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Abstract— This paper presents a novel telepresence system
for enhancing aerial manipulation capabilities. It involves not
only a haptic device, but also a virtual reality that provides
a 3D visual feedback to a remotely-located teleoperator in
real-time. We achieve this by utilizing onboard visual and
inertial sensors, an object tracking algorithm and a pre-
generated object database. As the virtual reality has to closely
match the real remote scene, we propose an extension of a
marker tracking algorithm with visual-inertial odometry. Both
indoor and outdoor experiments show benefits of our proposed
system in achieving advanced aerial manipulation tasks, namely
grasping, placing, force exertion and peg-in-hole insertion.

I. INTRODUCTION

Aerial manipulators exploit the manipulation capabilities
of robotic arms located on a flying platform [1]. These
systems can be deployed for tasks that are unsafe and
costly for humans. Some notable examples are repairing
rotor blades of wind turbines and inspecting oil and gas
pipelines in refineries. However, building an autonomous
aerial manipulator [2]–[4] poses several challenges to the
current state-of-the-art robotic technologies. To this end,
existing and close-to-market aerial manipulators are often
tailored to a specific task such as contact inspection [5]–[7].

An alternative is the remote control of an aerial ma-
nipulator (namely, aerial tele-manipulation). Aerial tele-
manipulation, by having a human-in-the-loop, has an advan-
tage that several demands on robot’s cognitive modules can
be replaced by its teleoperator. Furthermore, recent studies
show promising results that indicate a possibility for deploy-
ment of such systems under an imperfect communication
between the robot and the operator. For example, bilateral
teleoperation with force feedback has been demonstrated in
Kontur-2 mission [8] where a cosmonaut from the Interna-
tional Space Station successfully operated a robot on Earth.
In aerial tele-manipulation, the works on force feedback [9]
and shared control [10] can be notably found.

Additionally, 3D visual feedback is an another important
aspect of aerial tele-manipulation systems for enhancing their
manipulation capabilities. During our field experiments with
such platforms, we experienced that a 2D visual feedback
solely based on the live video streams is not sufficient
to achieve precise manipulation tasks. Thus, we deduced
that aerial telepresence systems must involve both real-time
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Fig. 1. An illustration of the proposed concept. Our aerial robot SAM
[14] is designed to achieve a manipulation task in a remote location where
humans find it difficult to reach (see left side of the figure). Consequently
teleoperator from a ground station does not have any visual contact to the
scene. Therefore, the robot’s onboard perception system must provide a
visual feedback to the operator with both 2D and 3D information which
overall enhance its manipulation capabilities (depicted in the right side).

force and 3D visual feedback, which accurately displays
the interactions of the robotic arm with the objects. Several
studies confirm that a virtual environment where one can
change its sight-of-view and provide haptic guidance (e.g.
virtual fixtures) improves the system capabilities [11]–[13].

Therefore, we propose an advanced visual-inertial telep-
resence system, which utilizes visual and inertial sensors to
provide 3D visual feedback to the operator. The resulting
system is equipped with a haptic feedback and a virtual
reality with virtual fixtures. In particular, for creating the 3D
display of a remote scene, we consider an object localization
approach where an object database and a marker tracking
algorithm are used. As existing marker tracking methods
did not suffice our requirements in terms of robustness and
run-time, we propose a new object tracking algorithm by
extending ARToolKitPlus [15] with onboard visual-inertial
odometry (VIO). Lastly, an extension of the framework to
multiple objects is also addressed for pick-and-place tasks.

The proposed concept is tightly integrated to a collision-
safe aerial manipulator called cable-Suspended Aerial Ma-
nipulator (SAM [14]). In particular, the main scenario of
interest is to deploy and retrieve an inspection robotic crawler
(as illustrated in Fig. 1). This scenario, which was designed
under the scope of EU project AEROARMS, is relevant to
inspection and maintenance of gas and oil pipelines in re-
fineries [16]. It involves grasping, placing and pressing tasks
which need to be performed by a remotely located operator.
The proposed algorithm is validated indoors and a peg-in-
hole task with a margin of error less than 1cm is studied,



which further displays SAM’s advanced manipulation skills.
In summary, our main contributions are as follows.
• A visual-inertial telepresence system for aerial manip-

ulation where a new object localization approach is
proposed for creating virtual reality of the remote scene.

• An extend ARToolKitPlus [15] with onboard VIO for
improving its run-time and robustness.

