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a b s t r a c t

We address the problem of estimating the uncertainty of optical flow algorithm results. Our method esti-
mates the error magnitude at all points in the image. It can be used as a confidence measure. It is based on
bootstrap resampling, which is a computational statistical inference technique based on repeating the
optical flow calculation several times for different randomly chosen subsets of pixel contributions. As
few as ten repetitions are enough to obtain useful estimates of geometrical and angular errors. For dem-
onstration, we use the combined local–global optical flow method (CLG) which generalizes both Lucas–
Kanade and Horn–Schunck type methods. However, the bootstrap method is very general and can be
applied to almost any optical flow algorithm that can be formulated as a pixel-based minimization prob-
lem. We show experimentally on synthetic as well as real video sequences with known ground truth that
the bootstrap method performs better than all other confidence measures tested.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Recovering optical flow (OF) from an image sequence is one of
the fundamental algorithms in computer vision [8,15,16], a crucial
step in motion analysis which is important in a variety of applica-
tion domains including scene interpretation, video compression
and medical imaging. The problem is difficult, ill-posed, and inher-
ently ambiguous because of appearance and illumination changes,
imaging system imperfections, noise, lack of texture, and the aper-
ture effect. Consequently, optical flow can only be recovered
approximately and the error is spatially varying. However, stan-
dard OF algorithms do not provide any estimate of this error.

The aim of this work is to provide an algorithm estimating the
uncertainty of the calculated OF. It does not require any a priori
knowledge or any other input besides the images being registered.
The method is applicable to sequences, although for simplicity we
consider here only the two-image case.

Let us emphasize that we are not providing a better OF algo-
rithm in the sense of providing a better flow estimate. Instead,
we present a technique for estimating the flow accuracy for a given
OF algorithm. Our accuracy estimation method is very general and
can be applied to almost any OF algorithm that can be formulated
as a minimization problem. The method is novel, based on statisti-
cal bootstrap resampling.

We have evaluated our method in the context of confidence
measures [2,4] as this is where most of the prior art is. We show
that our method provides the best estimation of the OF accuracy
from among a number of other accuracy estimation methods and
confidence measures that we have tested (Section 5).

1.1. Problem definition

Given two images g(x,y, t) with t 2 {0,1}, an OF algorithm calcu-
lates a flow field [u v](x,y), such that

gðxþ uðx; yÞ; yþ vðx; yÞ; t þ 1Þ � gðx; y; tÞ ð1Þ

with t = 0. At each pixel location i with given ground truth flow, we
evaluate two error measures. First, the geometric error (also known
as the warping index [39] or endpoint error [3])

ei ¼ k½ui v i� � u�i v�i
� �

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � u�i
� �2 þ v i � v�i

� �2
q

; ð2Þ

where [ui vi] is the estimated flow and u�i v�i
� �

the true motion field.
Second, we calculate the angular error [3,4]

/i ¼ angle ½ui v i�; u�i v�i
� �� �

ð3Þ

with

angleð½u1 v1�; ½u2 v2�Þ ¼
180
p

arccos
u1u2 þ v1v2 þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2
1 þ v2

1 þ 1
� �

u2
2 þ v2

2 þ 1
� �q

� ½deg�:
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Our aim is to estimate ei and /i for all pixels i, solely from the
knowledge of the input g and the OF algorithm. A less ambitious
objective is to find an uncertainty measure wi such that the relative
ordering of wi is as similar as possible to the ordering of ei or /i.
Equivalently, �wi is a confidence measure as normally defined in
the literature; higher value corresponds to high confidence and
low expected error.

1.2. Proposed method

Our uncertainty measure is based on bootstrap resampling [12].
The basic idea is as follows: If we had multiple realizations of the
given OF estimation problem, such as multiple recordings of the
same sequence, we could solve all instances and compare the solu-
tions to estimate the variability of the results. As we are only given
one instance of the input data, we will use bootstrap resampling to
create a number of similar but slightly perturbed OF estimation
problems and proceed as before (see Section 3 for details). Our
bootstrap resampling works at a pixel level, the generated prob-
lems use different randomly chosen subsets of pixel contributions
that are assumed to have the same statistics as the complete set.
The interesting and novel aspect is that instead of sampling from
a set of values and evaluating a function of these values as in stan-
dard bootstrap, we sample from a set of functions and evaluate a
functional of these functions. This is a new paradigm which has
not yet been theoretically analyzed and it might even be too com-
plicated for a complete analysis ever to be performed, so we can
only show its usefulness experimentally.

We have chosen to demonstrate our technique on a combined
local–global OF method (CLG) [8] which generalizes both Lucas–
Kanade and Horn–Schunck type methods, the archetypes of OF
estimation. Following the very same procedure, our estimation
can be applied to any OF algorithm based on minimizing a varia-
tional image similarity criterion which is spatially decomposable,
e.g. to pixel contributions. Most OF estimation approaches can be
cast into this framework. For example, the two OF algorithms with
the best results on the Middlebury database2 [3] both minimize a
criterion of this type [41,44]. On the other hand, our method would
need to be modified for the third best algorithm [28] which repre-
sents the image as a tree of over-segmented regions.

This article extends our earlier work using bootstrap for image
registration accuracy estimation in the relatively simple case of
block matching [25], i.e. with only two degrees of freedom and
no regularization. In the OF case described here, the problem is
much harder because the number of degrees of freedom is many
orders of magnitude higher (there is one motion vector calculated
for each pixel), the unknowns are strongly correlated, and regular-
ization is essential, while we cannot afford more than 10–100
bootstrap iterations.

