
Sublabel-Accurate Convex Relaxation of

Vectorial Multilabel Energies
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Abstract. Convex relaxations of multilabel problems have been demon-

strated to produce provably optimal or near-optimal solutions to a va-

riety of computer vision problems. Yet, they are of limited practical use

as they require a fine discretization of the label space, entailing a huge

demand in memory and runtime. In this work, we propose the first sub-

label accurate convex relaxation for vectorial multilabel problems. Our

key idea is to approximate the dataterm in a piecewise convex (rather

than piecewise linear) manner. As a result we have a more faithful ap-

proximation of the original cost function that provides a meaningful in-

terpretation for fractional solutions of the relaxed convex problem.
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(a) Original dataterm (b) Without lifting (c) Classical lifting (d) Proposed lifting

Fig. 1: In (a) we show a nonconvex dataterm. Convexification without lifting

would result in the energy (b). Classical lifting methods [11] (c), approximate

the energy piecewise linearly between the labels, whereas the proposed method

results in an approximation that is convex on each triangle (d). Therefore, we

are able to capture the structure of the nonconvex energy much more accurately.
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1 Introduction

1.1 Nonconvex Vectorial Problems

In this paper, we derive a sublabel-accurate convex relaxation for vectorial op-

timization problems of the form

min
u:Ω→Γ

∫
Ω

ρ
(
x, u(x)

)
dx + λTV (u), (1)

where Ω ⊂ Rd, Γ ⊂ Rn and ρ : Ω × Γ → R denotes a generally nonconvex

pointwise dataterm. As regularization we focus on the total variation defined as:

TV (u) = sup
q∈C∞c (Ω,Rn×d),‖q(x)‖S∞≤1

∫
Ω

〈u,Div q〉 dx, (2)

where ‖ · ‖S∞ is the Schatten-∞ norm on Rn×d, i.e., the largest singular value.

For differentiable functions u we can integrate (2) by parts to find

TV (u) =

∫
Ω

‖∇u(x)‖S1 dx, (3)

where the dual norm ‖ · ‖S1 penalizes the sum of the singular values of the

Jacobian, which encourages the individual components of u to jump in the same

direction. This type of regularization is part of the framework of Sapiro and

Ringach [19].

1.2 Related Work

Due to its nonconvexity the optimization of (1) is challenging. For the scalar case

(n = 1), Ishikawa [9] proposed a pioneering technique to obtain globally optimal

solutions in a spatially discrete setting, given by the minimum s-t-cut of a graph

representing the space Ω×Γ . A continuous formulation was introduced by Pock

et al. [15] exhibiting several advantages such as less grid bias and parallelizability.

In a series of papers [16,14], connections of the above approaches were made

to the mathematical theory of cartesian currents [6] and the calibration method

for the Mumford-Shah functional [1], leading to a generalization of the convex

relaxation framework [15] to more general (in particular nonconvex) regularizers.

In the following, researchers have strived to generalize the concept of func-

tional lifting and convex relaxation to the vectorial setting (n > 1). If the

dataterm and the regularizer are both separable in the label dimension, one can

simply apply the above convex relaxation approach in a channel-wise manner
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to each component separately. But when either the dataterm or the regularizer

couple the label components, the situation becomes more complex [8,20].

The approach which is most closely related to our work, and which we con-

sider as a baseline method, is the one by Lellmann et al. [11]. They consider

coupled dataterms with coupled total variation regularization of the form (2).

A drawback shared by all mentioned papers is that ultimately one has to

discretize the label space. While Lellmann et al. [11] propose a sublabel-accurate

regularizer, we show that their dataterm leads to solutions which still have a

strong bias towards the label grid. For the scalar-valued setting, continuous label

spaces have been considered in the MRF community by Zach et al. [22] and Fix

et al. [5]. The paper [21] proposes a method for mixed continuous and discrete

vectorial label spaces, where everything is derived in the spatially discrete MRF

setting. Möllenhoff et al. [12] recently proposed a novel formulation of the scalar-

valued case which retains fully continuous label spaces even after discretization.

The contribution of this work is to extend [12] to vectorial label spaces, thereby

complementing [11] with a sublabel-accurate dataterm.