• Experimental validations showing advanced manipula-
tion skills with SAM for the first time. In particular,
our field experiments indicate overall system as a viable
option for inspection and maintenance applications.

Experiments can be seen in the video: https://www.
youtube.com/watch?v=onOc05Ymxzs.

A. Related Works

Several researchers aimed to provide 3D information of
the remote scene for tele-manipulation. For this, 3D recon-
struction techniques have been notably applied so far [17]–
[21] where they aimed to create 3D visualization of an
unknown environment. However, their applicability to our
use-case is limited as the scene has to be mapped first,
and then pre-processed for coping with the noisy 3D vision
data. Unlike these methods, our approach differs as we use
object localization algorithms. Two benefits are: (i) a real-
time display is possible, and (ii) the framework can also
be extended to a pick-and-place task, which requires the
visualization of both the hand-held object and the target of
placement. The later is difficult with the existing methods
when the hand-held object is not rigidly fixed to a gripper.
A recent work AeroVR [22] uses a similar concept to ours.
While the system demonstrates an inspiring way to also
include tactile feedback, the scope differs as AeroVR uses
VICON system for indoor usage.

For object localization, learning-based [23]–[25] and
geometry-based [15], [26] approaches can be found. Recent
learning-based methods with deep neural networks can be
broadly formulated with either explicit [23] or implicit
[25] representations. However, we do not consider machine
learning approaches as the assumption that the test data
distribution to come from training distribution is routinely
violated in the context of field robotics. Within the geo-
metric methods, Fidicual marker systems (based on creating
artificial features on the scene) are widely used in robotics
for ground truths [26], applications where environments are
known [27], simplifying the perception problem in lieu of
sophistication [28] and calibration [29]. However, as we aim
for creating the real-time virtual reality, our use-case provides
stringent requirements on their limitations in run-time and
inherent time-delays. Note that authors [30] show that coping
with time delays in the display improves the performance of
the tele-operation. Furthermore, as we use hand-eye cameras,
our localization method should be robustness to loss-of-sight
as the camera is not guaranteed to see the markers during
the operations. Robustness is important when using haptic
guidance or virtual fixtures for example, where inaccurate
haptic feedback can cause negative effects in terms of the
manipulation performance [31], [32].

Fig. 2. Illustration of our collision-safe aerial manipulation concept; SAM
with helicopter as an aerial carrier (left). Both hand-eye and eye-to-hand
cameras are now integrated (right). We denote CAM1 as mako and CAM2
as hand-eye camera (hc for brevity).

II. CABLE SUSPENDED AERIAL MANIPULATOR

1) Robot hardware: An aerial manipulator SAM [14] is
a complex flying robot composed of an aerial carrier, a
cable-Suspended platform and a 7 degrees of freedom (DoF)
industrial robotic arm KUKA LWR [33]. An aerial carrier
(e.g. crane, manned/unmanned helicopter1) provides means
to transport the robotic platform to a location (see Fig. 2).
Then, a platform suspended to the carrier performs balancing
act by autonomously damping out the disturbances induced
by the carrier and the manipulator. This oscillation damping
control is performed using eight omni-directional propellers
and three winches as its actuators. Design and control aspects
of SAM have been presented previously in [14].

2) Sensors choices and integration: Relevant sensors for
realizing our vision-based telepresence system are as follows.
KUKA LWR [33] is equipped with torque and position
sensors as its proprioceptive sensors. Each joint contains
a torque sensor, incremental and absolute position sensors
which measure its joint torques and angles. Furthermore,
SAM is equipped with optical devices as its exteroceptive
sensors. As shown in Fig. 2, a monocular camera (Allied-
vision Mako) is installed on the frame of the platform to
display the overall operational space of the robotic arm.
This is because the operator prefers eye-to-hand view which
is more natural to a human. The camera provides high
resolution images of 1292 by 964 px at 30Hz. Additionally,
a stereo camera is integrated near the tool-center-point (tcp).
Accuracy of the ficidual marker systems depends on the
distance and its size which justifies the integration of a hand-
eye camera [26]. We use a commercial 3D vision sensor
that provides built-in VIO. Rcvisard provides 1280 by 960
px images at 25Hz and VIO estimates can be acquired at
200Hz. Details on VIO algorithm can be found in [34]

3) Haptic device: A portable and space-qualified haptic
device, the Space Joystick [8] has been integrated to teleop-
erate the LWR located on SAM remotely.