1.3. Related work

There have been many attempts to derive useful confidence
measures for OF methods, the main application being to identify
unreliable flow vectors for error statistics reporting [4] and weight-
ing or pruning for subsequent processing steps [21,22].

One class of the confidence measures is based on local analysis
of the input images. The simplest one is the image gradient [4], jus-
tified by the assumptions that we expect a higher accuracy in tex-
tured than in flat regions. Haussecker et al. [14] and Bigün [5] use
the structure tensor [13] and propose several confidence measures
derived from its eigenvalues. Uras et al. [40] propose to use the

condition number of the spatial Hessian H of the image; a related
measure which seems to be slightly more reliable is its determi-
nant det(H) [4]. Anandan et al. [1] evaluate the dependence of
the sum of square differences (SSD) criterion on the displacement
and define a confidence criterion as a function of principal curva-
tures of the SSD surface and the SSD value at minimum. In a unify-
ing way, the ‘surface measures’ of Kondermann et al. [20] use
principal curvatures to analyze the intrinsic dimensions [43] of im-
age invariance functions based on brightness, SSD, gradient, and
Hessian.

The second type of confidence measures looks at intermediate
results or parameters of a particular OF estimation method. For Lu-
cas–Kanade type local methods [30], we can analyze the condition-
ing of the system that we need to solve for each pixel. We can use
the trace [37], the determinant [4], minimum eigenvalue [34], sum
of eigenvalues, or the minimum eigenvalue weighted by the resid-
ual [17]. Sensitivity analysis can give us an estimate of the flow er-
ror from the residuals [10], this is similar to the FRAE method
described in Section 4.1. Bruhn et al. [6] use the local contribution
to the total energy being minimized to identify locations where
model assumptions are not valid and assigns low confidence to
them. Singh’s method [38] calculates the local displacement as a
mean of a probability distribution derived from the SSD criterion
and uses an eigenvalue of its covariance matrix as a confidence
measure.

The final group of confidence measures is based on the statistics
of the calculated flow and their comparison with a learned model,
assigning low confidence to deviations from the model. The linear
subspace of the ‘correct’ flow can be learnt by PCA [21]. Alterna-
tively, the dependence of the flow vectors in a patch on the central
vector can be modeled as a multidimensional Gaussian [22].

The advantage of the first and third groups of confidence mea-
sure is that they are completely independent of the OF estimation
algorithm. Besides an informal evaluation by Barron et al. [4] and a
brief one by Bainbridge et al. [2], comparison of confidence mea-
sure results can be found for example in Kodermann et al. [22].
Several of the mentioned confidence measures are defined in Sec-
tion 4.

Bootstrap resampling was used in image processing for example
to evaluate the performance of detection algorithms [9,18] and it
was also used to assess the accuracy of a rigid motion estimation
landmark-based algorithm [31,32]. However, as far as we know,
bootstrap resampling has never been used in the context of OF esti-
mation and its only other application to area-based image registra-
tion is our own work [25] discussed above.

The basic idea of our bootstrap resampling is to run the same
algorithm many times on different variants of the input data to
analyze the variability. This is different from approaches such as
the FusionFlow [29] which apply different algorithms to the same
input images and combine the results to obtain a better estimate of
the flow.

2. Combined local–global method revisited

We briefly present here the combined local–global optical flow
method (CLG) by Bruhn et al. [8] which we use to demonstrate our
bootstrap estimation technique. This method generalizes both lo-
cal (Lucas–Kanade) and global (Horn–Schunck) methods. Note that
for simplicity we are using neither the nonlinear, nor the spatio-
temporal extension of the CLG method. In order to apply the boot-
strap estimation, the CLG method needs to be reformulated using
minimization completely in the discrete domain, while the original
description [8] is based on discretized Euler–Lagrange equations
for a criterion formulated in the continuous domain. However,
we show that the two formulations are equivalent.

2 As of April 2010, using average endpoint error and not taking into account
unpublished work.
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The continuous criterion to minimize ([8], Eq. (7)) is

ECLGðwÞ ¼
Z

Xc
wT Jqðr3f Þwþ akrwk2 dx dy ð4Þ

with

w ¼ ½u v 1�T ;
krwk2 ¼ kruk2 þ krvk2

;

r3f ¼ ðfx; fy; ftÞT ;
Jqðr3f Þ ¼ Kq � ðr3fr3f TÞ;
f ¼ Kr � g;

where g(x,y, t) is the raw input sequence which is smoothed with a
spatial Gaussian filter Kr with standard deviation r, f(x,y, t) is the
smoothed input image sequence, fx, fy, and ft denote partial deriva-
tives, Xc is the continuous image domain, u, v are the x and y com-
ponents of the motion field to be found, and Kq is another Gaussian
filter with standard deviation q. Using P0 (piecewise-constant)
interpolation and replacing rw by finite differences, Eq. (4) can
be discretized as

ECLG � E ¼
X
i2X

Ei ð5Þ

with

Ei ¼ eDðiÞ þ aeSðiÞ

and

eDðiÞ ¼ h2½ui v i 1�Ji½uiv i1�T ;
eSðiÞ ¼

X
j2NðiÞ
ðuj � uiÞ2 þ ðv j � v iÞ2;

where X is the discrete set of image pixels, h is the pixel spacing, i
denotes a pixel with coordinates (xi,yi), and N(i) is a set of the four
neighbors of i. A discretized version of u is ui = u(xi,yi) and similarly
for v ? vi and Jq ? Ji. The spatial partial derivatives needed to
calculate Jq are evaluated using a seven-point kernel3; temporal
derivatives are calculated using first order finite differences,
ft(x,y) = f(x,y,1) � f(x,y,0), as we register only one pair of images.
The discretization is consistent, ECLG = limh?0 E.