1.3 Contribution

In this work we propose the first sublabel-accurate convex formulation of vecto-

rial labeling problems. It generalizes the formulation for scalar-valued labeling

problems [12] and thus includes important applications such as optical flow esti-

mation or color image denoising. We show that our method, derived in a spatially

continuous setting, has a variety of interesting theoretical properties as well as

practical advantages over the existing labeling approaches:

– We generalize existing functional lifting approaches (see Sec. 2.2).

– We show that our method is the best convex under-approximation (in a local

sense), see Prop. 1 and Prop. 2.

– Due to its sublabel-accuracy our method requires only a small amount of

labels to produce good results which leads to a drastic reduction in memory.

We believe that this is a vital step towards the real-time capability of lifting

and convex relaxation methods. Moreover, our method eliminates the label

bias, that previous lifting methods suffer from, even for many labels.

– In Sec. 2.3 we propose a regularizer that couples the different label compo-

nents by enforcing a joint jump normal. This is in contrast to [8], where the

components are regularized separately.

– For convex dataterms, our method is equivalent to the unlifted problem –

see Prop. 4. Therefore, it allows a seamless transition between direct opti-

mization and convex relaxation approaches.
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1.4 Notation

We write 〈x, y〉 =
∑
i xiyi for the standard inner product on Rn or the Frobenius

product if x, y are matrices. Similarly ‖ · ‖ without any subscript denotes the

usual Euclidean norm, respectively the Frobenius norm for matrices.

We denote the convex conjugate of a function f : Rn → R∪{∞} by f∗(y) =

supx∈Rn 〈y, x〉 − f(x). It is an important tool for devising convex relaxations,

as the biconjugate f∗∗ is the largest lower-semicontinuous (lsc.) convex function

below f . For the indicator function of a set C we write δC , i.e., δC(x) = 0 if

x ∈ C and ∞ otherwise. ∆U
n ⊂ Rn stands for the unit n-simplex.

2 Convex Formulation

2.1 Lifted Representation

Motivated by Fig. 1, we construct an equivalent representation of (1) in a higher

dimensional space, before taking the convex envelope.

Let Γ ⊂ Rn be a compact and convex set. We partition Γ into a set T of

n-simplices ∆i so that Γ is a disjoint union of ∆i up to a set of measure zero.

Let tij be the j-th vertex of ∆i and denote by V = {t1, . . . , t|V|} the union of all

vertices, referred to as labels, with 1 ≤ i ≤ |T |, 1 ≤ j ≤ n+ 1 and 1 ≤ ij ≤ |V|.
For u : Ω → Γ , we refer to u(x) as a sublabel. Any sublabel can be written

as a convex combination of the vertices of a simplex ∆i with 1 ≤ i ≤ |T | for

appropriate barycentric coordinates α ∈ ∆U
n :

u(x) = Tiα :=

n+1∑
j=1

αjt
ij , Ti := (ti1 , ti2 , . . . , tin+1) ∈ Rn×n+1. (4)

By encoding the vertices tk ∈ V using a one-of-|V| representation ek we can

identify any u(x) ∈ Γ with a sparse vector u(x) containing at least |V|−n many

zeros and vice versa:

u(x) = Eiα :=

n+1∑
j=1

αje
ij , Ei := (ei1 , ei2 , . . . , ein+1) ∈ R|V|×n+1,

u(x) =

|V|∑
k=1

tkuk(x), α ∈ ∆U
n , 1 ≤ i ≤ |T | .

(5)

The entries of the vector eij are zero except for the (ij)-th entry, which is equal

to one. We refer to u : Ω → R|V| as the lifted representation of u. This one-

to-one-correspondence between u(x) = Tiα and u(x) = Eiα is shown in Fig. 2.

