
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN
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Abstract

Humanoid robots comprise a high number of redundancy, which can be used to achieve
multiple goals in parallel. A hierarchy of tasks is often implemented in order to execute
them simultaneously. However, this emerges a high risk of (self-)collisions, where a reac-
tive and online collision avoidance has to be instantiated inside the hierarchy.

In this Master’s thesis, a solution for highly dynamic (self-)collision avoidance is pre-
sented. The collision avoidance is realized as an inequality constraint inside the Stack-
of-Tasks.

Our proposed (self-)collision avoidance is implemented for the quadratic programming
solver inside the Stack-of-Tasks. The alignment of linear constraints in form of a stack
enables an iterative solving progress with respect to priorities given to these constraints.
Hence the name, Stack-of-Tasks. The collision avoidance task is based on the closest point
pair of possible collisions between two body parts. To achieve a unique solution for the
closest point pair, a complete capsule decomposition for the robot model is created. The
pseudo convexity of capsules reduces the number of discontinuities and leads to a smooth
transition. The velocity along the unit-vector of these two points is limited by a threshold,
dependent on the corresponding distance. The projection of the Jacobian towards the col-
lision center point is reduced to zero if the inequality boundary is hit, thus disabling any
movement towards the collision center. The same method can be used for self-collision
avoidance as well as avoidance of external collision objects.

In order to keep the computational cost to a minimum, the dynamic graph inside the SoT is
exploited in a way, that only the necessary closest point pairs are recomputed. This implies
an efficient on-demand computation of the collision matrix. The self-collision is placed on
a high level inside the hierarchy to ensure a constant collision check. On the same hand,
the applied method allows a smooth execution of lower prioritized tasks of interest.
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Abstract - Deutsch

Humanoide Roboter besitzen eine Vielzahl von redundanten Aktuatoren, die benutzt wer-
den können, um mehrere Aufgaben parallel auszuführen. Dabei ist oft eine Hierarchie
zwischen diesen Aufgaben realisiert. Das gleichzeitige Ausführen von Zielpositionen birgt
jedoch die Gefahr von (Selbst-)Kollisionen. Das erfordert eine Kollisionsvermeidung in
Echtzeit innerhalb dieser Hierarchie.

In dieser Masterarbeit präsentieren wir eine vollständige Lösung für eine hoch-dynamische
(Selbst-)Kollisionsvermeidung. Diese ist realisiert als eine Ungleichheitsbedingung inner-
halb des Stack-of-Tasks.

Unsere vorgeschlagene Methode zur (Selbst-)Kollisionsvermeidung ist implementiert für
den Quadratic Program Solver innerhalb des Stack-of-Tasks. Die Anordnung der linearen
Bedingungen geschieht in Form eines Stacks, was eine iterative Lösung mit Respekt zu
den gegebenen Prioritäten erlaubt. Daher der Name Stack-of-Tasks. The Kollisionsvermei-
dung basiert auf der Berechnung der kürzesten Distanz zwischen zwei Kollisionsobjekten.
Um eine eindeutige Lösung für diese Distanz zu erzielen, schlagen wir eine Darstellung
des Roboterkollisionsmodells durch Kapseln vor. Die Pseudokonvenxität von Kapseln
verringert die möglichen Diskontinuitäten. Die Geschwindigkeit entlang des Einheitsvek-
tors der kürzesten Distanz is limitiert durch einen Schwellwert. Die Projektion der Ja-
cobianmatrix auf den Richtungsvektor wird auf Null reduziert, wenn der Grenzwert der
Ungleichheit erreicht ist. Die gleiche Methode kann für Selbstkollisions- als auch für ex-
terne Kollisionsvermeidung verwendet werden.

Um die Ausführungszeit minimal zu halten, wird der Dynamic Graph innerhalb des SoT
aufgenutzt um nur die notwendigen kürzesten Distanzen zu berechnen. Die Kollisionsver-
meidung besitzt eine hohe Priorität innerhalb der Hierarchie. Gleichzeitig erlaubt unsere
Methode eine reibungsfreie Ausführung von niedrig priorisierten Aufgaben.
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Part I.

Introduction and Theory
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CHAPTER 1

MOTIVATION

1.1. Problem Statement

Robot technology is constantly increasing as the performance of the used hardware com-
ponents enable highly complex software computations. State-of-the-art robots such as
REEM-C [51], Asimo [1], Hubo [19] and Atlas [8] indicate that humanoid robots are ca-
pable of achieving versatile goals in appropriate time. Videos such as this1 expose the re-
markable speed of kinematic capabilities. The dexterity and execution speed of humanoid

Figure 1.1.: State-of-the-art humanoid robots. From left: REEM-C, Asimo, Hubo, Atlas

robots thus encourage their integration into human environments. The idea of a robot ac-
companying a human in his daily life is becoming closer to practice. Complex tasks such as
cleaning, ironing clothes or acting as a personal assistant are no longer futuristic visionary
ideas, but already realizable at this time.

1http://www.youtube.com/watch?v=N_m56irWKeI
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1. Motivation

What follows is the necessity of addressing safety issues, which emerge as a consequence
of high execution velocities. Collisions with the robot environment as well as with the
robot themselves have to be stringently avoided at all times. This becomes non-trivial es-
pecially with versatile humanoid robots, as they might easily collide with themselves, due
to the redundant degrees of freedom (DOF) or the overlapping workspace of the attached
manipulators (hand to hand collision).

One way to handle collisions can be achieved by utilizing offline motion planners [31].
The complete scene is captured and an optimal solution without any collisions is planned.
Once the trajectory is found, it is executed on the robot [34]. In order to increase the
speed of this planning step, especially with respect to avoiding obstacles, various opti-
mization approaches are suggested. Rapidly-Exploring Random Trees (RRT) [30] or Kin-
odynamic Motion Planning by Interior-Exterior Cell Exploration (KPIECE) [53] are two
methods, which are widely integrated in current motion planning libraries [26]. Proba-
bilistic Roadmaps (PRM) [25] are equally efficient, when the complete scene is known a
priori. Probabilistic approaches [55] are generally used to find an optimal solution.

As the name offline planner suggests, the trajectory planning and collision avoidance occur
before the actual execution. Since the perception of the environment is still computational
expensive, it is not surprising that those approaches are less efficient in dynamic envi-
ronments. A fast-changing environment demands a highly reactive change of the current
trajectory, still avoiding any collisions.
Reactive collision avoidance algorithms try to overcome this issue. A first approach was
based on repulsive forces emitted by the obstacles [27]. Real time enabled collision avoid-
ance based on repulsive forces have been broadly used on humanoid robots [54] [59] [47].
An enhanced development of this approach has been examined by calculating the closest
point pairs between two collision objects and orient the repulsive force along the resulting
directional vector [9]. However, this implies a continuity of these calculated point pairs in
order to avoid singularities and the resulting high velocities on the robot actuators [14].

Since humanoid robots are highly over-actuated systems, their redundancy implies a null-
space optimization [4], in which multiple goals can be achieved simultaneously. Within
this, whole body motion control describes how to achieve a desired goal pose, utilizing all
available joints. However, since multiple goal tasks can conflict with each other, priority
levels are commonly used [16][35] and can be solved in a recursive hierarchical manner
[50]. We have therefore developed a method that ensures a collision avoidance on a high
priority, but equally provides a sufficiently large nullspace to execute lower priority tasks.

4



1.2. Goals of this thesis

1.2. Goals of this thesis

This work presents a complete solution for external as well as self-collision avoidance of
humanoid robots. The presented implementation is based on the proposed algorithm in
[52]. The collision avoidance is realized as an inequality constraint inside the Stack-of-
Tasks (SoT) [38], which serves as the base framework throughout this work. The SoT
provides a highly efficient solver for hierarchical quadratic programming, which allows
the execution of simultaneous goals in a whole body control manner. The algorithm in
[52] restricts any movement along the directional vector between two closest points. In
order to achieve a smooth trajectory of the closest point pair, we suggest a complete cap-
sule decomposition as the robot’s collision representation. The closest point pair is thus
calculated between two capsules in order to ensure a smooth continuation in time.
This work is developed on two humanoid robots from PAL Robotics S.L., namely REEM-H
and REEM-C. Since both robots are completely ROS based, the first goal is to integrate the
SoT inside the ROS environment.

As a summary, solutions for the following goals are presented:

• Integrate the SoT inside a ROS based environment to enable the execution on PAL
Robotics humanoid robots

• Assemble the robot collision model through a complete capsule decomposition to
allow a smooth and continuous calculation of a closest point pair

• Implement a collision avoidance task inside the SoT, utilizing the calculated point
pair to ensure no self-collision and to enable support for external collision avoidance.

1.3. Overview of this thesis

Part I of this work explains all the theoretical details, which are necessary for understand-
ing the concepts implemented in this work. After this introduction, chapter 2 introduces
the Stack-of-Tasks (SoT) from a theoretical point of view. We present background infor-
mation about how to specify tasks based on equality and inequality constraints inside a
quadratic program. Since the main objective of this thesis is the development of a collision
avoidance task, we dedicate chapter 3 to details on the implemented method.

Implementation details and practical experiments, conducted on the robot are presented in
part II. We briefly introduce the implementation environment in chapter 4, where we de-
scribe ROS control as the main control framework, running on REEM-H and REEM-C. We
further give information on how to integrate the SoT into a ROS based environment. Since
the SoT comprises a complete framework, including the numerical solver, we describe
the main functionalities, which are necessary for implementing a (self-)collision task. The

5



1. Motivation

main method, which is implemented to achieve a successful collision avoidance, has to be
supplemented with additional tasks, e.g. joint limits. The instantiated tasks, which run on
the robot to perform successful collision avoidance, are presented in chapter 5. In order to
evaluate the implemented methods, various tests for all specified goals of chapter 1.2 are
examined and analyzed in chapter 6. Finally, in chapter 8 we provide applications, which
are successfully realized and give an outlook about further developments.

6



CHAPTER 2

RELATED WORK - STACK OF TASKS

The Stack-of-Tasks (SoT) is an efficient framework for hierarchical quadratic programming
(QP) [23]. It implements a General Inverse Kinematics (GIK), which was firstly presented
in [60]. A task denotes an abstract desired goal value, which can be achieved by control-
ling an ordinary differential equation [16]. Tasks can be, among others, a desired pose of a
manipulator, a gaze task describing a point in a 2-dimensional plane or a range of allowed
joint values. Whole body motion control implies a high number of DoF and with it a lot
of redundancy. Thus it becomes obvious that multiple instances of those tasks can be reg-
ulated simultaneously [33]. A widely common approach is to install a hierarchy of tasks,
solving them recursively in respect of the precedent nullspace [50].

Generally, the SoT provides two main functionalities. Firstly, it incorporates a QP solver in
a hierarchy preserving manner [37]. Hereby, a novel and highly computationally efficient
matrix decomposition was introduced, which yields a remarkable improvement in terms
of computation speed [12]. [11] refers to this specific development as Hierarchical Com-
plete Orthogonal Decomposition (HCOD), which is adopted throughout this work when
the emphasis is attached to the solver itself rather than the overall framework.

Secondly, the SoT describes a software framework, which implements an intelligent way
of establishing a dynamic hierarchy by activating and deactivating task constraints on
runtime. In the remainder of this chapter, the focus lies on the theoretical aspect of numer-
ically solving the hierarchy of tasks. Complementary, the implementation of the software
framework takes place in the second part of this work in chapter 4.

7



2. Related Work - Stack of Tasks

2.1. Prerequisites

The SoT is the base line of this work. In order to ease the understanding of the concepts
presented in the following, a few requisites are recalled. The inverse kinematic solver
mainly works with a least-square pseudo inverse approach, which can be formulated as
a constrained quadratic programming problem. Finally, the SoT implements an inverse
kinematics control scheme to run in real time on the robot.

2.1.1. Least Square

Least Squares is a way to optimize problems to its best. It applies always to overdeter-
mined problems, where there exists no unique solution. This is the case, when there are
more linearly independent equations than unknowns.

Ax = b with A ∈ Rm×n,m < n (2.1)

SinceA is strictly skinny matrix, there is no direct inverse in order to analytically solve this
equation system. However, we can optimize this system to its best, meaning we minimize
the resulting error, when we take all equations into consideration. Equation 2.1 thus turns
into

r = Ax− b (2.2)

The optimization is formulated as follows:

x∗ = arg min
x

‖Ax− b‖ (2.3)

The solution can be found by minimizing the squared residual. Minimizing means com-
puting a solution for the first derivative set to zero.

‖r‖2 = xATAx− 2bTAx+ bT b (2.4)
∇x ‖r‖2 = 2ATAx− 2AT b = 0 (2.5)

This further yields to the solution of the normal equation

ATAx = AT b (2.6)
x = AT (ATA)−1b (2.7)
x = A+b (2.8)

where equation 2.8 describes the famous Moore-Penrose pseudo inverse.