We find the minimum of the discretized energy

ðû; v̂Þ ¼ arg min
u;v

E ð6Þ

with respect to all ui and vi by setting the partial derivatives
@E/@ui,@E/@vi to zero. This leads to the following linear system of
equations

0 ¼ 1

h2

X
j2NðiÞ
ðuj � uiÞ �

1
a

J11
i ui þ J12

i v i þ J13
i

� �
; ð7Þ

0 ¼ 1

h2

X
j2NðiÞ
ðv j � v iÞ �

1
a

J12
i ui þ J22

i v i þ J23
i

� �
ð8Þ

for all i 2X and where the upper indices denote elements in J, e.g.
J12

i ¼ ðKq � fxfyÞðxi; yiÞ. Note that we have multiplied the equations
by h�2 in order to get an identical set of equations as ((32)–(33))
in [8]. The equations can be efficiently solved by successive over-
relaxation (SOR, see Section 3.3).

3. Bootstrap resampling

Bootstrap resampling [11,12,18,45–47] is a computationally
based statistical inference technique. The idea is to create B derived
datasets by sampling with replacement from the original dataset,
apply the algorithm under test to each derived dataset and analyze
the B results using the desired statistics.

More formally, in bootstrap resampling we take N i.i.d. samples
X = {x1, . . . ,xN} of a random variable X. Let h = u(X) be some func-
tion of interest, e.g. the sample mean of X which approximates
the true mean of the random variable X. The task is to find some
statistics of h, denoted U(h), e.g. its variance. The bootstrap ap-
proach is to create B multisets4 X(b), b = 1, . . . ,B, each containing N
elements from X chosen randomly with replacement. We calculate
h(b) = u(X(b)) for all b and estimate U(h) from the set {h(b)}. We refer
the reader to a specialized literature for technical conditions of boot-
strap convergence [12,23]. We remark here only that as long as u(X)
is a ‘‘reasonable’’ estimator of some statistics of X which depends
continuously on the probability density of X, the bootstrap can be ex-
pected to work. However, it turns out that so far only relatively sim-
ple cases have been analyzed theoretically, such as bootstrap
estimators of the mean, variance, and confidence intervals. Our case
is much more involved as for us the samples xi are functions (see
next section) and our operation of interest u is a functional. As far
as we know, this case has not yet been studied.

3.1. Application to optical flow

In our earlier work [25,27] we have shown that bootstrap
resampling can be applied to estimate the image registration accu-
racy in the case of block matching. Here we show how to extend it
to the OF case. The main idea is to use the individual pixel contri-
butions eD(i) of the data part of the criterion E given by Eq. (5) as
the data set X = {eD(i); i 2X}. The function u is defined by the min-
imization X! ðû; v̂Þ described by Eq. (6) and U is the desired
uncertainty measure, such as the geometrical error e defined in
Eq. (2). In practical terms, we create B bootstrap energy functions
E(b) and for each of them find the flow estimate ðû; v̂ÞðbÞ as a solu-
tion of Eqs. (6)–(8).

For each X(b), the corresponding energy function is

EðbÞ ¼
X
i2X

bieDðiÞ þ aeSðiÞ; ð9Þ

where bi 2 Zþ0 is a multiplicity function,5 representing the number
of times a pixel i appears in the multiset X(b). Multiplicity functions
are generated randomly (see Algorithm 1). The bootstrap energy
functions are obtained by replacing contributions from some pixels
by others. Note that the bootstrap process is applied only to the
data part of the criterion eD, not the smoothing part eS, because only
the data (image) part is stochastic and causes the variability; the
smoothing part eS is identical for all bootstrap realizations.

The modified bootstrap energy (Eq. (9)) is minimized by solving
the following system of linear equations, which is a simple modi-
fication of Eqs. (7) and (8):

0 ¼ 1

h2

X
j2NðiÞ
ðuj � uiÞ �

bi

a
J11

i ui þ J12
i v i þ J13

i

� �
; ð10Þ

0 ¼ 1

h2

X
j2NðiÞ
ðv j � v iÞ �

bi

a
J12

i ui þ J22
i v i þ J23

i

� �
: ð11Þ

3 The kernel is [1 9 45 0 45 9 1]/60, as used by Bruhn et al. [8].

4 A multiset is a generalization of a set, which can contain each element several
times.

5 A generalization of an indicator function.
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Bootstrap resampling for single level optical flow uncertainty
estimation

3.2. Error estimation calculation

The system given by Eqs. (10) and (11) is solved B times for
randomly generated multisets X(b) (represented by multiplicity
functions bi), yielding B solutions6 [u(b) v(b)]. We calculate the direc-
tional variances at all positions:

r2
uðiÞ ¼ varb uðbÞi

n o
¼ 1

B

XB

b¼1

uðbÞi � uð�Þi

� �2
; ð12Þ

r2
vðiÞ ¼ varb v ðbÞi

n o
¼ 1

B

XB

b¼1

v ðbÞi � v ð�Þi

� �2
ð13Þ

with the bootstrap estimates of the mean flow

uð�Þi ¼
1
B

XB

b¼1

uðbÞi and v ð�Þi ¼
1
B

XB

b¼1

v ðbÞi : ð14Þ

The variances r2
u; r2

v can be calculated using a numerically stable
single-pass algorithm [19,42], so that the individual bootstrap re-
sults [u(b) v(b)] do not have to be stored, making the memory con-
sumption independent of B. The total standard deviation at each
pixel

wbootgðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

uðiÞ þ r2
vðiÞ

q
ð15Þ

is a scalar quantity which estimates the geometrical error e (2) and
can be used as an uncertainty measure. This method is denoted
bootg and it corresponds to a mean squared error. It is also possible
to calculate the mean geometric error

wbootgMðiÞ ¼
1
B

XB

b¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ui � uð�Þi

� �2
þ v i � v ð�Þi

� �2
r

; ð16Þ

but we found that the results are very similar to bootg and a single-
pass algorithm cannot be used, increasing memory consumption.
We will therefore use only bootg in the experiments.

