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Fig. 1: Demo of our CPA-SLAM algorithm. Left: plane segmentation and association of all keyframes (same color depicts associated planes; association
requires a minimal overlap). The found planes include segmentation errors, e.g., objects on tables and close to walls. Middle: average soft association with
the plane model from tracking with our EM framework. The probability of a pixel being associated with a plane drops from yellow (1) to blue (0). Right:
final map and plane-keyframe constraints used for graph optimization.

Abstract— Planes are predominant features of man-made
environments which have been exploited in many mapping
approaches. In this paper, we propose a real-time capable
RGB-D SLAM system that consistently integrates frame-to-
keyframe and frame-to-plane alignment. Our method models
the environment with a global plane model and – besides direct
image alignment – it uses the planes for tracking and global
graph optimization. This way, our method makes use of the
dense image information available in keyframes for accurate
short-term tracking. At the same time it uses a global model
to reduce drift. Both components are integrated consistently in
an expectation-maximization framework. In experiments, we
demonstrate the benefits our approach and its state-of-the-art
accuracy on challenging benchmarks.

I. INTRODUCTION

Man-made environments are composed of many ob-
jects with simple geometric properties that can be used
for reference in visual simultaneous localization and map-
ping (SLAM) systems. In this process, these objects rep-
resent higher-level semantic information in the map, which
could be used, e.g., for robots to reason about the world,
to communicate information, or to display information to
users, for instance, using virtual reality devices. The object
states can be concurrently estimated with the motion of the
camera. Integrated consistently, camera motion and object
state estimation can benefit from each other.

In this paper, we propose a novel formulation for including
planes as a global model into a direct, keyframe-based
SLAM approach with an expectation-maximization (EM)
framework. For tracking and map optimization, we propose
an image alignment method that tracks the camera motion
towards a reference keyframe and, at the same time, aligns
the image with the planes in a global model. The model
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planes are concurrently extracted from the keyframes and
estimated in global coordinates using graph optimization. By
including both local frame-to-keyframe and global frame-to-
model constraints in direct image alignment, we significantly
reduce drift that is a typical problem of pure keyframe-
based SLAM methods. Graph constraints between keyframes
without overlapping views can be established if they observe
the same model plane. An additional benefit of our method
is that it provides a compact planar scene representation.

We name our algorithm CPA-SLAM and show a demo
in Fig. 1. On the left we visualize for all keyframes their
segmentation into planes and the association of these planes
based on a minimal overlap citerion. It can be seen that
there are some false segmentations, e.g., small objects on
and close to surfaces such as walls and tables are included
into the plane segments. Shown in the middle, we illustrate
that our EM tracking automatically determines not to align
these pixels with the plane model. The final model on
the right demonstrates the accurate mapping achieved with
our method. It also shows the constraints between non-
overlapping keyframes that are otherwise difficult to establish
without the plane model. The major contributions of this
work are summarized as follows:

• We develop an RGB-D SLAM approach that con-
sistently tracks camera motion through direct image
alignment towards a keyframe (as in [1]) and a global
plane model in an EM framework.

• We further use this alignment method to obtain spatial
constraints between keyframes and the global plane
model. These are jointly optimized with alignment
constraints between keyframes for global consistency.

• We demonstrate a real-time capable SLAM system.

We compare our method to state-of-the-art approaches on
challenging benchmark datasets and demonstrate improve-
ments in trajectory estimation accuracy in relation to these
approaches.
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Fig. 2: Schematic pipeline of our CPA-SLAM system.

II. RELATED WORK

Several approaches to visual SLAM have exploit planes as
typical features in man-made environments. Gee et al. [2] use
planes to reduce the amount of interest points in a monoc-
ular Kalman-filter based SLAM approach. In [3], planes
are also included in the state-space of an EKF method to
monocular SLAM. This method focusses on the incremental
optimization of the planes in a global frame for augmented
reality applications. In [4], orthogonality of planes in indoor
environments is exploited to improve the consistency of plane
models and SLAM. Martinez-Carranza et al. [5] propose a
unified parameterization for points and planes in a monocular
EKF-SLAM system.