Note that both, α and i depend on x. However, for notational convenience we

drop the dependence on x whenever we consider a fixed point x ∈ Ω.
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u(x) = 0.7e
2

+ 0.1e
3

+ 0.2e
6

= (0, 0.7, 0.1, 0, 0, 0.2)
>

∆1

∆4

0.2

0.3

t6

t2 t3

Fig. 2: This figure illustrates our notation and the one-to-one correspondence

between u(x) = (0.3, 0.2)> and the lifted u(x) containing the barycentric co-

ordinates α = (0.7, 0.1, 0.2)> of the sublabel u(x) ∈ ∆4 = conv{t2, t3, t6}. The

triangulation (V, T ) of Γ = [−1; 1] × [0; 1] is visualized via the gray lines, cor-

responding to the triangles and the gray dots, corresponding to the vertices

V = {(−1, 0)>, (0, 0)>, . . . , (1, 1)>}, that we refer to as the labels.

2.2 Convexifying the Dataterm

Let for now the weight of the regularizer in (1) be zero. Then, at each point

x ∈ Ω we minimize a generally nonconvex energy over a compact set Γ ⊂ Rn:

min
u∈Γ

ρ(u). (6)

We set up the lifted energy so that it attains finite values if and only if the

argument u is a sparse representation u = Eiα of a sublabel u ∈ Γ :

ρ(u) = min
1≤i≤|T |

ρi(u), ρi(u) =

ρ(Tiα), if u = Eiα, α ∈ ∆U
n ,

∞, otherwise.
(7)

Problems (6) and (7) are equivalent due to the one-to-one correspondence of

u = Tiα and u = Eiα. However, energy (7) is finite on a nonconvex set only. In

order to make optimization tractable, we minimize its convex envelope.

Proposition 1 The convex envelope of (7) is given as:

ρ∗∗(u) = sup
v∈R|V|

〈u,v〉 − max
1≤i≤|T |

ρ∗i (v),

ρ∗i (v) = 〈Eibi,v〉+ ρ∗i (A
>
i E
>
i v), ρi := ρ+ δ∆i

.

(8)

bi and Ai are given as bi := Mn+1
i , Ai :=

(
M1
i , M

2
i , . . . , M

n
i

)
, where M j

i are

the columns of the matrix Mi := (T>i ,1)−> ∈ Rn+1×n+1.

Proof. Follows from a calculation starting at the definition of ρ∗∗. See supple-

mentary material for a detailed derivation.
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t1 t2 Tiα t3

ρ
(u
)

t1 t2 Tiα t3

ρ
(u
)

ρ∗∗(u)

e1

e2

e3
u

Eiα

Standard lifting [11]

ρ∗∗(u)

e1

e2

e3
u

Eiα

Proposed lifting

Fig. 3: Geometrical intuition for the proposed lifting and standard lifting [11]

for the special case of 1-dimensional range Γ = [a, b] and 3 labels {t1, t2, t3}.
The standard lifting correponds to a linear interpolation of the original cost in

between the locations t1, t2, t3, which are associated with the vertices e1, e2, e3

in the lifted energy (lower left). The proposed method extends the cost to the

relaxed set in a more precise way: The original cost is preserved on the connect-

ing lines between adjacent ei (black lines on the bottom right) up to concave

parts (red graphs and lower surface on the right). This information, which may

influence the exact location of the minimizer, is lost in the standard formula-

tion. If the solution of the lifted formulation u is in the interior (gray area) an

approximate solution to the original problem can still be obtained via Eq. (5).

The geometric intuition of this construction is depicted in Fig. 3. Note that if

one prescribes the value of ρi in (7) only on the vertices of the unit simplices

∆U
n , i.e., ρ(u) = ρ(tk) if u = ek and +∞ otherwise, one obtains the linear

biconjugate ρ∗∗(u) = 〈u, s〉, s = (ρ(ti), . . . , ρ(tL)) on the feasible set. This

coincides with the standard relaxation of the dataterm used in [16,10,4,11]. In

that sense, our approach can be seen as a relaxing the dataterm in a more precise

way, by incorporating the true value of ρ not only on the finite set of labels V,

but also everywhere in between, i.e., on every sublabel.
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2.3 Lifting the Vectorial Total Variation

We define the lifted vectorial total variation as

TV (u) =

∫
Ω

Ψ(Du), (9)

where Du denotes the distributional derivative of u and Ψ is positively one-

homogeneous, i.e., Ψ(cu) = cΨ(u), c > 0. For such functions, the meaning of (9)

can be made fully precise using the polar decomposition of the Radon measure

Du [2, Cor. 1.29, Thm. 2.38]. However, in the following we restrict ourselves to

an intuitive motivation for the derivation of Ψ for smooth functions.