1The purpose of the aerial carrier is to transport the system and hover.
We use a crane in this study which also provides better safety, versatility,
robustness and applicability for our considered application scenario.



Fig. 3. An example of pre-generated object database.

III. VISION-INERTIAL AERIAL TELEPRESENCE

A. 3D Visual Feedback with Object Localization
The aim is virtually displaying the robot and the objects

so that an operator can tele-manipulate remotely. If done in
real-time, the operator can see the virtual remote scene and
perform the tasks. Here, accuracy is crucial as the virtual
world has to closely match the real remote scene. In our
approach, we realize such 3D visual feedback using cameras,
object localization algorithms and known object database
(see Fig. 3). Once objects to be actively manipulated are
known a-priori, the essence of the problem simplifies to
computing relative transformation of an objects with respect
to the camera Thc

object(t) and robot’s tcp Ttcp
object(t). Here, t

denotes time. A fixed transformation Ttcp
hc can be precisely

estimated from CAD models or hand-eye calibration [35].

Ttcp
object(t) = Ttcp

hc Thc
object(t) (1)

In this way, one can exploit object localization methods
based on fiducial markers systems. These systems are widely
adopted in robotics community and have been used as
ground truths for its accuracy [26]. While learning-based
pose estimation methods [25] can be leveraged under the
same framework (for several applications where markers
are not readily available), we limit our scope to validating
the virtual reality concept in lieu of sophisticated object
localization methods. Note that we use Instant Player [36]
for creating the display as it supports various hierarchies of a
scene graph. Using a nested hierarchy, relative transformation
between an object and tools can be routed to display the
scene, while a flat hierarchy can be used to extend the
framework in order to display multiple objects and tools.

However, fiducial markers systems and their extensions
[15], [26]–[28] have also significant drawbacks. It arises
as we consider floating base manipulation outdoors. For
example, shadows are inevitable for outdoor experiments
and once it destroys certain shapes of the tags, the methods
would naturally fail as its assumptions on the artificial visual
features are violated. Similarly, the hand-eye camera (hc)
can lose the view on the marker as the manipulator and the
base can move rapidly. These failure modes (reported in Fig.
4) have consequences on the mission success rates. This is
because it is difficult for the operator to remotely perform
precise manipulation with live streams of 2D images. Eye-
to-Hand views typically suffer from the occlusions of the
grasping points by the robotic arm (also found in humanoid
robots) and lacks depth information. Lastly, time delays that
are inherent in these systems must be corrected in order to
create a real-time virtual display of the scene.

Fig. 4. Failure modes of fidicual marker system in the field experiments.
The figure shows a nominal case (left), and failure modes namely lost of
sight and shadow occlusion (others).

For tackling these problems we propose Algorithm 1 for
which multiple tags are placed on an object with a target
tag x. The algorithm initializes by detecting all the tags
(we denote multiART+ which is based on ArtoolKitPlus
[15]), and saving their relative poses to the target (tag init).
While the process is running, k detected tags and their
IDs are counted (counter multiART+). If all the tags are
detected, n+1 pose estimates of the target tag x can be
computed by transforming pose estimates of non-target tags
T hc

y and their relative transformation to the target tag T y
x

(trafo3d). Then, RANSAC [37] is applied to these estimates
to remove outliers, and then averaging to reduce variance
(ransac avg). Then, relative transformations are updated by
applying RANSAC for the saved estimates, and averaging.
In case atleast one tag is detected, the same step is applied
to estimate the target tag x. These steps have advantages that
(1) accuracy and orientation ambiguity of ArtoolKitPlus can
be improved with RANSAC, and (2) the algorithm is robust
to loss-of-sight of a target (similar to [27], [28], [38]).

However, the algorithm must be robust to loss-of-sight
on all the tags, as we consider object tracking for floating
base manipulators. Algorithm 1 addresses this problem by
integrating VIO estimates of camera motion with respect to
its inertial coordinate Tw

hc(t). If no tags are detected, (2) can
be used to still estimate the target Thc

x,avg(t) (vio integrate).
In (2), Thc

w (t)Tw
hc(t−1) is a relative transformation of camera

motion from time t-1 to t and assumes a static object.