2.1.2. Quadratic Programming

Quadratic Programming handles optimization problems with linear equality or inequal-
ity constraints. Hence the name, the primal objective function to optimize is a quadratic

8



2.1. Prerequisites

function. The general problem statement can be formulated as follows:

1

2
xTQx+ cTx+ ro (2.9)

subject to Dx = e ∈ E (2.10)
subject to Dx ≤ e ∈ I (2.11)

Since the objective function describe a quadratic function, a least square formulation can
be easily transformed into a QP. From the equation in 2.4, it can be easily seen that this
equation has the same shape as equation 2.9.

We can solve general QP problems by applying Lagrange multiplier for each constraints.
We formulate the Lagrangian equation by multiplying each constraint and optimize for x
and λ.

L(x, λ) =
1

2
xTQx+ cTx+ ro + λT (Dx− e) (2.12)

The Karush-Kuhn-Tucker conditions [29] for this are given as follows

∇L(x, λ) = 0 (2.13)
dTi x = ei ∈ E (2.14)
dTi x ≥ ei ∈ I (2.15)
λ ≥ 0 ∈ I (2.16)

λ(dTi x− ei) = 0 ∈ I (2.17)

When we look closer at the last two conditions 2.17 and 2.17, we can see that all active
inequality constraints have to be satisfied. Condition 2.17 emphasizes that only constraints
are valid and thus optimized, where their according λ is positive. Conditions with positive
Lagrange multipliers are not considered to contribute to an optimal solution. Moreover,
inequalities are called satisfied, when the optimal solution lies directly on the border. Thus,
an inequality turns into an equality constraint (condition 2.17) and can be solved in a least
square sense.

Considering those two conditions, we always have to find the optimal set of inequality
constraints, which are active and thus can be solved in a equality like behavior. Prominent
approaches are Simplex algorithms [41] and Active Set Search[42] methods. The latter will
be explained in more detail in the remainder of this chapter.

2.1.3. Inverse Kinematics Control Scheme

GIK can be solved with a geometrical approach[3] just to a certain extend [45]. When the
number of actuated joints increases, in particular in redundant manipulators, an numerical
approach for solving the inverse kinematics problem is widely chosen [6]. The differential
equation for the inverse kinematics describes a linear mapping between cartesian space
and operational space

ẋ = Jq̇ (2.18)

9



2. Related Work - Stack of Tasks

where ẋ denotes a velocity in cartesian space, whereas q̇ defines the robot control input
vector. The Jacobian matrix J describes the linear mapping function between the two
spaces. From the above formulation, we can see the similarity to the least squares equa-
tions. Thus, since a redundant manipulator describes an overdetermined system, it makes
sense to solve this optimization problem with a pseudo-inverse approach.

q̇ = J+ẋ (2.19)

Redundant manipulator implies a set of possible solutions, since the system is overdeter-
mined and thus comprises unused DoF. Those unused DoF can be used to cascade sec-
ondary objectives without violating the first constraint [4]. In order to achieve this, we can
freely multiply any arbitrary vector q1 with the according projection P0 into the nullspace
of the primal objective function. Therefore, we extend equation 2.19 to

q̇ = J+
0 ẋ0 + P 0q̇1 (2.20)

where P is defined as I − J+J .

This formulation can be included into a real time constrained control scheme. The partial
velocities, solved with the above method, are integrated over time and the resulting joint
positions q are set on the respective motors. The control scheme can be formulated as
follows:

q(tk+1) = q(tk) + [J(tk+1)+ẋ(tk+1) + P q̇(tk+1)]∆t (2.21)

However, since the control scheme is mainly driven by a forward control design, it makes
sense to put this control scheme in dependency of a desired cartesian position xd and
regulate the resulting error between actual solution and desired position. We formulate
the error equation by incorporating the desired values

ė = ẋd − ẋ = ẋd − Jq̇ (2.22)

When we look in particular at equation 2.22, we can see a first-order differential equation.
The solution as written in equation 2.19 thus becomes

q̇ = J+ė (2.23)
= J+(ẋd − ẋ) (2.24)

Additionally, to complement the control law, a proportional constant K is introduced as a
gain parameter to optimize the convergence speed. The overall controller can be illustrated
in the following diagram (figure 2.1).

2.2. Hierarchical Inverse Kinematics

Current state of the art humanoid robots possess around 30-40 DoF. This allows an execu-
tion of multiple tasks in parallel. We start our examination by firstly looking at one task.

10



2.2. Hierarchical Inverse Kinematics

Figure 2.1.: Illustration of the Inverse Kinematics control scheme. The error is computed
via the desired position xd and the current velocity provided by the Forward
Kinematics FK.

When we want to control any actuated end-effector, we consume 6 DoF in SE(3) Lie group
[46] for a full pose positioning. A simple manipulating task can be formulated based on a
task space value ė, with an unknown joint vector q̇ and the translating Jacobian J = ∂e

∂q .

ė = Jq̇ (2.25)

where q̇ describe the solution vector in joint velocity space, which will serve as the input of
the robot. The GIK formulation in equation 2.25 can be solved in a least square approach,
solving the following QP to its best:

q̇∗ = arg min
q̇

‖Jq̇ − ė∗‖ (2.26)

The above QP formulation is broadly used for inverse kinematics [58][5] or inverse dynam-
ics [28]. For the remainder of this chapter, we consider a general least square approach and
rename equation 2.26 into

x∗ = arg min
x

‖Ax− b‖ (2.27)

The solution for this optimization problem can be found by utilizing the pseudo-inverse
approach [48], which yields to

x∗ = A+b with A+ = AT (AAT )−1 (2.28)

whereA+ denotes the Moore-Penrose pseudo-inverse [2]. Considering a set of constraints,
2.27 can be enhanced by a nullspace projection [33] to obtain a generic solution.

x∗ = A+b+ Pxp (2.29)

where P denotes the projection of an arbitrary vector xp into the nullspace ofA1. However,
since we have a high number of redundant joints, we can execute multiple tasks in parallel.
Thus, a task can be positioning an arm end-effector, keeping the vision system orientated
towards a fixed point in 3-dimensional space or use both legs for walking. On the other
hand, multiple tasks might not be feasible, since they either share common parts of the
kinematic chain (e.g. torso links between the left and right arm) or interfere with each
other. The idea is to implement a hierarchy of tasks, where the highest priority task will

11



2. Related Work - Stack of Tasks

be solved to its best in a least square approach, whereas lower prioritized tasks are solved
inside the of each respective precedent nullspace.

Equation 2.29 allows us to include a secondary constraint into the QP, which does not
violate the primal objective function. Considering now two tasks, we can setup a simple
hierarchy based on that nullspace projection. LetA1, b1 be the primal objective andA2, b2 a
secondary task, we can formulate the following hierarchical QP, substituting equation 2.29
into 2.27:

x∗2 = arg min
x2

‖A2x2 − b2‖∥∥∥A2(A+
1 b1 + P1x2)− b2

∥∥∥∥∥∥A2P1x2 − (b2 −A2A
+
1 b1)

∥∥∥ (2.30)

The generic solution for this QP, can be equally as in equation 2.29 found with the pseudo-
inverse:

x∗2 = (A2P1)+(b2 −A2A
+
1 b1) + P2x3 (2.31)

This implies that a solution for lower stacked tasks can only be found if there exists a
nullspace of a precedent task. If the above task consumes all DoF, lower placed tasks can
not be considered any further.

The above equation 2.31 is recursively formulated in [50] for n hierarchically stacked tasks.

x∗n =
n∑

k=1

(AkPk−1)+(bk −AkA
+
k−1bk−1) + Pnxn+1 (2.32)

2.3. Inequality Constraints

The above presented hierarchy describes a equality constrained Quadratic Program (eQP).
This enables a simultaneous execution of multiple tasks with equality constraints, such as
positioning tasks. However, in order to implement safety mechanism, no hard constraints
but solution spaces are necessary, which immediately demand for inequality constraints.
Safety mechanisms can be such as an active elbow-field, keeping the elbow above a certain
threshold, balancing the center of mass (CoM) inside a polygon or avoiding collision with
obstacles, as it is the topic of this work.

We can formulate an inequality Quadratic Program (iQP) in a classical manner:

x∗ = arg min
x

‖Ax− b‖ (2.33)

subject to Cx < d (2.34)
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2.3. Inequality Constraints

These kind of iQP are often formulated by introducing a slack variable w, which indicates
the level of violation [24].

x∗, w∗ = arg min
x,w

‖w‖ (2.35)

subject to Cx < d+ w (2.36)

Let us assume that Cx < d fulfills all the KKT [29] conditions. We can then denote this an
optimal solution set and easily solve this iQP as if it were an eQP. This means, that in an
optimal set of inequalities, the solution satisfies all active constraints [11].

The main idea of solving such an iQP is finding the set of constraints, which form the op-
timal set. Those algorithms are mainly referred as Active Set Search [42] and often used to
solve inequality constraint QPs. The algorithms starts with an initial guess x0 and work-
ing set W filled with activated constraints. The first step is to solve the iQP like an eQP
and find the KKT optimal conditions xt=1,λt=1. When one or many Lagrange multiplier
are negative, the currently active set is not optimal, which means there are unnecessary
constraints. The negative constraint λk is dismissed and the algorithm starts over again
with x0 and {W \ λk} in order to solve xt=2,λt=2.

Once a solution is found, where λ is strictly positive, we perform a search step. This is by
best practice performed in the direction of v = x1 − x2.

x∗
1 = x1 + pv with p ∈ [0; 1]

We have to prove the new step for feasibility. We again solve the QP and activate all
constraints, which are violated on the update step. The algorithm converges when all
constraints are feasible and contain non-negative Lagrange multiplier.

We can see that the recursive formulation in equation 2.32 is not applicable towards in-
equality constraints. The problem is that we can not easily find a nullspace projector P ,
as this can be a n-dimensional semi-infinite space. [23] presents a hierarchical preserving
way to solve inequality constraints in the form of equation 2.35. Let us consider a primal
objective with two inequality constraints, which are aligned in hierarchical manner.

arg min
x2,w2

‖w2‖ (2.37)

subject to A1x < b1 + w∗1 (2.38)
subject to A2x < b2 + w2 (2.39)

The above formulation shows the solution approach of recursively concatenated iQP. The
first inequality in 2.37 provides a valid solution x with respect to the least square solution
of the primal objective function. With this, it is secured that the solution of x1 does not
change the solution in x. This behavior can be concatenated recursively.
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2. Related Work - Stack of Tasks

Recomputing the eQP constantly for finding the optimal active set is computational expen-
sive [11]. It is mainly expensive, because activating and deactivating constraints forces the
recomputation of the complete stack. Furthermore, each constraint is solved on its accord-
ing level and all levels beneath it. When the stack contains n levels, then in particular the
highest level is solved n times. This is not feasible in terms of whole body motion control,
as it would probably exceed all real time update cycles on a humanoid robot. The HCOD
introduces an efficient matrix decomposition based on an existing Complete Orthogonal
Decomposition (COD). The improvements exploits a methods, which depends only on the
amount of DoF and not on the constraints. In essence, the HCOD uses a intelligent way
to improve the computation speed of the Active Set Search. Furthermore, HCOD implies
ways to solve the complete stack in one cycle, without recursively backtrack all beneath
placed stacks. The results of HCOD exceed existing solutions by an order of magnitude
in computation time. This allows a powerful setup of tasks to be executed in parallel on
low powered computers. The mathematical insights of this are verbosely given in [12] and
exceed the scope of this thesis.

14



CHAPTER 3

COLLISION AVOIDANCE

In the following chapter, we introduce our proposed method for collision avoidance. We
implemented an inequality task inside the SoT, which is placed as a high priority task. This
task handles all collisions, but still restricts the execution of lower priority tasks as little as
possible. The collision avoidance task, introduced in the following, is based on three major
concepts.

1. Closest point pair calculation between two collision objects

2. Damping the velocity along the normal vector, spanning from the closest point pair

3. Calculating the Jacobian for every closest point

3.1. Closest Point Calculation

Closest point pairs are used in various algorithms for collision avoidance [9][22]. Hereby,
a Gilbert-Johnson-Keerthi (GJK) approach is frequently used to compute the proximity
and closest points for collision detection [57]. It is easy to understand, that preventing the
closest points of two colliding objects is sufficient enough for avoiding the complete object
to collide. However, this is constrained with the condition, that there is always one unique
pair of closest points [15].
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3. Collision Avoidance

3.1.1. Collision Geometry - Mesh

Most common robots come along with a description of their collision geometry. In order
to make the collision geometry as accurate as possible, polygon meshes are widely used
to represent the geometry of the robot. The interested reader is referred to [56] for more
information.

