularization parameters which
are inspired by state-of-the-art image-based ViT training
schemes, in particular [57] and [40] (see supplementary ma-
terial for details).

4.1.3 N-Cars

Both the N-ImageNet and the N-Caltech101 dataset are
recorded by an event camera moving in front of a flat LCD
monitor. The screen displays static RGB pictures of the
original datasets under constant surrounding illumination.
Due to this artificial way of recording, it is difficult to judge
the performance of the evaluated methods on real event
camera streams. Therefore we also benchmark MEM on the
N-Cars dataset [55]. The N-Cars dataset contains 12,336
samples of the class car and 11,693 samples of the class
background, where each sample is 100 milliseconds long. It
was recorded by an event camera mounted behind the wind-
shield of a car in an urban environment.

One fundamental difference between N-Cars and the
other datasets is its different spatio-temporal event distri-
butions since events are triggered by passing through a dy-
namic 3D scene. N-ImageNet and N-Caltech101 only cap-
ture event data originating from a homography [25] with re-
spect to a flat LCD monitor. Furthermore, N-ImageNet and
N-Caltech101 use constant light. In contrast, events of N-
Cars are also triggered due to brightness changes in the out-
side world, e.g. by the blinking of a car’s rear lights or traf-

Method Pretraining Top-1
Data Labels
HATS-Resnet [55] ImNet-1k v 90.40
E2VID [49] ImNet-1k v 91.00
EST [21] ImNet-1k v 92.50
EventDrop [24] ImNet-1k v 95.50
ACE-BET [36] ImNet-1k v 97.06
ViT-1k ImNet-1k v 98.00
ViT-21k ImNet-21k v 96.24
HATS [55] X X 90.20
AsynNet [42] X X 94.40
EvS-S [35] X X 93.10
AEGNN [54] X X 94.50
ViT-from-scratch X X 92.71
MEM (ours) X X 98.55
MEM-NImNet (ours) NImNet-1k X 93.27

Table 3. Top-1 classification accuracies on N-Cars [55]. MEM
(ours) achieves a new state-of-the-art on this benchmark compared
to all baselines. Since N-Cars contains real event data and only
two classes, pretraining on ImageNet [12] or on N-ImageNet [32]
does not perform as well as for this dataset. Our method requires
much less data and compute since it only uses events from N-Cars.

fic lights®. Such fluctuations frequently occur in real-world
capturing conditions of N-Cars, as visualized in the last row
of Fig. 3.

In Tab. 3, we show that MEM pretrained only on N-Cars
outperforms all presented baselines, including the methods
which have access to RGB-based pretraining on ImageNet-
1k and ImageNet-21k. Compared to ACE-BET [36], we
raise the state-of-the-art by from 97.06% to 98.55%, an in-
crease by 1.49%. While supervised RGB-based pretrain-
ing on ImageNet does boost performance on N-ImageNet
(Tab. 1) and N-Caltech101 (Tab. 2), this effect is much
weaker on the real-world dataset N-Cars, as can be seen
by the similar performance of the upper and lower part of
Tab. 3. We believe that the main reason for this is the
different spatio-temporal event statistics of N-Cars com-
pared to the semi-artificial N-ImageNet and N-Caltech101
datasets. This can further be supported by our exper-
iment MEM-NImNet in the last row of Tab. 3, where
the pretraining dataset is not N-Cars but N-ImageNet-1k.
MEM-NImNet on N-Cars does not improve significantly
over ViT-from-scratch, even though it has access to much
more event data during pretraining. In contrast, pretrain-
ing on N-ImageNet achieves a remarkable finetuning per-
formance on N-Caltech101 (see MEM-NImNet Tab. 2).
This discrepancy clearly shows that performance improves

3 An event camera captures these high-frequency oscillations of artifi-
cial lights due to its high temporal resolution.



Ablation N-Caltech101 N-Cars
Full method 85.60 98.55
8x8 patches 80.81 96.13
32x32 patches 78.58 97.14
25% mask ratio 81.16 98.47
75% mask ratio 82.31 97.55
33% pretrain steps 81.17 95.16
No randAug [11] 80.67 98.14

Table 4. Ablation study of our method on N-Caltech101 [44] and
N-Cars [55]. Default values for the full method are: patch size 16,
masking ration 50% and using RandAugment [11]. The default
image size is 224 x 224.

if pretraining and finetuning data characteristics are simi-
lar. Since our method only requires a few labels on the fine-
tuning dataset (see Fig. 1) and does not rely on labels from
a different modality (e.g. images), we enable effective pre-
training by using only data of the specific target domain.

Furthermore, the experiments on N-Cars demonstrate
that the common practice in the community of simply trans-
ferring RGB-pretrained weights to the event domain is not
always the best option. This is especially the case if the tar-
get task entails specific event distributions which do not re-
semble RGB-based pretraining.