Bootstrap can also estimate the angular error / (Eq. (3)):

wbootaðiÞ ¼
1
B

XB

b¼1

angle uðbÞi v ðbÞi

h i
; ½ûiv̂ i�

� �
: ð17Þ

Note that we have replaced the bootstrap mean [u(⁄) v(⁄)] by the re-
sults ½ûv̂� of a normal run of the OF algorithm without any resam-
pling, again in order to avoid the need to store all B calculated
flow fields.

3.3. Implementation

The system given by Eqs. (10) and (11) is solved by the succes-
sive overrelaxation (SOR) method [8,36] with a relaxation param-
eter x = 1.95. Iteration is stopped after a fixed number of
iterations (typically 100–1000), when the ‘2 norm of the difference
between [u v] in two subsequent iterations is smaller than a given
threshold (10�3), or when the ‘2 norm of the residual in Eqs. (10)
and (11) is smaller than another threshold (10�2).

The CLG optical flow method is applied in a multiresolution
fashion, as described in Bruhn et al. [8]. A multiresolution pyramid
consisting of images with progressively decreasing size is created
recursively from the input images by smoothing and downsam-
pling, as long as the images are bigger than a predefined minimum
size (32 � 32 pixels). The CLG algorithm is first applied on the
coarsest level and the resulting motion field is used to warp the
images at the next finer level. This is repeated recursively until
the finest level is reached. The final motion field is obtained as a
sum of the partial motion fields at all levels of the pyramid. The reg-
ularization part of the criterion eS(i) is calculated always on the total
motion field. The set of Eqs. (10) and (11) is modified as follows:

0 ¼ 1

h2 si þ
X

j2NðiÞ
ðuj � uiÞ

 !
� bi

a
J11

i ui þ J12
i v i þ J13

i

� �
; ð18Þ

0 ¼ 1

h2 ti þ
X

j2NðiÞ
ðv j � v iÞ

 !
� bi

a
J12

i ui þ J22
i v i þ J23

i

� �
; ð19Þ

si ¼
X

j2NðiÞ
u�j � u�i
� �

; ð20Þ

ti ¼
X

j2NðiÞ
v�j � v�i
� �

; ð21Þ

where [u� v�] is the total accumulated flow from previous resolu-
tion levels and [u v] is the motion field increment being calculated
at the current level.

Bootstrap estimation is incorporated into the multiresolution
framework. The coefficients bi are generated once at the finest level

6 For notational simplicity, we denote the partial bootstrap results as [u(b) v(b)]
instead of ½ûðbÞ v̂ ðbÞ�.

1452 J. Kybic, C. Nieuwenhuis / Computer Vision and Image Understanding 115 (2011) 1449–1462



Author's personal copy

and subsequently reduced along with the images. Algorithm 2
summarizes the multiresolution procedure for finding the motion
field. It is called from Algorithm 1, line 7, to obtain multiresolution
bootstrap estimates.

All experiments were run with a very low number of bootstrap
repetitions, B = 10. This is enough to approximately calculate a var-
iance-type statistics [12,25]. While a higher B improves the results
slightly, the improvement does not outweigh the increased com-
putation time [25].

4. Alternative uncertainty and confidence measures

Several alternative uncertainty measures were implemented
and used in the experiments for comparison with the bootstrap
method. Some of the measures could be simplified by an equiva-
lent monotonous transformation; however, we have preferred to
keep the original form as found in the literature, except for chang-
ing the sign to convert a confidence measure into an uncertainty
measure, so that a low value of an uncertainity measure w corre-
sponds to high confidence and vice versa.

4.1. Fast registration accuracy estimation (FRAE)

Fast registration accuracy estimation (FRAE) [24,25] is a simple
and fast method based on well known quadratic sensitivity analy-
sis ideas, which we have modified for the CLG method (see Section
2 for notation). First we estimate the variance of the criterion con-
tributions Ei (Eq. (5)) for each pixel. Since only one pair of images is
given, we use the spatially smoothed version of Ei as an approxima-
tion of its mean:

r2
EðiÞ ¼ VarfEig � K 0q � Ei � Ei � K 0q

� �2
;

where K 0q is a discretized and normalized version of an isotropic
Gaussian spatial filter with standard deviation q. Second, we calcu-
late the diagonal elements of the Hessian of E with respect to ui, vi:

Hu
ii ¼ @2E

@u2
i
¼ 2h2J11

i þ 2ðj Ni j þ1Þa;

Hv
ii ¼ @2E

@v2
i
¼ 2h2J22

i þ 2ðj Ni j þ1Þa;

where jNij is the number of neighbors of each pixel (normally
jNij = 4). For computational tractability, we assume that off-diagonal
elements can be neglected. The FRAE estimate of the variances of u
and v are then

r2
uðiÞ ¼ krEðiÞ=Hu

ii;

r2
vðiÞ ¼ krEðiÞ=Hv

ii ;

where k is a constant depending weakly on the approximations in
the chosen FRAE variant and its parameters, such as a confidence le-
vel [24,25]. We have used k = 2. It has no effect on the experimental
evaluation since only relative values are used. Using r2

uðiÞ, r2
vðiÞ gi-

ven above, the uncertainty measure is

wfraeg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

uðiÞ þ r2
vðiÞ

q
; ð22Þ

estimating the mean squared error similarly to bootg (Eq. (15))

wfraeg �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½ui� þ Var½v i�

p
:

FRAE can also be used to estimate the uncertainty with respect
to the angular error measure / (Eq. (3)) using a well-known for-
mula Var[f(x)] � f0(E[x])2 Var[x]. Expanding with respect to both u
and v yields

wfraeaðiÞ ¼
180
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

i r2
uðiÞ þ v2

i r2
vðiÞ

r2
uðiÞ þ r2

vðiÞ

s
ð23Þ

as an estimate of

wfraeaðiÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½/i�

p
:

4.2. Compliance with a learned motion model (PcaPVal)

The measure PcaPVal was proposed by Kondermann et al. [22].
It is generally applicable, which means that it can be used to esti-
mate the reliability of flow vectors computed by an arbitrary OF
method. The basic idea is to estimate a local model of the OF field
based on training data. The derived model consists of the first and
second order moments of the flow field patch distribution condi-
tioned on the central vector. To obtain a confidence value for each
flow vector a hypothesis test is carried out based on a suitable test
statistic dM([ui vi]). We convert dM into a corresponding p-value,
obtaining the following uncertainty measure:

wPcaPVal ¼ � inffa; dMð~v iÞ > G�1ð1� aÞg; ð24Þ

where G�1 : ½0;1� ! Rþ is the inverse of the empirical cumulative
distribution function computed from the training data.

4.3. Smallest eigenvalue of the structure tensor (StrEv3)

Let k1 P k2 P k3 stand for the three eigenvalues of the structure
tensor [13] of g(x,y, t) at a particular pixel. The measure StrEv3 [14]
is based on the following concept: The smaller the k3, the more
likely g(x,y, t) is locally flat in some direction. This is the case if
the speed is zero, in case of an aperture problem or within homo-
geneous regions. The uncertainty measure is

wStrEv3 ¼
1

ð1þ k3Þ2
: ð25Þ

4.4. Structure tensor total coherence (StrCt)

StrCt stands for the total coherence measure of the structure
tensor. It is based on the same idea as StrEv3 [14]. The uncertainty
function is defined as

wStrCt ¼ �
k1 � k3

k1 þ k3

	 
2

: ð26Þ

The advantage of this measure compared to the StrEv3 is that it
takes into account the anisotropy of the structure tensor. The mea-
sure is equal to �1 if k1� k3 and it is equal to 0 if k1 � k2 � k3 and
no movement can be computed in case of noise or homogeneous
regions.

4.5. Structure tensor spatial coherence (StrCs)

StrCs stands for the spatial coherence measure of the structure
tensor [14]. If we have an aperture problem and assuming that
the brightness constancy equation holds, then there are two locally
flat directions: the temporal direction and the direction along the
object that causes the aperture problem. Therefore, the two small-
est eigenvalues k2 P k3 of the structure tensor are nearly zero. This
property can be measured by the spatial coherency measure StrCs:

wStrCs ¼
k1 � k2

k1 þ k2

	 
2

: ð27Þ

StrCs is high in case of an aperture problem and small otherwise.

J. Kybic, C. Nieuwenhuis / Computer Vision and Image Understanding 115 (2011) 1449–1462 1453



Author's personal copy

4.6. Structure tensor corner measure (StrCc)

StrCc stands for the corner measure of the structure tensor [14].
It is defined as the difference between the total coherence measure
(StrCt) and the spatial coherence measure (StrCs).

wStrCc ¼ �
k1 � k3

k1 þ k3

	 
2

þ k1 � k2

k1 þ k2

	 
2

: ð28Þ

In this way, StrCc returns low values in locations where StrCt and
StrCs are both small.

4.7. Gradient measure (Grad)

The idea behind the gradient measurement [4] is that the dis-
placement field can be computed the more reliably the more tex-
ture is contained in the image. We use central differences7 to
compute the image gradient r2g = [gx gy].

wgrad ¼
1

ð1þ kr2gkÞ2
: ð29Þ

4.8. Cost function based confidence measure (BWS)

Bruhn et al. [6,8] propose to use directly the pixel contributions
Ei from Eq. (5) at convergence as uncertainty measures. This com-
bines information from both image and the motion field. The rea-
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Fig. 1. The Office sequence: (a) true x displacement, (b) true y displacement, (c) true displacement shown as a vector field, (d) calculated x displacement, (e) calculated y
displacement, (f) calculated displacement shown as a vector field, (g) true geometrical error, (h) geometrical error estimated using bootstrap, (i) geometrical error estimated
using the BWS method. In the color images, blue corresponds to low value and red to high values. The first frame of the sequence can be seen in the top left of Fig. 3. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

7 The kernel is [�0.5 00.5], for compatibility with Barron et al. [4].
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soning is that when the energy after registration is high, either the
difference between the registered images is high or the deforma-
tion does not correspond to the smoothness assumptions of the

regularization term. In these cases the correspondence is likely to
be wrong. This method will be denoted BWS:

wBWSðiÞ ¼ Ei: ð30Þ
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Fig. 2. Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for synthetic sequences Street and Sphere (from left to right) [33]. Each line
in the graphs corresponds to one confidence measure and shows the mean errors e(n) and /(n) with respect to a fraction n of retained pixels. The first row shows the first
images of the sequences.
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4.9. Ideal uncertainty measures

For comparison, we evaluate our criteria also using the true
geometrical and angular errors as uncertainty measures:

widealgðiÞ ¼ ei; ð31Þ
widealaðiÞ ¼ /i: ð32Þ

This represents the best achievable results for e and /, respectively.
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Fig. 3. Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for synthetic sequences Office and medium–complex–complex (from left to
right) [3,33]. Each line in the graphs corresponds to one confidence measure and shows the mean errors e(n) and /(n) with respect to a fraction n of retained pixels. The first
row shows the first images of the sequences.
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5. Experiments

We have used 58 standard and freely available OF test
sequences [3,33]. Due to space limitations only a part of the
experimental results can be shown here, see our technical rapport
[26] for a more complete version. We want to emphasize that the
purpose of our experiments is to compare the confidence measures
between themselves rather than to test the motion estimation

algorithm per se. For this reason, we have not performed any exten-
sive parameter tuning, for all sequences we have used the param-
eters a = 100–200, r = 1.77, q = 2–4.55.