Although the calculation between two meshes might fulfill the requirement of having a
unique point pair between two collision objects, severe discontinuities occur inside a two
dimensional space. Depending on the alignment of the vertices inside the mesh, the clos-
est points can jump in X as well as Y direction, when two meshes appear to be coplanar
to each other. In this case, there is ambiguity in the placement of the two points. Figure
3.1 illustrates this behavior. The discontinuities shown here are linearly propagated to the
velocity of the moving body part, which finally results in a heavy jump of velocity.
The discontinuities occur quite frequently in two aspects. The points can vary inside one
pair of vertices as illustrated in figure 3.1. Additionally, depending on the shape of the
mesh, multiple vertices can be projected towards the same pose, respectively a high num-
ber of normal vectors of each vertices (see figure 3.2). This makes a closest point calculation
for meshes infeasible.

Figure 3.1.: Discontinuity of closest point calculation for two vertices inside meshes. Par-
allelism of two vertices produces an ambiguity of the point pair. As depicted
here, multiple solutions exists such as p1, p2 as well as p1′, q2′.
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3.1. Closest Point Calculation

Figure 3.2.: Example for high resolution meshes. It can be easily seen, that a high number
of the same normal vectors exist on the meshes. This makes a parallel configu-
ration quite likely and the closest points can jump discontinuously.

3.1.2. Collision Geometry - Capsule

To overcome the discontinuities mentioned in the previous section, we implemented a
complete capsule decomposition for this work. A capsule describes a 3-dimensional ge-
ometry object, which consists of a cylinder along a 3-dimensional main axis and a length
l and radius r. In difference to the cylinder, each capsule comprises a half sphere at both
ends of the cylinder. Since capsules are pseudo convex collision geometries, the proba-
bility of discontinuities is relatively low. There exists exactly one configuration, where
ambiguity can occur. Essentially this happens, when the main axis of both capsules are
parallel. Figure 3.3 expresses two possible configuration for closest point pairs. It can be
seen that as long as the main axis are not parallel aligned, both capsules can be treated as
strictly convex objects. This convexity results in a unique point pair.
Furthermore, a capsule decomposition allows a smoother continuous trajectory compared
to mesh to mesh calculation. In the case of parallel main axis, the dimension of possible
discontinuities compared to meshes is limited to one dimension along the main-axis

pi + lin i ∈ [CP1, CP2], l ∈ R,n ∈ R3 (3.1)

where pi describes the start point of the cylinder with z = 0, li the length of the capsule and
n the orientation of the main axis. Note that in this specific case, we do not differentiate
nC1 and nC2 as both capsules are considered to be parallel and the z component is pointing
along the axis.
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3. Collision Avoidance

Given this definition, the distance of possible discontinuities can be formulated as

p1 + l1n = p2 + l2n (3.2)
p1 + l1n− (p2 + l2n) = 0 (3.3)

(pz1 + l1) − (pz2 + l2) (3.4)

where in equation 3.4, only the Z component has to be considered. X and Y are equal,
since the two capsules are parallel.

(a) Unique solution (b) Parallel configuration

Figure 3.3.: a) shows a unique solution of a closest point pair. b) shows two capsules in
a parallel configuration. Note that in comparison to meshes, the ambiguity
spans only along the main axis of the capsules. In a continuous motion of
both capsules, these discontinuities are from no further importance, because
the probability is rather low.

3.1.3. Closest Point Pair for Capsule-Capsule

We concluded in the previous section 3.1.2, that a capsule decomposition of collision ob-
jects is to be preferred over meshes, because of the reduction of discontinuities. In this
section, we describe the algorithm for the actual computation of the closest point pair. The
presented algorithm is a derivative of the closest points based on two line segments as it is
verbosely described in [10]. Since we define a capsule to be a finite line segment in R3 with
spatial radius information, we can modify the line segment algorithm to fit the calculated
point on the surface of the capsule.
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3.1. Closest Point Calculation

Infinite Lines

We start our calculation by looking at the closest point calculation of two lines. According
to [10], we formulate a line pair in R3 as follows.

LS1(s) = p1 + sd1

LS2(t) = p2 + td2

where di = qi − pi (3.5)

The start- and endpoint are declared as p and q in R3, respectively. d indicates the di-
rectional vector between p and q. We find a solution for a closest point pair s, t, whose
vector

v(s, t) = LS1− LS2 (3.6)

gets minimal in length. Example is given in figure 3.4(a).

The shortest vector v(s, t) can be examined as the scalar product of the two lines. Since the
vector has to be perpendicular to both lines, the following equation system for the scalar
product can be formulated:

d1v(s, t) = 0

d2v(s, t) = 0 (3.7)

we solve this equation system by substituting v(s, t) with the definition of 3.6. Further
steps are invoked:

d1(LS1 − LS2) = d1((p1 − p2 + sd1 − td2) = 0

d2(LS1 − LS2) = d2((p1 − p2 + sd1 − td2) = 0 (3.8)

(d1d1)s− (d1d2)t = −d1k
(d1d2)s− (d2d2)t = −d2k (3.9)

where k = p1 − p2. Using Cramer’s rule [7] for solving 2x2 linear equation system finally
yields the solution for s and t:

s = (bf − ce)/d
t = (af − be)/d (3.10)

where a = d21, b = d1d2, c = d22, e = d1k, f = d2k, d = d21d
2
2 − (d1d2)2

Special care has to be taken in case d = 0, which means that both lines are parallel.

Line Segments

Compared to lines, line segments are of finite length. This necessitates a case differentia-
tion of the spatial pose relation between two line segments. For this, we simply restrict the
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3. Collision Avoidance

length along the directional vector in the range from 0 to 1. Thus, we modify equation 3.5
according to:

LSi(s) = pi + sdi where di = qi − pi, 0 ≤ s ≤ 1 (3.11)

With this formulation, we cannot apply the solution used in the previous section, as there
might not be a perpendicular vector v for all configurations. This situation happens, when
at least one line segments lies outside the line segment of the other. In the following, we
examine four different cases as illustrated in figure 3.4.

When a configuration occurs as shown in figure 3.4(a), we can apply the solutions as if
the two line segments were infinite lines. When one closest point CP1 lies outside its line
segments, yet inside the segment of the corresponding other line, we can clamp CP1 to
the end of the line segment and compute the minimum distance to LS2, in order to find
CP2. This behavior is illustrated in figure 3.4(b). In case both closest points lie outside the
corresponding line segments (see figure 3.4(c), the procedure of 3.4(b) has to be repeated
twice. We first clamp CP1 to the end point and calculate ˆCP2 . As depicted in figure 3.4(c),
this point lies outside LS2 and results in a invalid point. To overcome this issue, we clamp

ˆCP2 to the endpoint of LS2 and repeat the computation now inverse. We recompute CP1

and see that this lies now inside LS1. Figure 3.4(d) illustrates the very extreme, where both
points are clamped to their respective end points.

Finally, the solving process is separated in two parts. Firstly, we have to decide for the
clamping of the respective points. This case study is examined according to the above
description. Secondly, once the points are clamped, we can mathematically solve for the
closest points.
We have a point LS2 lying on the second segment:

LS2(t) = P2 + td2 (3.12)

The first point LS1 is found via:

LS1(s) = P1 + sd1

s = (LS2(t)− P1)d1/d1d1

= (P2 + td2 − p1d1/d1d1 (3.13)

Obviously, this formulation also determines LS2, given LS1.

Capsules

In the beginning of this chapter, we defined a capsule as a line segment with a spatial
radius. For the closest point computation on two capsules, we enhance the algorithm for
line segments slightly to project the closest on the border of the capsule.
As we know the two closest points ˆCP1 and ˆCP2 of the two respective line segments, we
can use this information to calculate the directional vector between them. The projection
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3.1. Closest Point Calculation

(a) (b)

(c) (d)

Figure 3.4.: Relative spatial poses between two line segments. a) closest point pair lies in-
side both segments. b) endpoint q1 is a closest point, the second closest point
lies on the line segment. c) both closest points would lie outside their corre-
sponding line segments. Here, a recursive clamping has to be implemented. d)
both ending points p1 and p2 are closest points.

is to the border of the capsule is done by shifting the closest points along this vector by the
radius. Figure 3.5 shows this projection.

We can formulate this solution, given the two closest points ˆCP1, ˆCP2. We calculate the
vector v:

v = ˆCP2 − ˆCP1 (3.14)

The shifting is done via:

CP1 = ˆCP2 + r1v

CP1 = ˆCP1 − r2v

(3.15)
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3. Collision Avoidance

Figure 3.5.: Projection of the two closest points ˆCP1 and ˆCP2 to the border of the capsule.
v(s, t) describes the directional vector along which the projection is done with
length ri.

3.2. Velocity Damping

In section 2 we pointed out that every task has to be designed in the form of

Ax− b A ∈ Rm×n,x, b ∈ Rm (3.16)

In this section, we introduce the task formulation for collision avoidance. The collision
avoidance task restricts any possible movement along the unitvector between the closest
point pair, we calculated in the previous section. The presented approach was firstly in-
troduced in [17] and reformulated inside the SoT [22]. As we have seen in equation 2.26,
controlling a body part in cartesian space corresponds to the IK formulation

J(p, q)q̇ − ẋ J ∈ Rm×n, q̇, ẋ ∈ Rn (3.17)

where J(p, q) names the Jacobian of point p at joint vector position q, the resulting joint
velocities ẋ and the cartesian goal velocity. This formulation solves for all available DoF
inside the hierarchy. In order to restrict the solution for one direction, we modify the above
formulation in two aspects.

• The Jacobian is projected onto the unitvector spanned by the closest point pair

• The task is formulated as an inequality, which introduces a lower boundary for the
proximity (distance) of the two body parts
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3.2. Velocity Damping

3.2.1. Jacobian Projection

The configuration setup according to [17] is depicted in figure 3.6. The figure shows a close
up view of a capsule pair, with closest points p1 and p2. Hereby, we consider the point p1
as the moving body part, whereas p2 is meant to be fixed1 in R3 as a collision object. The
unitvector n is defined as

n =
p1 − p2
‖p1 − p2‖

(3.18)

The distance is computed according to the euclidean L2-Norm:

d = ‖p1 − p2‖ = 2
»

(p1 − p2)2 (3.19)

Figure 3.6.: A close up view of two capsules. The unitvector n is pointing from p2 to p1.
The distance d corresponds to the euclidean L2-norm of p1 and p2.

To begin with, we modify the task definition in equation 3.17 to restrict only the projection
along n. Thus, the new task formulation becomes

nTJ(p1, q)q̇ − ẋ ,n ∈ Rm,J ∈ Rm×n, q̇, ẋ ∈ Rm (3.20)

where nT describes the scalar product of n and J . Informally spoken, we can treat the
scalar product as the projection of the Jacobian onto the unitvector pointing towards the
collision center. Note that we annotate the Jacobian parameters with respect to p1. With
this, we indicate, that the Jacobian has to be calculated in respect to the closest point p1.
The next section 3.3 gives a more detailed examination on it.

1We establish the task with this convention of p2 being fixed in space. However, the implementation neces-
sarily allows both points to be moving.
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3. Collision Avoidance

3.2.2. Inequality Formulation

To avoid a possible collision between two capsules, we have to ensure that the distance
between them will always be larger than zero. To guarantee a minimal distance threshold,
we transform the task in equation 3.20 into an inequality constraint. Furthermore, we
introduce a lower bound with respect to the actual distance. The outer circle in figure 3.7
represents this lower bound, where the minimal proximity of the point pair p1,p2 has to
be larger than ds. The solution space for this inequality task is formulated in respect to the

Figure 3.7.: To ensure a minimal proximity between two capsules, a security distance ds is
introduced. The closest point p1 has to be outside the distance zone.

current distance d. Thus, the equation 3.20 evolves to an inequality constraint

nTJ(p1, q)q̇ ≥ −ε
d− ds

∆t
, ε, d, ds,∆t ∈ R (3.21)

where d − ds calculates the distance along n. The velocity towards the collision center
undergoes a damped course, hence the name velocity damping. We stress out the ∆t in
equation 3.21 to demonstrate the calculation in the velocity domain. In the implementation
although, this value is not available as a parameter, since the control gain value ε has to be
tuned for each application, which may compensate for ∆t.
We can see that the velocity converges to zero with decreasing proximity between the
closest point pair.

lim
d→ds

−εd− ds
∆t

= 0 (3.22)
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3.2. Velocity Damping

We can now formulate the overall optimization problem as a task space formulation where
a position xd is specified as a goal position and x the current cartesian position. The
optimization of this task is now subject to the velocity damping constraint developed in
this section. The verbose formulation of the QP looks as the following:

min
q̇
→ ‖J(px, q)q̇ − ẋ‖2

min
q̇
→ ‖J(px, q)q̇ −

(x− xd)

∆t
‖2 (3.23)

subject to nTJ(p1, q)q̇ ≥ −ε
d− ds

∆t
(3.24)

One note to the above formulation: It might look counter-intuitive at a first glance to de-
sign the task like this. One would presume a twist in the directions of n as well as the
preceding minus sign in equation 3.21. It is more intuitive to assume n to point from p1
to p2. This modulation comes directly from the architecture of the hierarchical solver as
a first-order control system. We review again the derivation of a task in cartesian space,
which is depicted in the diagram 2.1.