4.2. Masked Event Modeling with Few Labels

To demonstrate the usefulness of our method in appli-
cations where only very few labels are available, we train
MEM with increasingly smaller subsets of the dataset. We
split the original train set into mutually exclusive smaller
subsets (100%, 50%, 20%, and 10%), where each smaller
subset is contained in the larger one.

MEM is pretrained on the full N-Caltech101 [44] dataset
without labels. Afterwards, we finetune the pretrained
model on the smaller subsets. MEM is compared with
the ViT-from-scratch baseline. Both models have access
to the same data and labels during finetuning. In Fig. 1,
we show that MEM consistently outperforms the baseline
ViT-from-scratch. The benefit of MEM become increas-
ingly pronounced for tiny amounts of labeled data. Al-
though the 10% subset only contains 650 samples for 101
classes, MEM still achieves 66.78%, whereas ViT-from-
scratch drops to 36.67% on this split.

4.3. Ablation Study

We study our method by changing single components
and report the resulting top-1 accuracy on N-Cars [55] and
N-Caltech101 [44]. All other hyperparameters are kept
fixed during the ablation. We do not perform an ablation
study on N-ImageNet [ 1 6] for computational reasons. In the
first row of Tab. 4 we show the base accuracy of MEM using

only data from N-Cars and N-Caltech101, respectively. We
ablate the patch size of 16 x 16 by changing it to 8 x 8 and
to 32 x 32, respectively. The patch size influences the num-
ber of visual tokens predicted by the dVAE and the number
of patches used in the ViT. We find that the patch size of 16
x 16 yields the overall best result (on a default histogram
size of 224 x 224).

Secondly, we ablate the masking ratio of 50% by chang-
ing it to 25% and to 75%. We find that the masking ratio of
50% is near the optimum on N-Caltech101 and N-Cars.

Furthermore, we ablate the length of MEM pretraining
by only performing 33% of the pretraining steps. The sig-
nificant drop in performance on both datasets shows that
longer pretraining boosts MEM’s performance. Finally, we
ablate RandAugment [ 1] which results in a performance
drop. Our empirical observations on N-ImageNet confirm
that RandAugment is a very effective data augmentation for
event histograms. This finding, together with the good per-
formance of our baseline methods shows that using modern
training techniques is highly beneficial for event data and
can surpass event-specific methods.

5. Discussion

In a real application, obtaining large amounts of unla-
beled data from a domain similar to the target domain is of-
ten quite easy, whereas labeling event data is very tedious.
In fact, labeling event data is even more difficult than im-
ages because of the unconventional visual appearance of
this data as demonstrated by the examples in Fig. 3 and its
information deficit (see Sec. 4.1.1). One current limitations
of our work is that it does not fully take advantage of the
high temporal resolution of event cameras. We believe that
novel real-world datasets that allow classifying objects at
high speeds would first be required to evaluate such an ex-
tension of our method.

6. Conclusion

We introduce Masked Event Modeling, the first method
for self-supervised pretraining on event data. MEM raises
the state-of-the-art classification accuracies on the bench-
marks N-ImageNet by +7.96%, N-Cars by +1.49%, and N-
Caltech101 by +9.5% (compared with event-only methods),
without requiring labels for pretraining.

Our work reveals that the common practice of simply us-
ing an RGB-pretrained network and applying it to an event
vision task is not always optimal, especially if the finetuning
dataset has different data characteristics. MEM can solve
this problem by pretraining on the same type of data as the
finetuning dataset. We believe that Masked Event Model-
ing will inspire future work to further unlock the potential
of self-supervised pretraining and help to advance the field
of event-based computer vision.
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7. Convergence Curve

In Fig. 6 we show that finetuning convergence is much
quicker for MEM than ViT-from-scratch. This saves sig-
nificant computational power during finetuning to a spe-
cific classification task. Additionally, the final accuracy
value is higher than ViT-from-scratch (+18.66% gain on N-
Caltech101 [44]).

8. Token and Masked Prediction Visualizations

We visualize additional codebook vectors in Fig. 7. No-
tice how each codebook index corresponds to a specific vi-
sual feature. The most common codebook vectors are com-
pletely blank since the event histogram is sparsely popu-
lated with event count values. Due to redundancy, we do not
visualize these blank codebook vectors. Although all code-
book vectors are fixed, the decoder adapts each patch to its
surroundings to form a coherent image. Hence, the visual-
ized examples of a decoded codebook vector show slightly
different appearances (notice the visual variations along the
columns of Fig. 7). All visualized codebook vectors are ren-
dered from the N-Cars [55] test set. We also visualize ad-
ditional masked patch reconstructions during pretraining in
Fig. 8 for all datasets used in this work.

9. Implementation Details
9.1. ViT Architecture

We use the ViT-B16 architecture described in [16], using
12 layers, 12 heads, an embedding size of 768, and an MLP
size of 3072. The patch size is 16 x 16. During pretraining,
we use a temporary linear layer (MEM layer) at the output
of the ViT, which predicts the visual tokens. During fine-
tuning, we replace the MEM layer with a linear layer for
classification. We employ relative positional encoding [ 6].