Our goal is to find Ψ so that TV (u) = TV (u) whenever u : Ω → R|V|

corresponds to some u : Ω → Γ , in the sense that u(x) = Eiα whenever u(x) =

Tiα. In order for the equality to hold, it must in particular hold for all u that are

classically differentiable, i.e., Du = ∇u, and whose Jacobian ∇u(x) is of rank

1, i.e., ∇u(x) = (Tiα − Tjβ)⊗ ν(x) for some ν(x) ∈ Rd. This rank 1 constraint

enforces the different components of u to have the same jump normal, which is

desirable in many applications. In that case, we observe

TV (u) =

∫
Ω

‖Tiα− Tjβ‖ · ‖ν(x)‖ dx. (10)

For the corresponding lifted representation u, we have ∇u(x) = (Eiα−Ejβ)⊗
ν(x). Therefore it is natural to require Ψ(∇u(x)) = Ψ ((Eiα− Ejβ)⊗ ν(x)) :=

‖Tiα − Tjβ‖ · ‖ν(x)‖ in order to achieve the goal TV (u) = TV (u). Motivated

by these observations, we define

Ψ(p) :=

‖Tiα− Tjβ‖ · ‖ν‖ if p = (Eiα− Ejβ)⊗ ν,

∞ otherwise,
(11)

where α, β ∈ ∆U
n+1, ν ∈ Rd and 1 ≤ i, j ≤ |T |. Since the convex envelope of (9)

is intractable, we derive a “locally” tight convex underapproximation:

R(u) = sup
q:Ω→Rd×|V|

∫
Ω

〈u,Div q〉 − Ψ∗(q) dx. (12)

Proposition 2 The convex conjugate of Ψ is

Ψ∗(q) = δK(q) (13)

with convex set

K =
⋂

1≤i,j≤|T |

{
q ∈ Rd×|V|

∣∣ ‖Qiα−Qjβ‖ ≤ ‖Tiα− Tjβ‖, α, β ∈ ∆U
n+1

}
, (14)

and Qi = (qi1 , qi2 , . . . , qin+1) ∈ Rd×n+1. qj ∈ Rd are the columns of q.
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Proof. Follows from a calculation starting at the definition of the convex conju-

gate Ψ∗. See supplementary material.

Interestingly, although in its original formulation (14) the set K has infinitely

many constraints, one can equivalently represent K by finitely many.

Proposition 3 The set K in equation (14) is the same as

K =
{
q ∈ Rd×|V| |

∥∥Di
q

∥∥
S∞
≤ 1, 1 ≤ i ≤ |T |

}
, Di

q = QiD (TiD)−1, (15)

where the matrices QiD ∈ Rd×n and TiD ∈ Rn×n are given as

QiD :=
(
qi1 − qin+1 , . . . , qin − qin+1

)
, TiD :=

(
ti1 − tin+1 , . . . , tin − tin+1

)
.

Proof. Similar to the analysis in [11], equation (14) basically states the Lipschitz

continuity of a piecewise linear function defined by the matrices q ∈ Rd×|V|.
Therefore, one can expect that the Lipschitz constraint is equivalent to a bound

on the derivative. For the complete proof, see supplementary material.

2.4 Lifting the Overall Optimization Problem

Combining dataterm and regularizer, the overall optimization problem is given

min
u:Ω→R|V|

sup
q:Ω→K

∫
Ω

ρ∗∗(u) + 〈u,Div q〉 dx. (16)

A highly desirable property is that, opposed to any other vectorial lifting ap-

proach from the literature, our method with just one simplex applied to a convex

problem yields the same solution as the unlifted problem.

Proposition 4 If the triangulation contains only 1 simplex, T = {∆}, i.e.,

|V| = n+ 1, then the proposed optimization problem (16) is equivalent to

min
u:Ω→∆

∫
Ω

(ρ+ δ∆)∗∗(x, u(x)) dx+ λTV (u), (17)

which is (1) with a globally convexified dataterm on ∆.