J(q)q̇ = ẋ

J(q)q̇ = K
x− xd

∆t
(3.25)

J(q)q̇ = −Kxd − x
∆t

(3.26)

ẋ ≡ −K̂xe ,where K̂ =
k

∆t
(3.27)

We can see from the above formulation that between equation 3.25 and equation 3.26 the
sign changed as the formulation of the error between x and xd swapped. Finally, 3.27
results in a common first-order control system formulation. The velocity damping task
obeys this formulation.

3.2.3. Integration into Hierarchy Solver

The QP formulation represents an example for one collision pair. Equation 3.24 describes
an inequality constraint for one closest point pair p1,p2 and the according distance d.
Obviously regarding the self-collision avoidance, we have to extend this to integrate mul-
tiple velocity damping constraints. Depending on the application, it might be important
on which level these inequality constraints are placed inside the solver hierarchy. This fur-
ther depends which relative level the damping constraints have to each other inside the
hierarchy. We can consider two cases:

• Constraints are on the same level

• Constraints are on different level
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Same Level

Looking at self-collision avoidance, it is necessary that all collision pairs are on an equal
level inside the solver hierarchy. This comes with no surprise, as one would expect the left
arm being equally treated as the right arm in terms of avoiding self-collision.
To achieve this, we can concatenate the formulation given in 3.24. For multiple collision
points inside one task, the formulation evolves to:

ni
TJ(p1,i, q)q̇ ≥ −εi

di − ds,i
∆t

∀i ∈ {1, . . . ,k} (3.28)

where i iterates over all k available collision pairs, which are considered to be on the same
level. Written in matrix notation, this yields to

Ü
n1

TJ1
...

nk
TJk

ê
q̇ ≥

á
ḋ1
...

ḋk

ë
Nq̇ ≥ D

where Ji = J(p1,i, q)

and ḋi =
di − ds,i

∆t
(3.29)

Again the complete QP respecting all constraints at the same level yields:

min
q̇
→ ‖J(px, q)q̇ − ẋ‖2

subject to Nq̇ ≥D (3.30)

Different Level

There may be applications, where multiple hierarchy steps are feasible. One could think of
setting priority to self-collision avoidance over external collision avoidance. In this case,
no further modifications have to be implemented for the task itself. This approach can
simply be realized by stacking the two instances of the velocity damping task on top of
each other.

3.3. Jacobian Calculation for Closest Point

The task formulation examined in the previous section 3.2 constrains one closest point pair.
Hence, we can see in equation 3.21 the subscript for p as a parameter for the Jacobian J .

26



3.3. Jacobian Calculation for Closest Point

We concluded in section 3.1 that based on the pseudo convexity of capsules as collision
geometries, the closest point pairs move along a differentiable trajectory. On the same
hand, this means that for each iteration of the solver, a new Jacobian has to be computed
since we parameterize the Jacobian with p, q

J ≡ J(p, q) ≡ J(p(t), q(t)) (3.31)

3.3.1. Jacobian Calculation for Rigid Body Parts

To begin with, we introduce a short review for the general case of computing the Jacobian
matrix for rigid body parts. The experienced reader might freely skip this section. During
this section, we mainly stick to the notation convention as suggested in [45].

Forward kinematics (FK) describes the function f of translating a n-dimensional joint po-
sition vector q into 6-dimensional cartesian poses. Similarly, Differential kinematics maps
joint velocities to cartesian velocities, namely linear velocity ṗ and angular velocity ω.
Hereby, there exists a linear relation between joint velocities and cartesian velocities:

P = f(q)q

Ṗ =
δf(q)

δq
q̇

Ṗ =

ñ
ṗ
ω

ô
= Jq̇

where P ∈ R6×n,J ∈ R6×n, q̇ ∈ Rn (3.32)

From the FK, we know the following relation:

pi = pi−1 +Ri−1r
i−1
i−1,i (3.33)

where pi, pi−1 denote the current position vector of frame origin i and i− 1, respectively.
Ri−1 describes the rotation matrix of frame i−1, whereas ri−1

i−1,i denotes the relative trans-
lation from frame origin i− 1 to i. The relation is illustrated in 3.8

Linear Velocity

For obtaining the according linear velocity formulation, we can take the first derivative of
the above equation 3.33. This yields into:

ṗi = ṗi−1 +Ri−1ṙ
i−1
i−1,i + ωi−1 ×Ri−1r

i−1
i−1,i

= ṗi−1 + vi−1,i + ωi−1 × ri−1,i (3.34)

Hereby, the linear velocity is split into translational velocity v and rotational linear velocity
ωi−1 × ri−1,i between two adjacent links.
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Figure 3.8.: Relative position between two origin frames expressed in a common base
frame.

Angular Velocity

The angular velocity can be obtained from the rotation matrix composition

Ri = Ri−1R
i−1
i (3.35)

It can be shown in [45] and [49], by useful exploiting the skew matrix property, taking the
first derivative of equation 3.35 yields to the angular velocity formulation:

ωi = ωi−1 +Ri−1ω
i−1
i−1,i

= ωi−1 + ωi−1,i (3.36)

Furthermore, the relations examined in equation 3.33 and 3.35 differ depending on the
type of joint. We have to differentiate the velocity decompositions depending whether we
are considering a revolute or prismatic joint:

Revolute Joint

According to the Denavit-Hartenberg Convention (DHC), the axis of rotation is z [21].
Hence, the angular velocity simplifies to

ωi−1,i = θ̇izi−1 (3.37)

where θ̇ denotes the rotational joint speed. Using this, we calculate further the linear
velocity:

vi−1,i = ωi−1,i × ri−1,i (3.38)
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Once we computed ωi−1,i and vi−1,i, we finally obtain:

ω = ωi−1 + θ̇izi−1 (3.39)
ṗi = ṗi−1 + ωi × ri−1,i (3.40)

Prismatic Joint

Equally to the revolute joints, we have to reconsider the equations of velocity for prismatic
joints. Since the prismatic joint has no rotational part, the angular velocity equals zero

ωi−1,i = 0 (3.41)

Also for prismatic joint, the axis of movement according to DHC is along z. The linear
velocity results to

vi−1,i = ḋizi−1 (3.42)

The final velocities are computed respectively:

ω = ωi−1 (3.43)
ṗi = ṗi−1 + ḋizi−1 + ωi × ri−1,i (3.44)

Jacobian Calculation

In equation 3.32, we introduced the Jacobian as a mapping between cartesian space and
joint space. As we have seen in the former examination, the Jacobian maps rotational and
translational velocity towards cartesian velocity. Thus, we can formulate the Jacobian as
such:

J =

Ç
Jp

Jr

å
=

Ç
Jp1 . . . Jpn

Jr1 . . . Jrn

å
,with J ∈ R6×n (3.45)

where each Jpi ,Jri describes a 3-dimensional vector, which relates each joint velocity q̇i
to the linear velocity. Jpi maps x, y, z components of translational velocity into cartesian
space. Equally Jri relates the orientation in terms of Euler angles R,P, Y .

Jpi =

Jpi,xJpi,y
Jpi,z

 Jri =

Jri,rJri,p
Jri,y

 (3.46)

In particular the mapping function looks like the following:ṗxṗx
ṗx

 = Jpq̇

ṗrṗp
ṗy

 = Jrq̇ (3.47)
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We can now compute the full Jacobian, taking again the different types of joints into ac-
count. We compute each pair of Jp1 ,Jr1 in equation 3.45 according to:

J =

Ç
Jp1

Jr1

å
=



Ç
zi−1 × (p− pi−1)

zi−1

å
for revolute jointsÇ

zi−1

0

å
for prismatic joints

(3.48)

For a detailed and well explained derivation of the above computation, the interested
reader is referred to [45] and [49].

3.3.2. Jacobian Calculation of Moving Points

In the previous section, calculated the Jacobian with respect to all related joints along one
kinematic chain ending with the tool joint at the tip. Within this calculation, the assump-
tion is taken that all joint position are at the end point of the link. The axis of movement is
Z.
For the purpose of collision avoidance based on a closest point pair, we need the Jacobian
in respect of the closest point p1, which varies from the center point on the z-axis. As
depicted in figure 3.9, we need to find a transformation from the Jacobian calculated for
frame origin Oi to frame origin Ocp. This means, we need a mapping from the joint veloc-
ities to the linear and angular velocities at point Ocp. Since the closest point is part of the

Figure 3.9.: Jacobian has to be calculated in respect to frame Ocp. The coordinate frame
transformation can be realized with a twist, given the relative transformation
rcp,i between Oi and Ocp.

capsule, for which origin we can easily calculate the Jacobian, we can treat this as a static
transformation. Thus, we can state the following relation:

ṗcp = ṗi + ωi × rcp,i
ωcp = ωi (3.49)
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By utilizing the skew-symmetric operator S(•), we can write the above relation in matrix
notation. Ç

ṗcp
ωcp

å
=

Ç
I −S(rcp,i)
0 I

åÇ
ṗi
ωi

å
(3.50)

This results in a twist computation as the linear projection now describes a R6×6 matrix.
We can use this formulation in order to obtain the Jacobian at point Ocp. If we substitute
ṗcp and ωcp with the Jacobian mapping function, equation 3.50 yieldsÇ

ṗcp
ωcp

å
=

Ç
I −S(rcp,i)
0 I

åÇ
ṗi
ωi

å
J(pcp, q)q̇ =

Ç
I −S(rcp,i)
0 I

å
J(pi, q)q̇

J(pcp, q) =

Ç
I −S(rcp,i)
0 I

å
J(pi, q) (3.51)

With the above formulation, we can calculate the Jacobian at any point of the capsule.
Most kinematic or dynamic libraries provide already the capability of computing the Jaco-
bian along the kinematic chain up to the end effector position. Thus, for every update of
the solver, we have to compute the relative transformation rcp,i and obtain the according
Jacobian based on equation 3.51.
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CHAPTER 4

IMPLEMENTATION ENVIRONMENT

In this chapter, we introduce the environment used for the implementation of this work.
Hereby, we provide conceptional overview about the underlying real time critical base
implementation, namely ROS control, which serves as a generic interface between robot
control and respective hardware. At this point, we assume the reader to be familiar with
ROS. A good introduction, tutorials and detailed information can be found in [39] and the
official website1.

Furthermore, we introduce the SoT as a framework in terms of implementing tasks and
dynamically push and pop them on runtime. Hereby, we describe the Dynamic Graph
(DG). This serves as a computational graph and each task can be seen as one entity inside
this graph.

Latest, the closest points are calculated utilizing an open-source library called Fast Colli-
sion Library (FCL), which brings already mechanisms for calculating proximities. During
this work, the capabilities of this library is extended for capsules.

4.1. ROS control

In a wide sense, ROS control describes a combination of packages for building robot ag-
nostic controllers. It provides interfaces for controllers and various hardware systems to
generically separate the controllers from the underlying hardware. ROS control thus can
be seen as a hardware abstraction layer (HAL). On the upper side, ROS control enables a
generic ROS compatible programming interface, which allows hardware agnostic compu-

1http://www.ros.org/
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4. Implementation Environment

tation of various application algorithms. On the lower side, it communicates in a real time
safe environment with the concrete hardware. This mechanism is monitored by a inde-
pendent observer, called the controller manager, which allows to load, switch and unload
multiple controllers on runtime. More information can be found in [40].

During the development of this work, we implemented a so-called SoT-Controller and
integrated it into ROS control. This integration implies a seamless migration and execu-
tion on the real robot hardware through the implemented HAL for REEMs hardware. To
overcome any real time constraints inside the computation of the stack, we exposed this
computation into a separate thread. This not just detaches the SoT from any hard timing
condition, but rather allows us to modify the update frequency inside the SoT indepen-
dently from ROS control. At each update function call of the SoT-Controller, it fetches
the latest result q, representing the accumulated joint states. Those joint state values are
passed through a joint position controller and finally to the robots motor con-
trollers. This abstract description is illustrated in figure 4.1.