In RGB-D SLAM, dense depth enables the detection of
texureless planes. Dou et al. [6] combine planes and interest
points in frame-to-frame matching and bundle adjustment.
They detect planes using a Hough-voting scheme. The corre-
sponding planes between frames are found through RANSAC
which yields plane tracks throughout the RGB-D sequence.
Global planes are instantiated from the tracks and used within
bundle adjustment. Since there may exist several tracks of
the same plane entity, the planes are merged according to
distance criteria. Taguchi et al. [7] also use interest points
and planes for SLAM with RGB-D sensors. They directly
use various combinations of point and plane observations in a
RANSAC framework to determine correspondence and cam-
era pose between frames and a global map. Trevor et al. [8]
use RANSAC to find the major planes in a scene from
RGB-D and 2D laser measurements. SLAM is performed
in an EKF framework, associating plane observations with
global planes in the map. Salas-Moreno et al. [9] integrate
incremental plane mapping into point-based fusion [10].
Besides isolated surfels, they also label surfels to belong to
the same planar structure and enforce planarity constraints
in their estimates.

Some works also have tackled the problem of including
object detection into SLAM. Salas-Moreno et al. [11] detect
objects from a model database and estimate their poses
in individual frames. The poses of these objects in the
global frame are then estimated through graph optimization.
Another similar work is semantic bundle adjustment [12]
in which the objects are detected and tracked, and included
as 6-DoF landmarks in a bundle adjustment framework.
In contrast to our approach, both methods do not handle
a seamless transition between object and remaining image
measurements already in the camera tracking part.

Our method applies direct alignment towards keyframe
and plane model consistently in an EM framework to esti-
mate camera motion. We also use both keyframes and planes

to obtain spatial constraints for global graph optimization.

III. DIRECT SLAM WITH MODEL PLANES

Our SLAM system has a mixed nature of frame-to-
keyframe and frame-to-model online tracking. As a global
model, we maintain a set of planes that originate from
keyframe segmentation to present the large smooth regions
in the scene. We optimize the global plane model with all
observations from the keyframes.

Fig. 2 illustrates our SLAM system. At the front-end
tracking, each RGB-D frame is aligned towards its nearest
keyframe as well as the global plane model in an EM
framework. An RGB-D frame becomes a new reference
keyframe, if the certainty of motion estimation drops below a
threshold. When a new keyframe is produced, an iteration of
back-end optimization starts. In this process, we first segment
the keyframe and associate the detected planes with the
global model. Planes that are failed to be associated with
existing planes in the model are included as new planes
into the model. We further search for loop closures between
keyframes and establish constraints between keyframe and
the global model given the keyframe plane observations.
The graph is then optimized to correct the keyframe poses
and the plane model. The front-end tracking and back-end
optimization can be processed in parallel.

In the following section, we will first explain the in-
cremental construction of the plane model. We then detail
our algorithm for camera tracking through direct image
alignment towards a keyframe and the plane model. Last,
we explain how we optimize the plane model and the camera
poses through graph optimization.

A. Preliminaries

We denote the index of a keyframe by k and the current
frame by i. An image is considered as a 2D continuous
domain Ω ⊂ R2 which can be segmented into disjoint
regions Ωj . We denote a 3D point by v, its unit normal
by n, and a 2D pixel by x. The projection of a 3D point
onto the 2D image is x = ρ(v), and the back-projection is
v = ρ−1(x). To represent the rigid body motion in SE(3),
we use the minimal parameterization with twist coordinate
ξ of Lie algebra se(3). The exponential map g(ξ) = exp(ξ̂)
converts the twist coordinate to a transformation matrix,
and the log map g−1 operates vice versa. The subscript
of ξ specifies direction: ξji transforms from frame i to
j, and ξi = ξwi transforms from frame i to the world.
The inverse motion is denoted by ξ−1i = ξiw. We further
define function t(ξ,v) = g(ξ)v to transform 3D points, and
ω(ξ,x) = ρ

(
t
(
ξ, ρ−1(x)

))
to warp pixels between frames.



We parametrize planes using the Hessian form π =
(nT, d)T, where n is the unit plane normal, and −d is the
distance from the plane to the origin. The distance of any
point v to the plane is calculated by rD = nTv+d. A plane
observed in frame k is transformed into world coordinates
by t(ξk,π) = g(ξk)−Tπ.