9.2. Hyperparameters

We report the hyperparameters for training the dVAE in
Tab. 5, for pretraining in Tab. 6, and for finetuning in Tab. 7.
We use the official train and test splits for N-ImageNet [32]
and N-Cars [55]. For N-Caltech101 [44], we randomly split
the data into 80% training data and 20% test data.

9.3. Details on Event Preprocessing

After loading all events of a sample, we slice the events
in time by randomly selecting one contiguous batch of up
to 30,000 events. During training, we perform (i) a random
time flip, which amounts to reversing the polarity (p = 0.5),
(i1) a random horizontal flip (p = 0.5), (iii) a random shift
of x-coordinates by Az and y-coordinates Ay, where we
sample Az ~ U(—15,15) and Ay ~ U(—15,15).

We accumulate the augmented events into a two-channel
histogram. For N-Caltech101 and N-Cars, we resize the his-
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tograms to 224 x 224. For N-ImageNet, we first resize the
histogram to 256 x 341 and subsequently randomly crop the
image to 224 x 224. Next, we remove hotpixels, a type of
noise specific for event cameras, which manifests as contin-
uously triggering events [28]. We define a pixel as a hot-
pixel if its event count is ten standard deviations above the
mean value in the event batch. We normalize the histogram
to (0, 1). Lastly, during training, we perform RandAugment
[11] with magnitude 20 and 2 operations. All three stages
of MEM (dVAE, pretraining, and finetuning) share the same
preprocessing.
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Figure 6. Finetuning accuracy vs. epochs on N-Caltech101 [55]. With our proposed pretraining (MEM), the accuracy increases much
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faster. It reaches a higher final accuracy of 85.60% compared to finetuning without pretraining (ViT-from-scratch), where the final accuracy
is only 66.94%. Both the pretraining and the finetuning tasks use the entire N-Caltech101 train dataset.
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each codebook index corresponds to a specific visual feature, e.g., a red horizontal line at the bottom of the patch (4228) or a round mixture
of red and blue polarity (1964). The codebook size is 8092. These visualizations are rendered from the test set of N-Cars [55].
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Figure 8. Additional masked patch predictions. From left to right: We visualize the masked input histograms, the reconstructions during
pretraining, and the ground truth for N-Caltech101 [44] (top) and for N-Imagenet [32] (middle) and for N-Cars [55] (bottom). Note how
the ground truth can be recovered even if large parts of the input to the ViT are masked. The ViT predicts the tokens for all masked patches,
which are then decoded into the predicted event histogram by the decoder of the dVAE. These visualizations are rendered from the test set.
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Hyperparameter N-ImageNet [32] N-Caltech101 [44] N-Cars [55]

optimizer Adam [33] Adam [33] Adam [33]
optimizer momentum B1, P2 = (0.9,0.999) 51,82 =1(0.9,0.999) 1, B2 = (0.9,0.999)
learning rate le-3 2e-4 2e-4
learning rate schedule exponential (0.99) exponential (0.99) exponential (0.99)
learning rate layer decay 0.98 0.98 0.98

k1 weight le-10 le-10 le-10

batch size 512 192 192

grad clip le-2 le-2 le-2

epochs 50 300 300

Table 5. Hyperparameters for the dVAE.

Hyperparameter N-ImageNet [32] N-Caltech101 [44] N-Cars [55]
optimizer AdamW [38] AdamW [38] AdamW [38]
optimizer momentum 31, 82 = (0.9,0.95) (1,52 = (0.9,0.95) (1,82 = (0.9,0.95)
learning rate le-4 Se-4 3e-4
learning rate schedule cosine decay [37] cosine decay [37] cosine decay [37]
warmup steps 1000 1000 1000
weight decay 0.05 0.05 0.05

batch size 512 512 384

grad clip 30 30 30

epochs 75F 3000 1000*

Table 6. Hyperparameters for pretraining. " Cosine scheduler set for 300 epochs, but for computational reasons, only training for 75 epochs.
¥ Cosine scheduler set for 3000 epochs, but only training for 1000 epochs.

Hyperparameter N-ImageNet [32] N-Caltech101 [44] N-Cars [55]
optimizer AdamW [38] AdamW [38] AdamW [38]
optimizer momentum B1, P2 = (0.9,0.95) (1,82 =1(0.9,0.95) 1,52 = (0.9,0.95)
learning rate le-3 4e-3 Se-4
learning rate schedule cosine decay [37] cosine decay [37] cosine decay [37]
learning rate layer decay 0.65 0.65 0.65
warmup epochs 20 20 20
weight decay 0.3 0.05 0.05

drop path 0.1 0.1 0.1
dropout 0.0 0.1 0.1

batch size 1024 1024 1024

grad clip 30 30 30
epochs 200" 300 300

Table 7. Hyperparameters for finetuning. "Cosine scheduler set for 300 epochs, but for computational reasons, only finetuning for 200
epochs. We report the exponential moving average accuracy on N-Imagenet with a decay factor of 0.9999.
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