Figure 4.1.: Abstract overview of the SoT-controller architecture inside ROS control. The
controller manager cyclically calls the update function for all subscribed con-
trollers. This update function fetches the latest result from the independently
running SoT. The joint states are getting passed over various interfaces finally
to the communication bus and the respective motor control boards.
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4.2. Stack of Task - Framework

During the theoretical part in chapter 2, we introduce the SoT as a GIK solver and provide
mathematical formulations on how to define a task inside this solver. In this section, we
consider the SoT from a software framework point of view. With this being said, in the
remainder of this section, the use of the abbreviation SoT refers to the framework rather
than the hierarchical solver.

The SoT comprises mainly two key functionalities.

• Dynamic computational graph connecting entities through input/output signals

• Hierarchical task solver (called sot-core) realized as entities inside the dynamic graph

4.2.1. Dynamic Graph

The dynamic graph (DG) provides a computational graph, where entities are connected
through input and output signals [38]. Hereby, every output signal is combined with an
internal function of the entity, gathering all necessary information. This happens by con-
suming the input signals and produce the result on the output signal. Output signals from
one entity can be plugged as an input signal of any other entity.

For every cycle of the control update loop, the DG gets recomputed based on backtracking
all linked entities. Triggering an output signal executes the assigned output function inside
the entity. Equally, this function might consume linked input signals. Since these input
signals represent output signals of other entities, those entities are computed as well. Let
us consider the DG illustrated in figure 4.2. In order to calculate the output value of Entity
E, all precedent entities are backtracked until the initial values c1 and c2.

Depending on the size of the DG, this might result in a big overhead of recomputation,
even though some entities do not provide new values. In the shown graph, we plug two
constant values c1 and c2. Computing now the value of Entity E would backtrack the
complete graph with no new result, as the initial values are constant. In order to prevent
this overhead and recalculate only outdated entities, all signals are time dependent. This
timestamp allows a recomputation of the entity only if the according input signals are
outdated.
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Figure 4.2.: Dynamic Graph with five entities A−E. Calculating the output of Entity E
triggers a recursive backtracking until all entities are updated. In order to pre-
vent an unnecessary recalculation of unchanged entities, signals are computed
with a timestamp t. This timestamp keeps track of changes, which indicates
whether an entity is outdated and has to be recomputed.

An example would be an entity called feature, which calculates the error between the actual
and desired position of the end-effector position. Thus, this entity comprises two input
signals p(t) and pdes(t). The respective output signal provides the error, hence the name
e(t). The function linked to the output signal obviously computes the difference between p
and pdes at time ti. Algorithm 1 describes this simple function, where the two input signals
are fetched at the same timestamp and the resulting error is computed. The output signal
equals the return value of the function.

Algorithm 1: error computation in entity feature
/* signals have to be initialized before */
input : Timestamp t
output: Error e
p = p signal in(t) ;
p des = p des signal in(t) ;
e = p des - p ;
return e ;
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4.2.2. SoT Core

As mentioned in the beginning of this chapter, the SoT (meaning the hierarchical solver in
this case) is realized as an dedicated entity inside the DG. This entity provides functional-
ities to dynamically push and pop task entities.

We described already in the theoretical part, how a task definition looks like. Since we
minimize a QP in the form of

Ax− b generic form
Jq̇ − ė inverse kinematic

We have to specify the Jacobian J as well as the residual ė, which represents - in this case -
the error between actual and desired position. The interface for a task implementation
thus provides two output signals for the Jacobian and the error, respectively.

In the previous section, we explained how output signals are handled inside the dynamic
graph. The assigned output function for each signal is task dependent. An example posi-
tioning task for an end-effector can then easily be formulated by using the error calculation
of the feature entity (see algorithm 1) and the Jacobian for the end-effector.

We have to point out that at this point, we have only designed a task. We are not solving
this task though. The task becomes part of the solver by explicitly pushing it onto the stack.
The hierarchical solver in itself describes another entity, which holds all tasks, currently
pushed on the stack. This entity solves the stack by fetching all jacobian and error
output signals from all tasks. This will be transformed into one big, hierarchy respecting
Jacobian and error. This will be finally solved and the result is provided as an output
signal. We are not going any deeper into details here. The main information should be
the requirements for designing tasks and push them on the stack for getting considered
by the solver. Mathematical details can be found in [11][13]. An deeper insight into the
development of the framework is provided in [37].

Furthermore, we want to remind that the mathematical solver indeed solves the generic
form of the above stated formulations. This being said, there is no need to specify A
exclusively as a Jacobian matrix. This allows us also to specify tasks directly in joint space.

Ax− b generic form
Iq̇ − q̇d joint space task

Where I denotes an identity matrix. The residual therefore has to be given in joint space,
hence the naming qd, which specifies a desired joint velocity.
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4.3. Fast Collision Library (FCL)

FCL is a fully templated library for generic collision detection and proximity calculations
[43]. It is designed to allow hierarchical proximity queries on various collision types
among others such as axis-aligned bounding box (AABB), oriented bounding box (OBB)
and swept sphere volume (SSV). It provides implementations based on Gilbert-Johnson-
Keerthi (GJK) [57] [20] algorithms for proximity as well as collision detection for many
geometry primitives such as boxes, cubes and spheres.

Among them, a concrete capsule proximity implementation was not available during the
time of this development. Based on the fact, that FCL is completely open source and de-
veloped with the standard template library (STL), it was possible to integrate the capsule
decomposition into FCL. The work presented in chapter 3.3 is at the time of writing inte-
grated in FCL and can be obtained on github2.

The use of FCL as the main proximity library allows us to not exclusively focus on a hard-
coded capsule decomposition. This being said, the same code can be used for example
when certain body parts are wrapped with cubes as collision geometries. Contrary, as FCL
is part of the core inside frameworks such as MoveIt!, the same capsule decomposition can
be used for other applications.

2https://github.com/flexible-collision-library/fcl
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CHAPTER 5

COLLISION AVOIDANCE IMPLEMENTATION

In chapter 3, we analyze the theoretical aspects of our approach for collision avoidance.
We examine in section 3.1 how a capsule decomposition and the according closest points
between two capsules are sufficiently convex enough to cover the robots collision model.
Additionally, we introduce a velocity damping method in 3.2, which restricts any positive
velocity component along the directional vector towards the possible collision center.

In the previous chapter 4, we briefly introduced the SoT as a framework and FCL as the
according library for proximity queries. This chapter furnishes insights about the imple-
mentation of the closest point calculation and velocity damping as entities inside the DG.

Although it can be seen that those two components alone perform well to protect any (self-
)collision, in practice there is a need for additional components. There are components
needed to operate the robot with a smooth transition of movements. We additionally in-
troduce task definitions for joint velocity and joint position limits as well as a weighting
task, which can be used to operate the robot with the necessary safety.

In the following, we have to carefully differentiate the wording between an entity and a
task. Technically speaking, a task denotes an entity inside the DG. Contrary, an entity is
not a task, thus it is not able to be pushed on the stack and be considered by the solver.
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5.1. FCL Entity

As the name might reveal, the FCL entity is responsible for querying proximities based
on FCL. We mentioned in the previous section, that during the development of this work,
we enhanced FCL with the capsule capabilities. Thus, on startup, we load the capsule
parameters such as origin, length and radius from a robot description file1. This parses
theses information into a capsule collision object and provides a full collision matrix of all
given capsules.

The collision matrix is represented by output signals for each collision pair. Each out-
put signal provides the closest point from one capsule to another. Hereby, the signals are
ordered according to the naming convention <capsule-link-1><capsule-link-2>,
which indicates the closest point on the first capsule towards the closest point on the sec-
ond capsule. Table 5.1 gives an example for three capsules, namely the right arm, the
left arm and the torso. The table shows the resulting output signals. Inside the concrete
application, the names are according to the names given in the robot description file.

right-capsule left-capsule torso-capsule

right-capsule X
<right-capsule
left-capsule>

<right-capsule
torso-capsule>

left-capsule
<left-capsule
right-capsule>

X
<left-capsule
torso-capsule>

torso-capsule
<torso-capsule
right-capsule>

<torso-capsule
left-capsule>

X

Table 5.1.: Collision Matrix and the produced output signal names.

This full feature collision matrix might become relatively large, depending on the amount
of capsules. This might lead to a large computational cost. At this point however, we only
provide output signals inside the DG. With this in mind, the actual proximity computation
only gets triggered, when an update of the respective signal is requested by another entity.

1Unified Robot Description Format(URDF), see http://wiki.ros.org/urdf
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5.2. Velocity Damping Task

The implementation of the velocity damping inside a task follows after the FCL entity. We
pointed out in the previous chapter 4, that for defining a task inside the stack, we have to
implement a function for the Jacobian and error signal. For convenience, we repeat
the inequality formulation of the velocity damping constraint in equation 3.24 here again.

nTJ(p1, q)q̇ ≥ −ε
d− ds

∆t
(5.1)

In respect of the above equation, we implement the left hand side of the inequality inside
the Jacobian function. The right hand side, the velocity boundary, is implemented in the
error function. Moreover, we have to specify a set of parameters as input. The equation
requires explicitly p1, ds and ε as given, implicitly it also requires p2 to be set for calculating
the remaining values such as d and n.

We will see during the examination of the experiments in chapter 6, that ds and ε have
to be set as constant input signals as they heavily depend on the robot setup. The two
points p1, p2 can be obtained from the FCL entity, as these points are exactly the closest
point pair of two collision objects. The connection will be done by plugging the output
signals of the FCL entity, into the p1, p2 input signals of the velocity damping task. The
Jacobian has to be calculated according to the current joint positions. Our implementation
takes the Jacobian with respect to the link origin. This calculation is most often already
implemented in various kinematic or dynamic libraries; also inside the SoT. In order to get
a Jacobian with respect to the closest point, we apply a twist transformation as explained
in section 3.3.

The DG setup for the self-collision avoidance is illustrated in the following graphic 5.1.

We execute only one velocity damping task for avoiding all possible self-collisions. This
means, that all collision pairs are on the same level inside the hierarchy. Thus, we configure
the task velocity damping to possess multiple input sockets for all closest point pairs and
the according control parameters such as ds and ε. This formulation treats all collisions
with the same priority.

On the same hand, we only plug the collision pairs we really need to protect the complete
robot. This implies an exclusion of adjacent body parts, since they are constantly in colli-
sion and would thus violate the solver during the complete execution time. Furthermore,
we can exclude collision pairs, which are not able to collide based on the mechanical con-
struction of the robot, such as left and right shoulder. This makes the configuration effort
rather simple and the computational complexity is on a minimal.
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Figure 5.1.: Dynamic Graph setup for the self-collision avoidance. EntityFCL provides
the closest point pair calculation. These points are plugged into the velocity
damping task for calculating n and d. Values such as ds and ε are provided as
constant signals. Most kinematic or dynamic libraries provide already ways
to compute a Jacobian with respect to the end-effector. We provide the end-
effector Jacobian as an input signal and apply a twist operation in order to
obtain the Jacobian with respect to the closest point. The output signals of the
velocity damping are in accordance with the abstract task definition of the SoT,
since it requires a Jacobian and error function.

5.3. Joint Limits Task

The two entities, we described previously, are capable of preventing any self-collision with
the robot. However, if we execute only the velocity damping as an exclusive task, we run
into trouble as the joint limits might get exceeded. This results in heavy discontinuities
which might in the end even destroy the robot. For this purpose of protecting the motors
and gears, we introduce two tasks in joint space, which take care about joint position ex-
ceeding as well as joint velocity limits. In the generic robot description file, we can calibrate
persistent values for the minimal and maximal position for each joint.

The hierarchical solver inside the SoT operates inside the velocity domain. Thus, for a po-
sitioning task, we have to specify a Jacobian matrix, which translates joint space velocities
into cartesian space velocities. This formulation allows us to specify the error residual,
for example the error between desired and actual position of an end-effector, in cartesian
space.
At this point, we want to specify a joint space residual, namely the distance between the
current joint position and the maximal or minimal boundary. In order to specify this in a
similar way, we replace the Jacobian matrix by a simple identity matrix. The task definition
then becomes the following:

Iq̇ ≥ q̇err with q̇, ˙qerr ∈ R1×n (5.2)

where I denotes the identity matrix and ˙qerr the error in joint velocity. We have to note
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here, that the error has to be given in the velocity domain, rather than position. This
implies, we have to take the first derivative of the joint position error. Thus the above
formulation turns into

Iq̇ ≤ qmax − q
∆t

with qmax, q̇ ∈ R1×n (5.3)

where qmax specifies the maximal joint position. ∆t denotes the time between two com-
putation cycles, which we use to compute a first numerical derivative between two joint
positions in time. We enhance this formulation with an additional control gain k to ease
any recalibration on runtime. The final equation formulation is presented in equation 5.4

Iq̇ ≤ qmax − q
k∆t

Iq̇ ≥ qmin − q
k∆t

(5.4)

We have to point out, that k is placed in the denominator. This has the meaning, that an
increase of k leads to an decrease of maximal joint position changes. We implement the
joint position limits as a double bounded task, restricting the joint position in the lower
and upper boundary.