Proof. For u = tn+1 +TDũ the substitution u =
(
ũ1, . . . , ũn, 1−

∑n
j=1 ũj

)
into

ρ∗∗ and R yields the result. For a complete proof, see supplementary material.
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3 Numerical Optimization

3.1 Discretization

For now assume that Ω ⊂ Rd is a d-dimensional Cartesian grid and let Div

denote a finite-difference divergence operator with Div q : Ω → R|V|. Then the

relaxed energy minimization problem becomes

min
u:Ω→R|V|

max
q:Ω→K

∑
x∈Ω

ρ∗∗(x,u(x)) + 〈Div q,u〉. (18)

In order to get rid of the pointwise maximum over ρ∗i (v) in Eq. (8), we introduce

additional variables w(x) ∈ R and additional constraints (v(x), w(x)) ∈ C, x ∈ Ω
so that w(x) attains the value of the pointwise maximum:

min
u:Ω→R|V|

max
(v,w):Ω→C
q:Ω→K

∑
x∈Ω
〈u(x),v(x)〉 − w(x) + 〈Div q,u〉, (19)

where the set C is given as

C =
⋂

1≤i≤|T |
Ci, Ci :=

{
(x, y) ∈ R|V|+1 | ρ∗i (x) ≤ y

}
. (20)

For numerical optimization we use a GPU-based implementation1 of a first-order

primal-dual method [14]. The algorithm requires the orthogonal projections of

the dual variables onto the sets C respectively K in every iteration. However, the

projection onto an epigraph of dimension |V| + 1 is difficult for large values of

|V|. We rewrite the constraints (v(x), w(x)) ∈ Ci, 1 ≤ i ≤ |T |, x ∈ Ω as (n+ 1)-

dimensional epigraph constraints introducing variables ri(x) ∈ Rn, si(x) ∈ R:

ρ∗i
(
ri(x)

)
≤ si(x), ri(x) = A>i E

>
i v(x), si(x) = w(x)− 〈Eibi,v(x)〉. (21)

These equality constraints can be implemented using Lagrange multipliers. For

the projection onto the set K we use an approach similar to [7, Figure 7].

3.2 Epigraphical Projections

Computing the Euclidean projection onto the epigraph of ρ∗i is a central part

of the numerical implementation of the presented method. However, for n > 1

this is nontrivial. Therefore we provide a detailed explanation of the projection

methods used for different classes of ρi. We will consider quadratic, truncated

quadratic and piecewise linear ρ.

1 https://github.com/tum-vision/sublabel_relax
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Quadratic case: Let ρ be of the form ρ(u) = a
2 u
>u+b>u+c. A direct projection

onto the epigraph of ρ∗i = (ρ+δ∆i
)∗ for n > 1 is difficult. However, the epigraph

can be decomposed into separate epigraphs for which it is easier to project onto:

For proper, convex, lsc. functions f, g the epigraph of (f + g)∗ is the Minkowski

sum of the epigraphs of f∗ and g∗ (cf. [17, Exercise 1.28, Theorem 11.23a]).

This means that it suffices to compute the projections onto the epigraphs of

a quadratic function f∗ = ρ∗ and a convex, piecewise linear function g∗(v) =

max1≤j≤n+1〈tij , v〉 by rewriting constraint (21) as

ρ∗(rf ) ≤ sf , δ∆i

∗(cg) ≤ dg s.t. (r, s) = (rf , sf ) + (cg, dg). (22)

For the projection onto the epigraph of a n-dimensional quadratic function we

use the method described in [20, Appendix B.2]. The projection onto a piecewise

linear function is described in the last paragraph of this section.

Truncated quadratic case: Let ρ be of the form ρ(u) = min { ν, a
2 u
>u+b>u+c }

as it is the case for the nonconvex robust ROF with a truncated quadratic

dataterm in Sec. 4.2. Again, a direct projection onto the epigraph of ρ∗i is difficult.

However, a decomposition of the epigraph into simpler epigraphs is possible

as the epigraph of min{f, g}∗ is the intersection of the epigraphs of f∗ and

g∗. Hence, one can separately project onto the epigraphs of (ν + δ∆i)
∗ and

(a2 u
>u + b>u + c + δ∆i)

∗. Both of these projections can be handled using the

methods from the other paragraphs.