Thc
x,avg(t) = Thc

w (t)Tw
hc(t−1)Thc

x,avg(t−1) (2)

In a similar fashion, the delay of the system td can be
computed (delay computation) and corrected with VIO al-
gorithm by using (3) (vio delay compensator). The herein
delay is present in any perception system (e.g. rectifying
an image) and fiducial marker systems (they are not real-
time). In (3), Tw

hc(t) and Thc
x,avg(t) are computed using VIO

and multi-tag tracking. On the other hand, Thc
w (t + td) can

be computed using linear and angular velocity estimates of
VIO, multiplied by the delay time td .

Thc
x,avg(t + td) = Thc

w (t + td)Tw
hc(t)T

hc
x,avg(t) (3)

These two steps have several advantages. The algorithm is
robust to failure modes of fidicual marker systems (see Fig.
4) as it copes with missing tag detection, and time delays are
incorporated by using velocity signals and computed delay
time. Furthermore, maximum run-time of the algorithm can
be pushed to that of VIO data. The algorithm deals also with
drifts of VIO estimates by using relative motion estimates
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Fig. 5. Illustration of (2) and (3). Left: (2) uses VIO position and orientation
estimates of camera motion to still estimate the object (denoted x,avg) when
marker is not detected. Right: (3) uses linear (yellow arrow) and angular
velocity (blue arrow), and computed time delay td to predict the motion of
the camera in t + td seconds.

only when the tag detection is lost. Note that the method is
one way to use commodity vision sensors with VIO modules
in order to further improve performance. Illustration of these
two steps are found in Fig. 5.

B. Extension of 3D Visualization to Multiple Objects

For tasks such as placing, virtually displaying multiple
objects and their relative pose is required. For example, if
an operator would like to place a cage (with inspection robot
inside) on a pipe which have roughly the same dimension,
the virtual reality should reflect it by displaying the pipe, the
cage, and the orientation changes of the cage with respect
to TCP (e.g. a hook). With 3D reconstruction methods, this
is difficult as one explores the environment for mapping and
process the noisy data points for displaying. In our system,
we tackle this challenge by using the hand-eye camera to
estimate the orientation of the held object, while the eye-to-
hand camera estimates the pose of other objects (e.g. a pipe).
Then, the forward kinematics are leveraged as given below.

Tobject,1
object,2(t) = Tobject,1

mako (t)Tmako
base Tbase

tcp (t)Ttcp
hc Thc

object,2(t) (4)

In (4), transformation from the base to eye-to-hand camera
(mako) Tmako

base and tcp to hand-eye camera Ttcp
hc can be com-

puted using hand-eye calibration [35]. Tobject,1
mako is essentially

updating the local base frame, and the forward kinematics of
the robotic arm Tbase

tcp is typically accurate. Thc
object,2 displays

the pose of the held object. For this, one can use only multi-
marker tracking without linear velocity integration. This is
because markers can always made visible when the objects
are held by the robot.

C. Force Feedback with Space Joystick and LWR

The controller design must ensure a stable bilateral tele-
manipulation with force feedback. The main technical chal-
lenge is to deal with communication time delays, packet
loss and jitters, which can cause instability of the system.
For tackling this, a four channel architecture with time-
domain passivity approach (proposed in [8]) has been used.
A schematic of the system is shown in Fig. 5 and it is
briefly explained as follows. The human operator sends both
position (velocity analogously) and force signals from the
master device (Space Joystick) to the slave (KUKA LWR

Algorithm 1: Robust marker localization
Input: Image I, target marker ID x, n multi marker IDs
y and mapping to object Tx

object.
Output: Pose of the object Tstereo

object(t).
Algorithm:
Thc

x (0), Thc
y1

(0), ..., Thc
yn

(0) ← multiART+(I);
Ty1

x , Ty2
x , ..., Tyn

x ← tag init(Thc
x (0),Thc

y1
(0), ..., Thc

yn
(0))

while object localization == True do
k, id ← counter multiART+(I);
if k == n+1 then

Thc
x (t), ..., Thc

x,yn(t) ← trafo3d(Thc
x (t), Thc

y (t), Ty
x);

Thc
x,avg(t) ← ransac avg(Thc

x (t), ..., Thc
x,yn(t));