The above formulation prevents the solver to resolve any joint state vector q, which would
exceed any joint positions. However, it does not take the joint velocity into considerations.
Image equation 5.4 with a low value for k and a current joint position vector q, which is
in the middle of the position limits. There can be situations, where the resulting allowed
velocity q̇ might be too high for the motors. On the same hand, restricting the velocity
with a rather big value for k also shrinks down low velocities.

Based on the above considerations, we implement a velocity clamping on top of it. Hereby,
in the robot description file, we further specify a maximal joint velocity value. With this,
we execute the joint limits with the above formulation, however check if the resulting
boundary, the right hand side of the inequality, exceeds the maximal velocity. The task
definition looks like the following:

Iq̇ ≤
®

qmax−q
∆t if ˙qerr ≤ q̇max

q̇max else

Iq̇ ≥
®

qmin−q
∆t if ˙qerr ≤ q̇min

q̇min else
(5.5)
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5.4. Joint Weighting Task

Finally, we introduce a task, which restricts the movement of expensive joints such as the
torso. This task is not necessarily a requirement for safe operations with the robot. It is
more a task, which limits the movement of heavy torques and inertia. It further improves
the workspace of the robot, since a weighting of the torso means a lower movement of
the most commonly shared part of the kinematic chain. The torso will be shared between
the head and both arms. However, those tasks of positioning head and arms might be in
different priority level such that the torso almost exclusively respects the highest of those
tasks. We can correct this by weighting the torso, which is getting compensated by foster
a larger movement of different joints, e.g. in the respective arms.

We can easily formulate this task again in joint space. In contrast to the pure identity
matrix, we multiply a diagonal weighting matrix with entries according to the inertia of
the robot. As we try to minimize the movement as much as possible, we set the resulting
velocity to zero.

WIq̇ = 0 withW ∈ Rn×n (5.6)

The equation successfully limits the movement according to the value set on the main
diagonal of the weighting matrix. However, when we look at this formulation inside the
stack, this approach has some limitations. When we set this task as a rather high priority,
the robot does not move. It is clear, that when this task will be fully solved, all DoF are
getting used and there is no nullspace for lower priority tasks. With this in mind, we have
to set this weighting task always at the least priority position, in order to minimize the
velocities. The optimization is done according to the weights as much as possible, yet not
restricting any other tasks.
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EXPERIMENTS

The solution of this work was validated with a couple of experiments and stress tests. We
show in the following, that this approach provides a safe way to avoid collisions with the
robot itself as well as avoiding external obstacles. Reviewing the goal statements of the
introduction 1.2, we conducted the following experiments to get a quantitative evaluation:

• Providing a piecewise continuous trajectory of closest point pairs

• Avoiding collisions between the actuated hand and external obstacles

• Avoiding full self-collision

6.1. Robot Hardware Setup

The conducted experiments have been mainly examined with a real time physics simula-
tor, namely Gazebo. It simulates an appropriate robot behavior in terms of joint position
as well as joint velocities.

The full body self-collision avoidance is running successfully on the robot. This being said,
this chapter briefly introduces the hardware on the robot (REEM-H in this case) to give the
reader an overview over the experiment circumstances.

REEM-H comprises an embedded computer, running a Ubuntu 12.04 LTS version with a
real time kernel. The specifications as they are provided on PAL Robotics website at the
time of writing are listed in table 6.1.
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Furthermore, the used robot model is presented below. The three images denote the inter-
nals of the robot (figure 6.1). In the first image, we can see the visual model of REEM-H.
The kinematic chain is illustrated in the second image. Hereby, the names of the used links
are shown as well 1. In the remainder of this chapter, we may refer to them, as we calculate
the closest point pair based on those links. Finally, the third image gives an idea about the
undertaken capsule decomposition.

(a) REEM-H Model (b) Kinematic Chains (c) Capsule Decomposition

Figure 6.1.: REEM-H model explained: a) visual surface model. b) kinematic chain of all
links. These link names are used as a reference in the remainder of this chapter.
c) implemented capsule decomposition. Three capsules are placed on each
arm, two on the upper body as well as one for the head.

During the development of this work, we could determine the shown capsules in figure
6.1(c) as being sufficiently necessary to protect all possible self-collisions. Since we are im-
plementing a safety distance threshold on every capsule, the resulting safety padding of
all capsules sufficiently covers the left out body parts. Table 6.1 lists the capsule decompo-
sition of the body parts.

6.2. Experiments

All of the following concrete experiments comprise two major tasks. The highest priori-
tized task of all experiments is joint limit avoidance. This is followed by the task veloc-
ity damping introduced in chapter 3.2, which denotes the (self-)collision avoidance task.

1For completeness: We omitted arm link 6 on both arms as they are located in the same position than the
tool link. The graphic looks clearer this way and link 6 carries no necessary need in terms of capsule
decomposition.
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REEM-H specification
weight 90 KG
height 1.70 meter
DOF 22
Computer Intel Core2Duo
OS Ubuntu 12.04 LTS
Kenel Xenomai real time toolchain

Table 6.1.: Hardware specification of
REEM-H

Capsule Decomposition

Right Arm
arm right 3 link
arm right 5 link
arm right 7 link

Left Arm
arm left 3 link
arm left 5 link
arm left 7 link

Upper Body
torso 1 link
torso 2 link

Head head 1 link

Table 6.2.: Capsule Decomposition of
REEM-H

Hereby, this is configured according to the respective exercise (such as external collision
avoidance or self-collision avoidance). Lastly, the active task for positioning the tool center
of the left as well as the right arm is placed at the bottom of the stack. Figure 6.2 depicts
the basic stack used for these experiments. During the experiments, we change the order
of the left and right wrist, however they are constantly placed at the bottom of the task.

Figure 6.2.: Basic hierarchy stack of used tasks for the experiments. As illustrated, joint
limits have always the highest priority. The collision avoidance task takes
precedence over the tasks of interest such as the right or left wrist. In the con-
ducted experiments, we will also examine the behavior of changing the order
of left and right, yet constantly placing them at least priority.

Beforehand, we implemented two strategies for integrating the SoT inside ROS control of
the REEM robots. Xenomai respectively ROS control operates with a frequency of 100Hz.
This means, that the physical update cycle is lower bounded to 100Hz and the computa-
tion of the stack has to produce a result with in this cycle. On the same hand, we integrated
the SoT as a asynchronous, not real time safe thread, next to ROS control. With this de-
coupling, we can prevent any real time violations to be visible on the robot. This further
implies, that we can achieve a higher cycle rate exclusively for the SoT, providing the cur-
rent solution for every cycle of ROS control. The purpose of these different cycle rates is
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essentially the capability of shrinking the ∆t inside the update cycle of the SoT. We recall
the task definition in 2.26 again:

ẋ = J(q, t)q̇

ẋ = J(q, p)
∆q

∆t
(6.1)

From equation 6.1, it is clear that lowering ∆t yields to smoother results in ẋ and thus
to a smoother trajectory on the robot. All experiments, which are presented below, were
executed with a rate of 100Hz inside the SoT, because of limits in computation power of
the embedded computer inside REEM.

6.2.1. Continuous Trajectory of Closest Points

In chapter 3.1, we examined the benefit of exercising a capsule decomposition over a mesh
collision geometry. The goal in this experiment is to demonstrate the required continuity
of the closest point pair. Informally spoken, monitoring the trajectory of each point of the
according point pair must result in one single path and is not allowed to jump in position.

For this experiment, we move the right arm from the right (x : −0.2m, y : −0.3m, z : 1.1m)
to the left(x : 0.2m, y : 0.3m, z : 1.1m). Hereby, we examine the development of the
closest point pair between arm right 5 link and the Upper Body as well as Head. The arm
movement as well as the closest point calculation is shown in the two figures below (figure
6.3). Figure 6.3(b) contains information about the closest point pairs at time tk for a specific
k. The lines mark the connection between the two points which form a collision pair.

The result of this particular experiment is exposed below. We can see in the results (figure
6.4), that the requirement is fulfilled as the trajectory for all closest points is continuous.
The plots show the path in x and y, since the executed movement is planer in z : 1.1m. The
left plot describes the points, which are attached at the arm_right_5_link. Their data
is expressed with respect to the global base frame. Equally, the right plot represents the
points on the Upper Body and Head.

This experiment was successfully executed with all possible collision pairs with similar
results. We encounter a rather negative result, when joint limits or clamping situations
occur as the resulting joint velocities might increase dramatically. This inevitably leads to
a high displacement of the closest points.
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(a) Executed trajectory (b) Closest Point Pairs

Figure 6.3.: Closest Point Trajectory: a) shows the trajectory the right arm executed. The
robot moved around the torso from the right (x : −0.2m, y : −0.3m, z : 1.1m)
to the left(x : 0.2m, y : 0.3m, z : 1.1m) (seen from the robot perspective). b)
denotes the closest point pairs between the three collision pairs at tk. The
development of this calculation has to be continuous for all ti. The lines are
providing info which points belong to which collision pair.
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Figure 6.4.: closest point development between arm right 5 link and Upper Body (con-
sisting of torso 1, torso 2, head 1). Left diagram shows the closest
points lying on the capsule of the right arm towards the upper body. Simi-
larly, the right diagrams displays the counter points on the upper body, which
are pointing towards the right arm.
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6.2.2. External Collision Avoidance

To begin with, we conduct the experiment of avoiding external obstacles coming across a
predefined trajectory of one of the arms. Hereby, we specify a trajectory input signal inside
the dynamic graph, which provides the desired position of the right tool joint. Equally, we
specify a similar signal representing the obstacle position. Thus, we have to configure the
closest point pair p1 as the right wrist signal and the p2 as the obstacle signal.

Static Object vs. Moving Arm

The first experiment describes a statically placed collision obstacle. The right wrist has to
avoid this obstacle, yet minimizing the error between the actual and desired position to the
best. The task specifying the left wrist position is not on the stack in this experiment. The
predefined trajectory denotes a path from the left to the right and is shown in the following
sequence of screen shots 6.5. The control gain ε for the velocity damping task is set to 1,
ds is set to 0.1m. The control gain k for the right wrist task is set to 10. In the sequence of

(a) (b) (c) (d)

Figure 6.5.: Sequence of screen shots for the predefined trajectory. The yellow ball repre-
sents the external obstacle, which has to be avoided. a) starting position b)
collision avoidance gets activated as the obstacle boundary is reached c) alter-
nate trajectory trying to minimize the error d) reaching desired position and
collision avoidance is deactivated.

screen shots, we can see that the arm is following the trajectory until the collision object
is reached. At this point the collision avoidance task becomes part of the active set and
the movement along the directional vector is limited. In order to minimize the error, an
alternative path is solved and the obstacle is avoided. A closer look at the trajectory is
provided in figure 6.6. It is remarkable, that the solver computes a different solution for
the way back. Reasons for this might be the different starting configuration, where the
HCOD fosters different joint movements at different times.
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Figure 6.6.: Avoidance of external obstacle. In order to avoid the obstacle, yet minimiz-
ing the error towards the goal position, the movement yields along the colli-
sion object. The trajectory computed for the way back differs from the initial
way. Reason for this are different starting positions and conditions. The HCOD
solves the resulting equation system differently and fosters joint movements,
which vary from the initial solution.

The distance over time is depicted in the plot below (Figure 6.7). Within this, we can
see that the critical distance threshold ds is set to 0.1m, which will not be violated. The
distance between the obstacle and the wrist stays constantly over this specific safety zone.
When we look at the position trajectory in figure 6.8, we can also see the expected result.
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Figure 6.7.: Distance plot over time. The distance stays constantly over the safety zone,
which is specified as 0.1m. The red line indicates a distance of 0, which is
obviously the result of a full contact collision.

