

EFFICIENT GLOBALLY OPTIMAL 2D-TO-3D DEFORMABLE SHAPE MATCHING

Zorah Lähner¹, Emanuele Rodolà^{1,2}, Frank R. Schmidt¹,
Michael M. Bronstein², Daniel Cremers¹
Published at CVPR 2016

¹Technical University Munich

² Università della Svizzera Italiana

THE TASK

Finding a continuous matching between a 2D template shape and a 3D model that matches points which look alike

RETRIEVAL

SKETCH-BASED MODELLING

Kraevoy et al., 2009

INPUTS

$$\varphi^* = \underset{\varphi:M \to N}{\operatorname{arg\,min}} E(\varphi)$$

PRODUCT MANIFOLD

Each node in the product manifold represents a possible match between a point on the contour and on the model.

PRODUCT MANIFOLD

PRODUCT MANIFOLD

An edge between (i, j) and (k, l) exists if both i, k and j, l are the same or neighbors on the original shapes.

ENERGY FORMULATION

$$E(\varphi) = \int_{\Gamma_{\varphi}} \operatorname{dist}(f_M(s_M), f_N(s_N)) \, \mathrm{d}s$$

ENERGY FORMULATION

$$E(\varphi) = \int_{\Gamma_{\varphi}} \operatorname{dist}(f_M(s_M), f_N(s_N)) \, \mathrm{d}s$$

SLICED PRODUCT MANIFOLD

SLICED PRODUCT MANIFOLD

RUNTIME

Given a 2D template shape M and a 3D model shape N, discretized at m and n vertices, respectively, we can find a minimizer in $O(mn^2 \log(n))$ time.

If $n = O(m^2)$, this leads to the subcubic runtime of $O(n^{2.5} \log(n))$.

m vertices

n vertices

FEATURES

SPECTRAL FEATURES

Purely based on intrinsic properties and therefore invariant to isometric deformations

SPECTRAL FEATURES

SPECTRAL FEATURES

RESULTS

RESULTS

7

RETRIEVAL RESULTS

CLASSIFICATION

Embedding of all Tosca Shapes into 2D

CONCLUSION

- Fully automated Matching
- Provable subcubic time, even faster in normal cases
- Globally optimal solution
- Continuous solution
- Comparable 2D-to-3D Features

Thank you for your attention!

Questions?