Piecewise linear case: In case ρ is piecewise linear on each ∆i, i.e., ρ attains

finite values at a discrete set of sampled sublabels Vi ⊂ ∆i and interpolates

linearly between them, we have that

(ρ+ δ∆i)
∗(v) = max

τ∈Vi
〈τ, v〉 − ρ(τ). (23)

Again this is a convex, piecewise linear function. For the projection onto the

epigraph of such a function, a quadratic program of the form

min
(x,y)∈Rn+1

1

2
‖x− c‖2 +

1

2
‖y − d‖2 s.t. 〈τ, x〉 − ρ(τ) ≤ y,∀τ ∈ Vi (24)

needs to be solved. We implemented the primal active-set method described

in [13, Algorithm 16.3], and found it solves the program in a few (usually 2−10)

iterations for a moderate number of constraints.
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Naive, 81 labels.
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0

1

[11], 81 labels.

−1 1
−1

1

Ours, 4 labels.

Fig. 4: ROF denoising of a vector-valued signal f : [0, 1] → [−1, 1]2, discretized

on 50 points (shown in red). We compare the proposed approach (right) with

two alternative techniques introduced in [11] (left and middle). The labels are

visualized by the gray grid. While the naive (standard) multilabel approach from

[11] (left) provides solutions that are constrained to the chosen set of labels, the

sublabel accurate regularizer from [11] (middle) does allow sublabel solutions,

yet – due to the dataterm bias – these still exhibit a strong preference for the grid

points. In contrast, the proposed approach does not exhibit any visible grid bias

providing fully sublabel-accurate solutions: With only 4 labels, the computed

solutions (shown in blue) coincide with the “unlifted” problem (green).

4 Experiments

4.1 Vectorial ROF Denoising

In order to validate experimentally, that our model is exact for convex dataterms,

we evaluate it on the Rudin-Osher-Fatemi [18] (ROF) model with vectorial

TV (2). In our model this corresponds to defining ρ(x, u(x)) = 1
2‖u(x)− I(x)‖2.

As expected based on Prop. 4 the energy of the solution of the unlifted problem

is equal to the energy of the projected solution of our method for |V| = 4 up to

machine precision, as can be seen in Fig. 4 and Fig. 5. We point out, that the

sole purpose of this experiment is a proof of concept as our method introduces

an overhead and convex problems can be solved via direct optimization. It can

be seen in Fig. 4 and Fig. 5, that the baseline method [11] has a strong label

bias.

4.2 Denoising with Truncated Quadratic Dataterm

For images degraded with both, Gaussian and salt-and-pepper noise we define

the dataterm as ρ(x, u(x)) = min
{

1
2‖u(x)− I(x)‖2, ν

}
. We solve the problem
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Input image Unlifted Problem,

E = 992.50

Ours, |T | = 1,

|V| = 4,

E = 992.51

Ours, |T | = 6

|V| = 2× 2× 2

E = 993.52

Baseline,

|V| = 4× 4× 4,

E = 2255.81

Fig. 5: Convex ROF with vectorial TV. Direct optimization and proposed method

yield the same result. In contrast to the baseline method [11] the proposed ap-

proach has no discretization artefacts and yields a lower energy. The regulariza-

tion parameter is chosen as λ = 0.3.

Noisy input Ours, |T | = 1,

|V| = 4,

E = 2849.52

Ours, |T | = 6,

|V| = 2× 2× 2,

E = 2806.18

Ours, |T | = 48,

|V| = 3× 3× 3,

E = 2633.83

Baseline,

|V| = 4× 4× 4,

E = 3151.80

Fig. 6: ROF with a truncated quadratic dataterm (λ = 0.03 and ν = 0.025).

Compared to the baseline method [11] the proposed approach yields much better

results, already with a very small number of 4 labels.

using the epigraph decomposition described in the second paragraph of Sec. 3.2.