Ty1
x , Ty2

x , ..., Tyn
x ← tag init update(Ty

x,pre, Ty
x);

else if 0 < k < n+1 then
if x ∈ id == False then

Thc
x,y1(t), ..., Thc

x,yn(t) ← trafo3d(Thc
y (t), Ty

x);
Thc

x,avg(t) ← ransac avg(Thc
x,y1(t), ..., Thc

x,yn(t));
else

Thc
x (t), ..., Thc

x,yn(t) ← trafo3d(Thc
y (t), Ty

x);
Thc

x,avg(t) ← ransac avg(Thc
x (t), ..., Thc

x,yn(t));
end

else
Thc

x,avg(t) ← Eq. (2);
end
td ← delay computation()
Thc

x,avg(t + td) ← Eq. (3)
Thc

object(t) = Thc
x,avg(t + td)Tx

object
end

Wireless 
Communication 

Channels

TDPA Controller

human & master slave robot

position & force position & force 
with TDPA

force feedback
with TDPA

computed & measured
force

Fig. 6. Controller overview. Communication time delays, packet loss and
jitter can cause instability of the overall system. For coping with this, TDPA
is used for force feedback tele-manipulation.

mounted on the SAM). As these signals pass through com-
munication channels (in the considered scenario, a wireless
communication), they will get affected by time delay. To
ensure stable tele-manipulation, we employ time domain
passivity approach (TDPA [39]). Readers can refer to [8]
for more details and implementations.

D. Haptic Guidance with Virtual Fixtures

On top of real-time virtual reality and haptic device,
another aspect of our telepresence system is haptic guidance
via virtual fixtures [12]. In this work, the virtual fixtures are
implemented as artificial walls that guide the motion of the
slave to the desired target point. If the teleoperator tries to
move the slave device outside these walls, artificial forces are
activated to limit the motion of tcp (slave) and also to provide
haptic feedback to the teleoperator. The virtual fixtures in
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Fig. 7. Our proposed algorithm 1 for object tracking (denoted ours) is
compared to ground truth (Vicon measurements). The algorithm is compared
with two other popular fidicual detection frameworks namely AprilTag 2
(AP2) and ARToolKitPlus (multiART). Our proposed algorithm is robust to
losing the fidicuals in an image, and compensates the delay.

this work are based on Voxmap-PointShell algorithm [36],
[40] and more details on their implementation and parameter
tuning can be found in [41].

IV. EXPERIMENTS AND RESULTS

A. Robust Object Localization: Validation and Analysis

An object localization approach is taken for 3D visual-
ization and thus, accuracy, run-time and robustness of the
proposed algorithm is reported. These results are important
as the created virtual reality should closely match the real
remote scene. For this, we measure the ground truth of
the relative poses between the object and the camera using
Vicon tracking system and evaluate the performance on
sequences that represent peg-in-hole insertion task (see video
attachment). The algorithm is also compared to Apriltag2
[26] (AP2) and ARToolKitPlus [15] without (2) and (3)
(multiART). In Fig. 7, estimated trajectories of relative poses
are compared with Vicon measurements. As depicted, our
proposed algorithm is robust against loss-of-sight problems
of object localization with a hand-eye camera while AP2
and multiART produce jumps as no markers are detected
(t=3s to t=8s as an example). This is due to the design
of the algorithm where we utilize VIO estimates of the
camera pose when the marker is not detected. Furthermore,
multiART suffers from time delay, while AP2 has both
the time delay, and slow run-time. On the other hand, our
proposed algorithm compensates the time delay, resulting in
accurate estimates. Five experiments have been conducted

TABLE I
ACCURACY AND RUN-TIME ANALYSIS

AP2 multiART+ ours
ex,rmse [m] 0.1690 0.1124 0.0252
ey,rmse [m] 0.1265 0.0847 0.0503
ez,rmse [m] 0.1308 0.077 0.0316

eφ ,rmse [rad] 0.2843 0.1867 0.1232
eθ ,rmse [rad] 0.1955 0.1232 0.0703
eψ ,rmse [rad] 0.2565 0.1755 0.1153

trun [s] 0.839 ± 0.0616 0.0525 ± 0.0218 0.0049 ± 0.013

to determine the accuracy of the selected methods with
respect to the ground truth. Note that the trajectory selected
includes loss-of-sight and time delay. The corresponding root
mean squared errors (RMSE) have been reported in Table
I. However, as seen in Table I, AP2 is slow while using
high-resolution images, and this results in more errors as we
compare the trajectories. In our approach, these trajectories
are relevant as we aim for creating virtual reality with object
localization methods. Within our experiments, the analysis
of the accuracy, robustness and run-time further justifies the
proposed algorithm and its additional complexity.