The displacement of the actual wrist position, compared to the desired position increases,
when the distance converges towards the lower boundary. Furthermore, we can clearly see
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the attempt of the numerical solver to minimize the error to its best using non-constrained
DOF. We can see this behavior around time t = 10s. Since the desired trajectory is a sine
wave in Y , the direction along this axis gets constrained, when the wrist moves closer to
the obstacle. It can be seen, that the two DOF, such as X and Z are not constrained and
can be used to minimize the error. We can see this in the plot, whenever there is an error
value in X and Z.
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Figure 6.8.: Position plot over time. Once a collision boundary is reached, the error in-
creases as long as the obstacle constraint. Once the obstacle got avoided, the
errors minimizes again as the goal position can be reached.
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Moving Object vs. Static Arm

In the previous experiment, we moved the arm along a predefined trajectory, whereas the
object was at a fixed position. In this experiment, we analyze the contrary setup. In the
following, we keep the wrist at a static position and move the obstacle along a path, which
would finally lead to a collision. We configured the velocity damping with a ε = 10. Equal
to the previous test, k was set to 10 for the positioning task. Again, the executed trajectory
is illustrated in the following sequence of graphics (figure 6.9).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.9.: Sequence of screen shots for the predefined trajectory. The yellow ball repre-
sents the moving external obstacle, which is not allowed to collide with the
arm. Figure a)-d) the obstacle is approaching the fixed arm from the right.
When the collision boundary is reached, the arm gets pushed away from the
obstacle. In order to minimize the emerging position error, the arm moves
along the negative X and Z axis to avoid the obstacle. This is shown in c).
Figure e)-h): The obstacle moves closes from the left side. The solution for
avoiding the obstacle is a displacement along a positive Z axis.

Equally, as in the previous experiment, the collision avoidance possesses a higher priority
compared to the positioning task of the right wrist, which has the lowest priority. Due to
this alignment of the stack, the right wrist leaves its desired position, when the collision
avoidance becomes active in figure 6.9(b). The obstacle pushes the arm away from its
desired position in 6.9(c). However, the positioning task is still active, which minimizes
the emerged error. The resulting minimization of the error leads into a displacement along
the negative X and Z axis. Finally, the arm avoids the moving obstacle and resolves to its
original desired position (figure 6.9(d)).
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The second row (figure 6.9(e) - 6.9(h)) describes the counter movement, where the obsta-
cles approaches the arm from the left side. To avoid the obstacle and to minimize the
emerging error, the arm moves along a positive Z axis. We can see the exact behavior of
this description in diagram 6.10.

The distance boundary ds was again set to 0.1m. When we have a closer look at the dis-
tance development, we expect a similar behavior as in the previous test. The minimum
boundary of 0.1 is not allowed to get violated. Figure 6.11 provides information about the
numerical exact distance.

Contrary to our expectations, we see that the minimal boundary is violated. The minimal
distance is not 0.1m but 0.872m, which is a violation of approximately 13%. Furthermore,
we can see a rather high frequent oscillation, once we hit the violation.

In order to compensate for the violation as well as the oscillation, we retry the same exper-
iments with a variation of the control gain ε. Firstly, we set ε to a really high number such
as 10000 to see a tremendous chance, which can give possible insights about the reason for
the violation. When we zoom in, we see the following result as depicted in figure 6.12.

The figure in 6.12 evinces a lower distance violation of 7%, (0.937m) compared to the
13%(0.872m) before. However, a violation still occurs with a heavily amplified oscilla-
tion, which contains huge discontinuities. These discontinuities in distance yield to a huge
velocity, hence to a clearly noticeable shaking of the robot arm.

The second try to optimize this undesired behavior is to lower the gain. Thus, we redo the
experiment with an ε of 0.01. Again, the distance development over time is plotted below
(see figure 6.13).

Figure 6.13 reveals the bottleneck of this method for avoiding obstacles. The control gain
ε is set to 0.01, which yields in no obstacle avoiding, since the minimal distance shrinks to
0.0m, which is a full collision. Moreover, we can see that the right arm has a slow velocity,
which yields, contrary to a control gain of ε = 10000, into no heavy shaking of the robot.
However, the velocity is way too small to avoid the obstacle in time.

Thus looking at the two variations, it becomes clearly that for this use case of accelerating
a body part with zero initial velocity, special care has to be taken in gain tuning. When
we want to provide service for any external velocities, the control gains have to be tuned
according to the estimated velocity of the external obstacle. As we could see within this
outcome, we have to find a trade-off between highly reactive body parts and lowest dis-
tance boundary violations.

The important issue however, is that in all variations in ε the boundary gets violated. We
discuss the nature of this in the next section 6.3, where we analyze the reason this for in
more detail.
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Figure 6.10.: Position plot over time. The obstacle gets avoided firstly by a negative move-
ment in X as well as Z. On the second approach, the avoidance happens by a
movement in Z.
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Figure 6.11.: Distance plot over time. The control gain are set to ε = 10, as well as k = 10
for the positioning task. We can clearly see, that the safety distance is violated.
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Figure 6.12.: Behavior of a huge control gain for the velocity damping task. Here, ε is set
to 10000. We can see that the violation still occurs, but in a smaller quan-
tity. However, the resulting oscillation increases dramatically, which results
in heavy discontinuities in the velocity domain.
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Figure 6.13.: Behavior of a low control gain for the velocity damping task. Here, ε is set
to 0.01. We encounter a full collision and absolutely no attempt to avoid the
obstacle. However, no discontinuities occur.

6.2.3. Self-Collision Avoidance

As an enhancement of the collision avoidance task for external object, we examine now an
avoidance of the robots body part itself. For the following concrete tests, we refer again to
the capsule decomposition provided in table 6.1. We consecutively test each group against
each other.

We configure the velocity damping task according to each closest point pair, we take into
consideration. Looking at figure 6.14, we illustrate the full collision matrix of possible
colliding body parts with their respective closest points. In the remainder, we will test
every point pair of this collision matrix. With this in mind, we test this collision matrix in
a asynchronous, one-directional way. In particular, this means that, to begin with, we test
the arms against the upper body as well as the head. As in the external collision avoidance,
the arm tries to avoid the obstacle to its best. One-directional here denotes, that the arm
avoids the upper body. However, the upper body does not avoid the arm.
Reasons for this decision were mainly to keep the number of constraints to a minimal
configuration. Equally, the head and both torso links hold only one DOF, which brings
just a little effect on avoiding 6 DOF of the arm. Furthermore, actively constraining the
torso might have an bequeathing effect on the underlying wrist positioning task, since
these links are commonly shared between both kinematic chains.
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Figure 6.14.: Visualization of the full collision matrix. Every collision pair is illustrated
with its respective closest point pair onto the capsules surface. In this section,
we examine all possible collision pairs with each other.

(a) (b) (c) (d) (e) (f)

Figure 6.15.: Executed trajectory for the following self-collision experiment. We lead the
arms into three possible collisions. Figure a)-b) would result in a collision
with the lower torso, figure c)-d) equally with the upper torso. Finally, figure
e)-f) illustrate a collision with the head. Thus, we describe a trajectory which
alternates as a sine waves along X,Y as well as a three step increase along Z.

In the remainder of this section, a similar trajectory as the one depicted in figure 6.15 is
executed. We can see, that we firstly set a goal position at the internal of the lower torso
(figure a)-b)). We increase the height and repeat the same movement to provoke a collision
with the upper torso (figure c)-d)). Finally, we repeat it equally with the head position
(figure e)-f)).

We can see the resulting positioning diagram in figure 6.16. At approx. t = 25s, we shift
the collision center from the lower torso to the upper torso. Similarly, we aim for colliding
with the head at t = 70s. We do not specify this position plot in more detail in any further
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experiment. We do this for simplicity reasons as the specified trajectory is mirrored for the
left and right arm, which in the end results in a similar plot regardless the configuration of
the positioning tasks.
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Figure 6.16.: Positioning diagram of the applied trajectory for self-collision test. As we can
see in the development of along the Z axis, we increase the height in three
steps: Lower torso, upper torso and head. We can assume an almost similar
plot, independent whether a single arm or both are on the stack.
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Arms vs. Upper Body & Head

To begin with, we test the collision between one arm and the torso, which is quite likely
to occur during common movements. Depending on the desired goal position, the mini-
mal cost trajectory often leads through the torso. Thus, we start our examination on self-
collision avoidance by repeatedly specifying a goal position for the arm, which is inside
the upper body and head, respectively.

The control gain for the two tasks of main interest are set to ε = 10 for the velocity damping
as well as k = 10 for the positioning task. A cumulated distance plot is displayed in 6.17.
We see that the violation zone gets not violated except from numerical errors. We can take
the violations as numerical errors since the violation does not depend on ε. We reproduced
the experiment with different variations of ε with equally important results. Furthermore,
looking at the numerical value of these violations, we can see a violation of 0.003m, which
essentially denotes a violation of 3mm.
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Figure 6.17.: Distance plot over all tested collisions. We can see that except numerical is-
sues, we do not have a tremendous violation of the safety zone. We can treat
those violations are numerical instabilities as the violation does not depend on
any variation of ε. Furthermore, the maximum violation amounts to 0.003m,
which means 3mm.
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Full Collision Matrix

We introduced the self-collision trajectories to be looped in a sine wave with an three-fold
increase in Z. As seen before, this yields a satisfying result, with no noticeable violations.
This approach of carefully designed goal positions, with all joints in a rather safe configu-
ration, might serve as good-to-go for most of the robotic applications.

However, we have to review the fact, that the SoT is effectively a numerical solver. That
being said, we have to remark, that no offline trajectory planning is done. This fact might
yield in unknown or undesired positions and joint configurations. Therefore, we redo
the above experiment with a full-featured collision matrix. This means, we configure the
velocity damping with all items stated in table 6.1. Hereby, we also introduce the collision
between the two arms.

Furthermore, in order to expand the working area and find unplanned joint configurations,
we change the applied trajectory for the left and right arm by sine waves to be randomly
changed in center position and the respective 3-dimensional amplitudes. Additionally, we
increased the speed of the sine wave in order to move the robot with a realistic outcome
speed. The result of the distance for this experiment is shown in figure 6.18. We can easily
see, that the performance is equally satisfying as with in controlled environments. Equally,
we can endorse the statement of numerical violations, since the noticeable small violations
still occur, yet in the same quantitative magnitude.
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Figure 6.18.: Distance plot of randomly changed trajectory of both arms. The collision
avoidance takes all possible collision pairs into consideration. The result is
equally satisfying as with predefined controlled movements.
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Left Arm vs. Right Arm

The result in the previous example, gave already a convincing outcome. We could assure,
that all collisions (also in unexpected movements) are successfully avoided. Yet, we are
mainly interested to position the hands in the most accurate way, meaning as close as
possible to the desired position. Figure 6.19 extracts exclusively the resulting euclidean
error of the left and right arm. As we can easily see, the desired goal position is roughly
getting reached. Obviously, the reason for this is that a collision occurs before reaching
the desired goal. Thus, the hierarchy works as expected as the collision avoidance takes
precedence over positioning one of the arms.
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Figure 6.19.: Extraction of the emerging euclidean error. The average error is visualized
in green, the maximum error value in red. We can see that both arms have a
remarkable non-zero average error.

Let us have a closer look at the emerging error. The key values, such as average and
maximum error value are comparably listed in table 6.3. Considering those values in the

Euclidean Error [in m]
side average maximum
left 0.260 0.560

right 0.277 0.672

Table 6.3.: error value extraction of plot displayed in figure 6.19

above table raises immediately the question about the hierarchy of the two low prioritized
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positioning tasks. For the above experiment, the left arm was placed over the right arm.
Thus, the printed values are going along with this, yet probably not as meaningful as
hoped.

To examine the priority conditions inside the hierarchy, we further test exclusively the
avoidance between the two arms against each other. To do so, we define a counter di-
rectional trajectory in Y for the two arms. We examine this particular movement twice,
changing the priority of the left and right arm, respectively.

Prioritizing the right arm over the left arm, yields to the resulting movement indicated
in figure 6.20. We can see that according to the hierarchy level, the right2 arm strictly
encounters a smaller error compared to the left arm.

Figure 6.20.: Collision avoidance between both arms. The right arm takes precedence over
the left arm.

Equally, we examined the inverse setup, having the left arm taking a higher priority than
the right arm. Also, we display the sequence of movement in figure 6.21. As expected,
the solution is exactly mirrored. The left arm describes a smaller error due to the higher
priority.

Figure 6.21.: Collision avoidance between both arms. The left arm takes precedence over
the right arm.

The actual remarkable outcome of this experiment is the fact that the higher priority task
encounters a deviation of its desired position, although having precedence over the respec-
tive other one. In the latter, we will suggest to name this behavior Inversion of Hierarchy.
The synchronous collision avoidance influences the underlying tasks in a counter intuitive
way, hence the name. As we can see in both displayed movements, the lower prioritized

2be aware that right and left are seen from the robots position. Thus, the sequence of pictures is flipped.
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arm tries to avoid the higher prioritized arm to its best solution. At the same time though,
the proximity between both arm rises until the lower priority encounters a clamping sit-
uation with zero velocity. This situation is equal to the distance violation we saw during
the external collision avoidance tests. On the same hand, the higher prioritized arm still
has to avoid every self-collision. For this reason, it also has to leave its desired position to
keep the required distance threshold. Again, we refer to the next chapter 6.3, where we
verbosely analyze this outcome and provide mathematical reasoning.