We are aware that state-of-the art algorithms can be tuned to
produce a truly negligible error on standard synthetic sequences,
e.g. 1.02� error on the Yosemite sequence for the non-linear 3D
multiresolution variant of the CLG method [8]. However, this is
not very useful for confidence measure testing, since in this case
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Fig. 4. Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for real sequences Blocks and Vcbox (from left to right) [33]. Each line in the
graphs corresponds to one confidence measure and shows the mean errors e(n) and /(n) with respect to a fraction n of retained pixels. The first row shows the first images of
the sequences.

J. Kybic, C. Nieuwenhuis / Computer Vision and Image Understanding 115 (2011) 1449–1462 1457



Author's personal copy

the error is small everywhere and the confidence measure is not
needed. For more challenging sequences, reliable ground truth is
usually not available.

Fig. 1 shows example results of the linear 2D CLG method for
the first two frames of the Office sequence [33]. The mean geo-
metrical error is �e ¼ 0:1 pixels, mean angular error �/ ¼ 5:5�; er-
rors occur because of aliasing (computer screen), shadows (on
the table), occlusions (top of the chair) and in textureless regions
with motion discontinuities (window). Note that the bootstrap
method identifies the suspect regions very well, whereas the
BWS (energy) method fails. The mean errors are evaluated over
the whole image:

�e ¼meaniei ¼
1
kXk

X
i2X

ei; ð33Þ

�/ ¼ meani/i ¼
1
kXk

X
i2X

/i: ð34Þ

5.1. Sparsification tests

A common approach for confidence measure evaluation is
based on sparsification [8,22], where pixelwise errors are ordered
according to the confidence measure being tested and the mean er-
ror is calculated only using a given percentile of the best values.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Retained pixels (relative)

G
eo

m
et

ric
al

 e
rro

r [
pi

xe
ls

]

Sequence rubber Whale criterion geom

idealg
boota
bootg
fraea
fraeg
bws
grad
pcaPVal
strCc
strCs
strCt
strEv3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Retained pixels (relative)

G
eo

m
et

ric
al

 e
rro

r [
pi

xe
ls

]

Sequence dimetrodon criterion geom

idealg
boota
bootg
fraea
fraeg
bws
grad
pcaPVal
strCc
strCs
strCt
strEv3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Retained pixels (relative)

An
gu

la
r e

rro
r [

de
gr

ee
s]

Sequence rubber Whale criterion ang

ideala
boota
bootg
fraea
fraeg
bws
grad
pcaPVal
strCc
strCs
strCt
strEv3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

Retained pixels (relative)

An
gu

la
r e

rro
r [

de
gr

ee
s]

Sequence dimetrodon criterion ang

ideala
boota
bootg
fraea
fraeg
bws
grad
pcaPVal
strCc
strCs
strCt
strEv3

Fig. 5. Sparsification tests for the geometrical error (middle row) and angular error (bottom row) for real sequences Rubber Whale and Dimetrodon (from left to right) [3]. Each
line in the graphs corresponds to one confidence measure and shows the mean errors e(n) and /(n) with respect to a fraction n of retained pixels. The first row shows the first
images of the sequences.
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The idea is that we evaluate how successful a confidence measure
is in identifying pixels with large motion estimation error. More
formally, for the geometrical error e we define a function êðnÞ with
0 6 n 6 1 as the mean geometrical error of the best nkXk pixels
according to a given confidence measure and similarly for the
angular error /. If a mask is provided, masked pixels are ignored.
The values êðnÞ and /̂ðnÞ are averaged over all frames in a sequence.
Lower values for the same n mean a better confidence measure.

Figs. 2–5 show results of the sparsification tests based on CLG
flow fields for several synthetic and real test sequences [3,33].
The middle and right columns show the results for the geometrical
error êðnÞ and the angular error /̂ðnÞ, respectively. We see that the
bootstrap methods, boota and bootg, are almost always the best
methods, leading to the lowest error at any relative number of re-
tained pixel n, surpassed only by the ideal confidence measures
ideala and idealg (in green). The PcaPVal method (dark green) is
very good for sequences with motion field corresponding to the
learnt model (such as the Street sequence) but fails for less
common motion patterns (such as the Sphere sequence). Note also
that sparsification using some methods can actually make the
average error increase.

It is not possible to report the complete sparsification results
here for all sequences, because of space limitations. Instead, we
have ranked all confidence measures w for both angular and geo-
metrical errors, for each sequence, and for 10 values of the fraction
n of retained pixels n 2 {0.1,0.2,. . .,1.0}. We are reporting the mean

values over all sequences and over all n in Table 1. We have ob-
served (see our technical report [26] that contains a more detailed
breakdown of the results) that the bootstrap method bootg had the
smallest geometric error êðnÞ and the bootstrap method boota had
the smallest angular error /̂ðnÞ, not counting the ‘‘ideal’’ confidence
measures. The best non-bootstrap method in both cases was
pcaPVal.