B. Peg-in-Hole Insertion with Virtual Fixtures

A peg-in-hole insertion task with margins of error less
than 1cm is considered in which operator does not have any
direct visual contact to the real scene. The main challenge in
this setting is on the fidelity of virtual reality and resulting
virtual fixtures. With the fidelity provided by our proposed
algorithm and resulting virtual fixtures, a peg-in-hole task has
been performed (see the attached video material). The results
are depicted in Fig. 9 and Fig. 10. Fig. 9 plots force signals
acting on the slave end-effector which constitutes computed
force from master’s position commands, and force due to the
virtual fixtures. Position tracking of tcp towards the target
(hole) is shown in Fig. 10. As these position signals are
expressed in LWR base frame (see Fig. 6 for definition),
the target also moves due to the motion of SAM. This
experiment shows the benefits of our proposed telepresence
system, as SAM is able to perform a precise manipulation
task. Note that the accuracy of object localization improves
over reported values in Table I when the peg is near the hole
(shown in Fig. 7) which makes the task feasible.

C. Field Experiments and Validation

A field experiment is conducted in order to demonstrate
the applicability of SAM within a relevant industrial scenario
for aerial manipulation. This scenario involves a maintenance
and inspection task in which SAM has to deploy and retrieve
a 6.4kg inspection robot to a remotely located pipe. To
transport the inspection robot, a cage (approximately of the
same size as the pipe and the inspection robot) has been
designed. For this mission, SAM has to (a) grasp the cage
with a hook at location A with a hook used as end-effector for
the LWR, (b) move to location B where the pipe is located,
(c) place the cage on the pipe, and (d) press the cage while
the inspection robot moves out. The teleoperator is located in
a ground station and thus, has no direct visual contact to the



Fig. 8. Results of field experiments for AEROARMS [16] industrial scenario. SAM successfully deployed and retrieved a pipe inspection robot by
performing grasping (left), placing (middle) and pressing (right). As we consider outdoor manipulation tasks with an industry relevancy, the system has
to both address force feedback, and 3D visual feedback. 2D visual feedback (bottom row), as depicted above, is not sufficient as the depth information
is missing and subject to under exposure. On the other hand, the virtual environment (middle row) does not suffer from these problems, and the operator
can zoom-in and out, and change its sight-of-view. These experiments show SAM with telepresence as a viable option for future applications.
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Fig. 9. Force signals on slave’s end-effector expressed in LWR base frame.
These forces compose of artificial force from a virtual fixture, and computed
forces from master’s commanded positions.
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Fig. 10. TCP and target positions expressed in LWR base frame. For peg-
in-hole insertion, tcp is commanded to follow the target. Note that the target
position changes as SAM moves, and it is expressed i in LWR base frame.

scene. For this scenario, we tackle precision grasping, placing
and pressing tele-manipulation tasks at a remote location, and
the results are depicted in Fig. 8. In particular, 2D images
alone do not show the depth information (placing task) and
are often occluded (grasping and pressing phases). With only
force feedback, a precise manipulation is difficult for this
scenario. On the other hand, the virtual reality provides
3D information of the remote scene, and moreover, one
can change the sight-of-view to avoid an occluded visual
feedback. These results show the benefits of our telepresence
system. By touching and seeing, the teleoperator is able to
perform precise manipulation tasks for an industrial use-case.

The field experiments for AEROARMS industrial scenario
did not use the haptic guidance using virtual fixtures and
VIO compensations for achieving the basic teleoperation
tasks. For further improving the inspection and maintenance
scenario, we plan to perform a user-study to investigate the
degree of improvements with this shared autonomy concept
and further joint demonstration with recent developments on
SAM [42], [43]. Lastly, robotic introspection [44] for object
localization is another research direction that can support in
industrial deployments of these systems.

V. CONCLUSION

This paper presents a vision-inertial telepresence concept
in which onboard sensors, an object tracking algorithm and
databases of objects were utilized to provide a 3D visualiza-
tion of the scene in real-time. From our experiences in the
field, we believe that providing a 3D visual feedback to the
tele-operator is required in aerial manipulation applications at
remote sites where a direct and close visual contact to the ob-
jects are genuinely difficult. Our demonstration of advanced
aerial manipulation shows that SAM with telepresence is a
viable concept for inspection and maintenance applications.
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