6.3. Results & Discussion

The overall outcome of the conducted experiments above is satisfying. We can see that,
the applied method of decomposing the robots collision model into capsules yields to a
smooth trajectory. Since we run those algorithms successful on the robot with 100Hz, we
can state, that the implementation is reasonably efficient. Moreover, we do not encounter
any shaking of the robot body parts, even with a decent execution speed. With respect
to the examined self-collision tests, we can also see a successful coverage of the complete
body. Based on the placed capsules, the applied safety zone provides enough margin to
bridge the transition between two adjacent capsules.

For the collision avoidance, we firstly tested our introduced method against external colli-
sion objects. External objects get strictly avoided with a continuous and optimal displace-
ment of the actuated body part as long as this has an initial and non-zero velocity. In case
of an static actuated body part with zero velocity, we have to find a reasonable trade-off
between oscillating and allowed violation of the specified safety zone.

The self-collision avoidance represents the same task definition as for avoiding external
objects, yet in a larger scale. For this, we configure the velocity damping task to avoid
any collision with other body parts instead of one external object. This changes the task
definition not to define one constraint inside the hierarchical solver but 1

2n
2, where n de-

notes the number of entries inside the collision matrix for all capsules. Since we run the
self-collision avoidance in a one-directional manner, we only consider the upper triangle
of this collision matrix, hence the division by 2.

We state that all self-collisions can be avoided with great success. We encountered, besides
a neglect able numerical error, that a collision avoidance based on closest point pairs of
capsules yields to no self-collision. Equally important, we could execute the full collision
matrix and additional lower prioritized tasks for positioning the end-effectors of both arms
still in a decent speed. This generally justifies the application of this method to be sufficient
enough to avoid (self-)collisions. On the same hand, it provides enough DOF to operate
both arms in a reasonable speed and workspace.
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6.3.1. Violations of Safety Distance

The above presented experiments show great success and give positive results for prevent-
ing self-collisions. Yet, we encountered that in certain cases, the safety zone gets violated.
This misbehavior has the most impact, when the actuated body part is on a fixed posi-
tion. In case of a moving collision object, the robot does not possess enough initial velocity
to avoid the object in time. We similarly run into the same behavior for the self-collision
avoidance, whenever clamping situations occur, which forces certain body parts to slow
done until almost no velocity.

The reason for this violation comes from the fact, that the applied method for avoiding
collisions does not generate any velocity. In contrast to other popular methods such as
repulsive forces, we produce no force rather than restricting the existing velocity not to
proceed any further in the direction of possible collisions. For convenience, we present the
velocity damping formulation of 3.24 again:

nTJ(p, q)q̇ ≥ −εd− ds
∆t

(6.2)

A static position of the end-effector results in q̇ = 0. The above formulation 6.2 thus turns
into equation 6.3, which is mathematically satisfied until ds reaches d.

0 ≥ −εd− ds
∆t

(6.3)

In the next step, ds becomes smaller than d, which implies an error calculation. Thus, the
right hand side of the inequality in 6.4 turns into a positive expression as d − ds becomes
negative. At the same hand, the directional vector n points now outside of the collision
center. The overall expression flips the sign, so the inequality, which becomes finally:

nTJ(p, q)q̇ ≤ εdistance
∆t

(6.4)

Note, that distance here implies a negative value, since d−ds denotes a negative value here.
This case actively produces a positive q̇ and the actuated end-effector moves. However,
this heavily depends on the amplifier ε. This being said, a velocity exists when there is an
positive error between the desired and the actual position. A small ε just slightly amplifies
the existing distance violation. Thus, a rather fast moving obstacle completely overruns the
arm as shown in 6.13, because the generated velocity is simply too small. On the contrary, a
heavy amplification of epsilon might catapult the actuated arm far outside of the damping
constraint. This deactivated the damping inside the solver and the underlying positioning
task tries to minimize the displacement error. Thus, the robot moves again towards to
collision center. This finally yields to heavy oscillations between the positioning task and
velocity damping.
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6.3.2. Inversion of Hierarchy

Situations which occur as in the experiment of colliding two arms show that the collision
avoidance has a tremendous influence on the beneath placed and thus lower prioritized
tasks against each other. As we can see in figures 6.20 and 6.21, the higher prioritized
arm still encounters an error in position. Concretely explained on the example, where
the right arm takes precedence over the left arm: When both arms come closer, the left
arm navigates towards the torso. This movement will eventually result in a clamping
situation, because of the possible collisions with the right arm. Clamping situations imply
again a zero velocity. We call this behavior Inversion of Hierarchy, since the lower priority
positioning task has an remarkable impact on the above placed task.

We could see in the experiment with a full collision matrix, that those situations occur but
still do not yield in a collision. To overcome this behavior, a clearly defined gain tuning has
to be done for each collision pair as well as the underlying positioning tasks. At the same
time, the experiments were conducted with an equally set safety zone of 0.03m. This might
lead into undesired behavior, since certain collision pairs such as the upper arm and the
torso are close by construction. Therefore, we implemented the self-collision setup based
on a configuration file, where for each collision pair the specific set of parameters such as
ε and ds are declared.
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CHAPTER 7

CONCLUSION

In this Master’s thesis, we successfully implemented a complete solution for collision
avoidance inside a hierarchical quadratic program. We integrated the Stack-of-Tasks ef-
ficiently inside a ROS-based environment and were therefore able to run it in real time on
humanoid robots, such as REEM-H and REEM-C.

We implemented a reactive collision avoidance as an inequality constraint inside the quadratic
program. Hereby, the velocity along the directional vector between the closest point pair
of two collision objects is damped until a specified safety distance is reached. In order to
avoid any singularities in calculating this closest point pair, we carried out a complete cap-
sule decomposition for the robots collision model. The pseudo convexity of capsules lead
to a smooth and moreover continuous trajectory of point pairs. We could prove, by various
experiments, that the proposed solution is sufficiently stable to avoid any self-collision as
well as deliver support for external collision objects. Thus, we could with great success
accomplish all three goals of this work (see chapter 1.2).

Equally, we freely admit, that the proposed method cannot be migrated as a out-of-the-
box solution to different robots. Reasons for this is the strong dependency on the robot
description file, which has to provide the support for capsules as a collision object. Fur-
thermore, as we could see during the experiments, special care has to be taken for the
control gain of the velocity damping. Those two configuration steps have to be calibrated
for each individual robot.

The presented solution assures a safe execution of motion at all time. It ensures that all
possible self-collisions are successfully avoided and the minimal distance threshold does
not get violated (except numerical errors, which have to be taken into considerations). The
collision avoidance thus is placed on a high level inside the hierarchy as a self-collision
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7. Conclusion

should never be violated. Since the velocity damping is realized as an inequality con-
straint, its result denotes a solution space. The suggested method provides a solution
space, which is sufficiently large to not restrict the actual manipulation goals as long as
they are outside the critical safety zone. It can thus be placed transparently on the top of
the stack. It prevents all self-collision, but it flexible enough to not interfere the execution
of beneath placed tasks.

The implementation for the humanoid robot from PAL Robotics REEM-H comprises a ba-
sic set of activated tasks on highest level, which are strictly necessary to allow a safe usage.
On highest priority, joints limits have to be in range at all time in order not to physically
harm the hardware of the robot. In particular, joint limits are meant as joint position as
well as joint velocity limits. This is directly followed by the self-collision avoidance tasks.
With this basic stack, a safe application can be performed on lower prioritized levels.

In general, the Stack-of-Tasks achieves very convincing performance in terms of whole
body motion control. The execution speed of the inverse kinematic solver is by far ahead
of any current implementations. This allows a smooth and application-driven usage of hu-
manoid robots in a whole body control. The dynamic graph enables an easy plug-and-go of
input and output signals, which allows a straight-forward instantiation of fairly complex
applications.
However, limitations arise on practical application aspects. Since the HCOD is a numerical
solver, no look-ahead planning is done. This means, that even goal positions, which are
clearly out of reach are solved to the best, minimizing the error between actual and goal
position. This might lead to inappropriate behavior. Similarly, the DG operates in a con-
stant control loop. Thus, emergency handling such as an immediate stop of the controller
has to be handled with respect of this loop.
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CHAPTER 8

OUTLOOK

The presented method for self-collision avoidance is a passive task, which has only con-
straining purpose. It is not actively actuating any joints to achieve its goal. It is placed on
top of the stack in order to monitor the movement of joints and prevent any collisions.

However, the real impact of the SoT comes visible, when the stack is filled with inequality
and equality constraints, and the robot is controlled with the whole body. Thus, in the
following chapter, we briefly introduce applications, which we execute on REEM-H. With
this, we want to demonstrate the capabilities of the SoT as well as provide an outlook of
what is possible with current state of the art humanoid robots.

Object Tracking

REEM-H possesses a stereo vision system as well as provides support with a Microsoft
Kinect RDG-B sensor. With these vision systems we can easily implement an object track-
ing task. For this, we instantiate an entity, which captures the images from the vision
system and provides the position of the object as an output signal.
Similarly, we instantiate a gaze task. A gaze task comprises a 2-dimensional planeA, with
a minimal distance d to this plane. The task is to keep the orientation of the attached joint
Oi towards a point p onA.

Our implementation utilizes already existing components, which are successfully imple-
mented on REEM-H. Related work regarding object recognition was done in [36]. We
performed an object recognition with the help of Aruco markers (see figure 8.1), which
allows an easy positioning of objects, where this marker is attached to.

71



8. Outlook

(a) Gaze Task Illustration (b) Aruco Marker

Figure 8.1.: a) Illustration of a gaze task. The 2-dimensional plane A, minimal distance d
and a desired point p. b) Example Arcuo marker, which is used to extract a full
pose or position for various objects.

A gaze task can be instantiated as a generic inverse kinematic task, which explicitly re-
quires a Jacobian and a desired goal position for calculating the according error function.
Since the vision system is attached at the head link, we plug the Jacobian of the head into
the gaze task. The desired value P corresponds to the position extraction of the Aruco
marker.

Object Grasping

We previously developed a task for tracking an object through a vision system. The only
actuated joints hereby were the ones along the kinematic chain until the head. In order
to achieve object grasping, we basically instantiate a positioning task for the end-effector
of one arm. Similarly, to the gaze task, we plug the position of the Aruco marker as the
desired goal position for this end-effector task.

However, as in each grasping task, the main difficulty is the way the end-effector ap-
proaches the object. If we simply plug the marker position as the desired goal, we might
hit the object with the manipulator, while reaching the position. We can overcome this
issue by instantiating another gaze task. Contrary to the gaze task of the vision system,
the place the gaze in the hand and have it orientate towards the marker. This forces the
manipulator to approach the object with a correct grasping orientation.

72



This setup of tasks can be already seen as whole body motion control, since multiple tasks
partially share the same joints. Whenever this is the case, hierarchy race conditions occur.
It might be dependent on the application, which task has more priority. In our implemen-
tation, we foster the head gaze to take precedence over the grasping task, since we want
to ensure to have the object in the field of view.

Motion Retargeting

As second application, we realized motion retargeting inside the SoT. Again, we could
reuse existing solutions developed inside PAL [32]. Motion retargeting is mainly used to
realize teleoperations. Hereby, any RGB-D sensor, such as the Microsoft Kinect, captures
a 3-dimensional image of a human and extracts the skeleton image. The idea of motion
retargeting is then to translate the extracted joint positions of the human into joint positions
of the according robot. Figure 8.2 illustrates the process.

(a) Human movement (b) Extracted skeleton (c) Translated movement on the robot

Figure 8.2.: a) Image of the human movement b) Sketch of the extracted skeleton image c)
Translated movement of the human into the robot.

We can flexibly realize teleoperations inside the SoT. The skeleton algorithms provides us
with cartesian positions for each joint of the robot. Depending on how accurate we want
the robot to imitate the movement of the human, we initiate a positioning task for each joint
to track. Most often however, it is sufficient to track only the wrist and elbow positions, as
the resulting movement of the remaining joints will be resolved quite similarly.
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8. Outlook

Dynamics

Throughout this work, we completely worked inside a kinematic domain. This means, we
resolved every task with a simple kinematic model in the form of

ẋ = Jq̇ (8.1)

This model can be shifted to a dynamics domain, which also considers velocities, iner-
tia and masses to solve joint velocities. [44] provides a complete solution to implement
dynamics task inside the SoT. The equation in 8.1 therefore becomes the Newton-Euler-
Equation [18]:

M(q)q̈ + V (q̇, q) + g(q) = τ (8.2)
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