It can be seen, that increasing the number of labels |V| leads to lower energies and

at the same time to a reduced effect of the TV. This occurs as we always compute

a piecewise convex underapproximation of the original nonconvex dataterm, that

gets tighter with a growing number of labels. The baseline method [11] again

produces strong discretization artefacts even for a large number of labels |V| =
4× 4× 4 = 64.
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Image 1 [8], |V| = 5× 5,

0.67 GB, 4 min

aep = 2.78

[8], |V| = 11× 11,

2.1 GB, 12 min

aep = 1.97

[8], |V| = 17× 17,

4.1 GB, 25 min

aep = 1.63

[8], |V| = 28× 28,

9.3 GB, 60 min

aep = 1.39

Image 2 [11], |V| = 3× 3,

0.67 GB, 0.35 min

aep = 5.44

[11], |V| = 5× 5,

2.4 GB, 16 min

aep = 4.22

[11], |V| = 7× 7,

5.2 GB, 33 min

aep = 2.65

[11], |V| = 9× 9,

Out of memory.

Ground truth Ours, |V| = 2× 2,

0.63 GB, 17 min

aep = 1.28

Ours, |V| = 3× 3,

1.9 GB, 34 min

aep = 1.07

Ours, |V| = 4× 4,

4.1 GB, 41 min

aep = 0.97

Ours, |V| = 6× 6,

10.1 GB, 56 min

aep = 0.9

Fig. 7: We compute the optical flow using our method, the product space ap-

proach [8] and the baseline method [11] for a varying amount of labels and

compare the average endpoint error (aep). The product space method clearly

outperforms the baseline, but our approach finds the overall best result already

with 2 × 2 labels. To achieve a similarly precise result as the product space

method, we require 150 times fewer labels, 10 times less memory and 3 times

less time. For the same number of labels, the proposed approach requires more

memory as it has to store a convex approximation of the energy instead of a

linear one.

4.3 Optical Flow

We compute the optical flow v : Ω → R2 between two input images I1, I2.

The label space Γ = [−d, d]2 is chosen according to the estimated maximum

displacement d ∈ R between the images. The dataterm is ρ(x, v(x)) = ‖I2(x)−
I1(x+ v(x))‖, and λ(x) is based on the norm of the image gradient ∇I1(x).

In Fig. 7 we compare the proposed method to the product space approach

[8]. Note that we implemented the product space dataterm using Lagrange mul-
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(a) Image 1 and 2 (b) Proposed, |V| = 2× 2 (c) Baseline, |V| = 7× 7

Fig. 8: Large displacement flow between two 640×480 images (a) using a 81×81

search window. The result of our method with 4 labels is shown in (b), the

baseline [11] in (c). Our method can correctly identify the large motion.

tipliers, also referred to as the global approach in [8]. While this increases the

memory consumption, it comes with lower computation time and guaranteed

convergence. For our method, we sample the label space Γ = [−15, 15]2 on

150× 150 sublabels and subsequently convexify the energy on each triangle us-

ing the quickhull algorithm [3]. For the product space approach we sample the

label space at equidistant labels, from 5×5 to 27×27. As the regularizer from the

product space approach is different from the proposed one, we chose µ differently

for each method. For the proposed method, we set µ = 0.5 and for the product

space and baseline approach µ = 3. We can see in Fig. 7, our method outperforms

the product space approach w.r.t. the average end-point error. Our method out-

performs previous lifting approaches: In Fig. 8 we compare our method on large

displacement optical flow to the baseline [11]. To obtain competitive results on

the Middlebury benchmark, one would need to engineer a better dataterm.

5 Conclusions

We proposed the first sublabel-accurate convex relaxation of vectorial multil-

abel problems. To this end, we approximate the generally nonconvex dataterm

in a piecewise convex manner as opposed to the piecewise linear approxima-

tion done in the traditional functional lifting approaches. This assures a more

faithful approximation of the original cost function and provides a meaningful

interpretation for the non-integral solutions of the relaxed convex problem. In

experimental validations on large-displacement optical flow estimation and color

image denoising, we show that the computed solutions have superior quality

to the traditional convex relaxation methods while requiring substantially less

memory and runtime.
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10. Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and algo-

rithms. SIAM Journal on Imaging Sciences 4(4), 1049–1096 (2011)

11. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regular-

ization for functions with values in a manifold. In: ICCV (December 2013)
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