5.2. Average correctness

Another way of evaluating the performance of confidence mea-
sures is to calculate the average correctness, which is defined as
the relative number of cases in which the comparison wi < wj be-
tween uncertainty measures for two pixels i, j gives the same re-
sults as a comparison between the true errors ei < ej or /i < /j,
respectively. We use 106 randomly chosen pixel pairs.

The results in Table 2 show that on the average, bootg and boota
are the most correct method (not counting the ‘‘ideal’’ methods) for
the geometrical and angular errors, respectively. In both cases,
pcaPVal is the next best method. See our technical report [26] for
more details.

5.3. Reliable pixel selection

The uncertainty information can be used to improve the final
quality of the optical flow estimation by masking locations where
the movement estimate is unreliable. Unreliable locations (outli-
ers) are found by thresholding the confidence measure, where a
suitable threshold can be determined statistically. Then an im-
proved optical flow can be found by motion inpainting [20], or,
as we have done here, by rerunning the optical flow computation
given by Eqs. (9)–(11) with bi = 1 for pixels to be kept and bi = 0
for pixels to be ignored.

In Table 3 we show the relative improvement of the mean geo-
metrical error (2) thanks to masking unreliable pixels in four se-
quences. To allow for a direct comparison between different
confidence measures, the percentage of retained pixels was fixed
to 95% and 90%. We can see that confidence measures lead to an
improvement of the geometric error and the improvement is often
substantial (e.g. the Yossemite or Office sequence). The largest

Table 1
Mean ranks with standard deviations for each confidence measure over all sequences
and all fractions n of retained pixels, for the geometrical and angular errors. The rank
within each column is given in parentheses.

Method Mean rank

Geometrical error Angular error

ideala 3.134 ± 1.23 (2) 1.545 ± 1.72 (1)
idealg 1.545 ± 1.72 (1) 2.553 ± 1.42 (2)
boota 5.245 ± 0.56 (4) 4.306 ± 0.86 (3)
bootg 3.356 ± 1.16 (3) 4.763 ± 0.74 (4)
fraea 8.163 ± 0.65 (8) 8.008 ± 0.36 (7)
fraeg 8.120 ± 0.44 (7) 7.915 ± 0.31 (6)
bws 8.758 ± 0.67 (10) 9.172 ± 0.74 (9)
grad 7.841 ± 0.58 (6) 9.295 ± 0.83 (10)
pcaPVal 6.497 ± 0.37 (5) 5.720 ± 0.74 (5)
strCc 8.692 ± 0.65 (9) 8.120 ± 0.43 (8)
strCs 9.465 ± 0.81 (11) 10.399 ± 1.08 (13)
strCt 9.654 ± 0.87 (12) 9.614 ± 0.84 (12)
strEv3 10.530 ± 1.13 (13) 9.591 ± 0.88 (11)

Table 2
Average correctness for the geometrical and angular errors averaged over all
sequences for all confidence measures. We have also ranked the confidence measures
for each sequence and we report the average ranks. The numbers in parentheses are
the ranks within each column.

Method Geometrical error Angular error

Correctness Rank Correctness Rank

ideala 0.810 (2) 2.167 (2) 1.000 (1) 1.000 (1)
idealg 1.000 (1) 1.000 (1) 0.810 (2) 2.000 (2)
boota 0.648 (4) 4.694 (4) 0.645 (3) 3.806 (3)
bootg 0.703 (3) 3.111 (3) 0.619 (4) 4.444 (4)
fraea 0.523 (7) 8.306 (7) 0.509 (8) 8.528 (8)
fraeg 0.523 (8) 8.639 (8) 0.509 (9) 8.583 (9)
bws 0.505 (10) 9.500 (11) 0.492 (11) 9.889 (11)
grad 0.546 (6) 7.556 (6) 0.525 (7) 8.444 (7)
pcaPVal 0.579 (5) 6.222 (5) 0.572 (5) 5.417 (5)
strCc 0.508 (9) 9.444 (9) 0.531 (6) 7.667 (6)
strCs 0.500 (11) 9.500 (11) 0.483 (12) 10.778 (13)
strCt 0.491 (12) 9.500 (11) 0.494 (10) 9.778 (10)
strEv3 0.447 (13) 11.361 (13) 0.467 (13) 10.667 (12)

Table 3
Mean geometrical error of OF estimation with 5% and 10% of pixels masked out. The
pixels to retain were determined according to five different uncertainty measures
(denoted ‘method’). The error is reported relative to the original OF estimation
geometric error (with no pixels removed). The number in parentheses are ranks
within each column, for each sequence separately.

Sequence Method Retained pixels (relative)

0.95 0.90

Street bws 0.941 (3) 0.919 (1)
Street grad 0.998 (5) 0.995 (5)
Street pcaPVal 0.983 (4) 0.990 (4)
Street fraeg 0.931 (2) 0.923 (3)
Street bootg 0.913 (1) 0.920 (2)
Office bws 0.777 (3) 0.738 (3)
Office grad 0.999 (5) 0.989 (5)
Office pcaPVal 0.930 (4) 0.897 (4)
Office fraeg 0.745 (2) 0.708 (2)
Office bootg 0.632 (1) 0.595 (1)
Blocks bws 0.989 (2) 0.987 (3)
Blocks grad 0.998 (5) 0.995 (5)
Blocks pcaPVal 0.991 (3) 0.984 (2)
Blocks fraeg 0.993 (4) 0.989 (4)
Blocks bootg 0.988 (1) 0.978 (1)
Yosemite bws 0.751 (2) 0.660 (2)
Yosemite grad 0.992 (5) 0.986 (5)
Yosemite pcaPVal 0.951 (4) 0.898 (4)
Yosemite fraeg 0.757 (3) 0.680 (3)
Yosemite bootg 0.706 (1) 0.638 (1)
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improvement is in all cases but one obtained by the bootstrap
bootg method.

5.4. Sequence registration

We address the task of robust finding of point trajectories from
a video sequence (Fig. 6), in our case a 2D ultrasound sequence of a
breast phantom for elastography [35]. It contains 48 frames repre-
senting about 5 s; the tissue is periodically compressed by a hand-
held ultrasound probe. Recovering the trajectory of all points is a
first step in estimating the strain and mechanical properties such
as the Young modulus, which has high diagnostic value for identi-
fying hard lesions, which are likely to be tumors.

The two standard approaches for image sequence registration
are either (i) to register pairs of consecutive images and then
accumulate the movement, or (ii) to choose one of the images as
a reference and to register the remaining ones with respect to
the reference, using displacement from neighboring frames for
initialization. The first approach suffers from accumulation of reg-
istration errors; in the second case the registration is difficult be-
cause of important geometrical and appearance differences
between the images being registered. These approaches use either
none or all of the intermediate frames between the two frames of
interest. Instead, in a novel approach we propose here, we select a
suitable subset of intermediate frames, thus generalizing the previ-
ous approaches. The selection will be guided by the bootstrap
uncertainty estimation.

Given a sequence of N frames, we apply the previously de-
scribed optical flow algorithm with bootstrap uncertainty estima-
tion (Section 3.1) on each pair of frames (i, j) such that
ki � jk 2 {1,2,4,8,16, . . .}. This increases the computational com-

plexity only by a factor log2N. For each point that needs to be
tracked, we recursively build a graph starting with a chosen refer-
ence frame, with nodes corresponding to intermediate frames and
edge weights being the estimated variances w2

bootg ¼ r2
u þ r2

v (Eq.
(15)) at that point. The final displacement is calculated by accumu-
lating the partial displacements along the path with the smallest
total variance.

The improvement brought by this technique is spectacular
(Fig. 6). The consecutive registration seriously underestimates the
movement for three points out of four. The reference-based regis-
tration mostly underestimates less (except for point 1) but is less
robust, giving incorrect results on several frames. In contrast, the
bootstrap based graph technique successfully tracks all points with
a good accuracy. Visual observation suggests that the tracking is
often even better than the manual one. Numerically, the mean geo-
metrical error with respect to the consecutive registration has been
reduced 2–8 times for each individual point, the mean error over
all points decreased from 45.9 pixels to 10.4 pixels.

6. Conclusions and discussion

We have shown how to apply the bootstrap resampling method
to estimate pixelwise the geometrical and angular error for optical
flow algorithms. The method is applicable to any motion estima-
tion technique that can be formulated in a variational setting, as
a minimization of a criterion which can be decomposed as a set
of pixel contributions. The only input to the method is the pair of
images being registered and the registration algorithm itself.

No confidence measure we have tested is perfect. Even the best
ones are relatively far from the best achievable solution. This
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Fig. 6. First image from an ultrasound elastography sequence of a breast phantom (a) with four landmarks and a corresponding recovered vertical flow (b). Graphs (c–f) show
the vertical displacement of the four points recovered manually, by accumulating consecutive pairwise displacements, by direct registration of each frame with the first frame
and by combining displacements selected using the bootstrap method.
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shows that estimating accuracy from the input images alone with-
out additional information about the underlying physical reality is
a hard problem.

The major shortcoming of the bootstrap method is that it can
only estimate the variance part of the error, not the bias. So if all
bootstrap OF calculations fail in the same way, we will be mislead
to believing that the results are accurate. However, this problem is
not specific to bootstrap—if a model does not correspond to the
reality, all methods will fail. On the other hand, bootstrap can pre-
dict well problems due to occlusions, motion discontinuities, as
well as texture-less regions. In the last case, however, the image
must either contain some sensor noise or we must add noise
corresponding to the measurement uncertainty during the boot-
strap process, otherwise in completely homogeneous regions the
variance estimate would be zero. The bootstrap estimates are
relatively well correlated with the true errors but the absolute val-
ues are not yet very reliable.

Another missing piece is the theoretical justification that the
bootstrap estimate will converge, under what assumptions, and
how fast. Alas, the idea of doing bootstrap on functions instead
of values is very new and we know of no theory covering it. We
have found experimentally on our data that the bootstrap samples
are only weakly correlated and locally identically distributed. This
is reassuring as the standard bootstrap assumes i.i.d. samples. The
weak correlation and independence can be explained by the fact
that after convergence of the OF estimations the residuals are only
due to the measurement noise.

We have shown experimentally that for CLG flow fields the
bootstrap technique leads to a better confidence measure than all
other confidence measures tested. It is true that bootstrap typically
increases the computational complexity by a factor of B = 10. How-
ever, we do not believe this to be a serious problem nowadays. Al-
ready in 2003, Bruhn et al. reported [7] that multigrid techniques
allow for real time calculation of the OF by the CLG method on
which we are based. Second, multicore machines are becoming
the norm and bootstrap is trivially parallelisable. As an illustration,
the 2 � 4 core machine we are now using can perform 10 OF calcu-
lations in about the same time that the computer we were using
2.5 years ago when this technique was originally developed
needed to calculate one OF.

We believe that bootstrap image registration and optical flow
accuracy estimation is an extremely general and revolutionary
technique which will find many uses in practice.
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