B. Global Plane Model

We define the global plane model as a set of planes in
the world coordinates {πgm}. This model represents large flat
surfaces in a scene. Each plane πgm in the model is associated
with a list of independent local observations πmk in the
keyframes. The global plane model is estimated through
graph optimization using all local observations, which we
detail in Section III-F.

The global plane model is augmented incrementally.
Whenever a new keyframe is produced, it is segmented into
K regions, where Ω0 is the non-planar region and Ωj , j > 0
is the jth plane. For efficient plane detection, we apply
the agglomerative hierarchical clustering (AHC) algorithm
proposed by Feng et al. [13]. For each plane segment, least
squares plane fitting is used to estimate its parameters. We
then associate the local observations with the global model.
A correspondence is found if the angle between the plane
normals is small (< 15°) and their distances to the origin are
similar. We further confirm the association by warping the
current plane segment into other keyframes and examine the
overlaps. If a local plane observation fails to be associated,
it is added to the global model as a new element.

C. Tracking towards Keyframe and Plane Model

We now describe motion estimation from the current
frame i to the keyframe k by minimizing both photometric
error rI and geometric error rG . To simplify the notation,
we drop the subscript of ξ in this section.

1) Formulation: The photometric residual is defined on
the intensity image assuming photoconsistency as

rI = Ik
(
ω(ξ,x)

)
− Ii(x). (1)

The geometric residual is defined by

rG =

{
nT
k

(
g(ξ,vi)− vk

)
if ω(ξ,xi) ∈ Ω0

nT
πjg(ξ,vi) + dj if ω(ξ,xi) ∈ Ωj

, (2)

which depends on whether the current pixel xi is warped
to the non-planar region Ω0 or the jth planar region Ωj
of the keyframe. In case of Ω0, the geometric residual
resembles a variant of ICP [14]. Otherwise, the residual is
the distance to the corresponding global plane transformed
into the keyframe, thus, (nT

πj , dj)
T = t(ξ−1k ,πgm).

Combining the photometric and geometric error into one
variable r = (rI , rG)T, and with N correspondences between
keyframe and current frame, we find the camera motion by
minimizing the following non-linear weighted least squares,

ξ∗ = arg min
ξ

N∑
n

K∑
k

γnkwnkr
T
nΣ−1k rn. (3)

The weight wnk is used to enhance the robustness against
outliers and can be iteratively estimated. In our case, the
weights are derived from a Student-t distribution as proposed
in [1]. The variable γn ∈ RK is the labeling that indicates
which region the residual belongs to. Accordingly, γn0 refers
to non-planar region Ω0 and γnj refers planar region Ωj .
Instead of a hard labeling γnk ∈ {0, 1}, we use the soft la-
beling γnk ∈ [0, 1] to increase robustness. This objective can
be efficiently optimized with the Gauss-Newton method. In
the following we will address how to concurrently determine
γ,w,Σ in a probabilistic formulation.

2) A Probabilistic View on Motion Estimation: The op-
timization problem in eq. (3) cannot be solved directly,
because the parameters γ,w,Σ also need to be estimated
in addition to the motion ξ. To solve for both, we motivate
the same energy function from a probabilistic point of view
and show that optimizing eq. (3) is equivalent to optimizing
a mixture of bivariate t-distributions in an EM framework.

Suppose that K − 1 planes are visible in the keyframe.
For each pixel observation with residual rn, there is a
corresponding indicator zn ∈ BK that tells which segment
the geometric observation comes from. As an indicator, zn
satisfies znk ∈ {0, 1} and

∑K
k znk = 1. Now, assume the

following probability

p(znk = 1) = ηk, p(rn|znk = 1) = pt(rn; 0,Σk, νk), (4)

which can also be written in a compact form,

p(zn) =

K∏
k

ηznk

k , p(rn|zn) =

K∏
k

pt(rn; 0,Σk, νk)znk .

(5)
The marginal probability of rn is therefore,

p(rn) =

K∑
k

ηkpt(rn; 0,Σk, νk), (6)

which is a mixed model of bivariate t-distributions. Seeking
motion ξ by maximum-likelihood estimation, yields

ξ∗ = arg max
ξ

log p(r|ξ)

= arg max
ξ

N∑
n

log
( K∑

k

ηkpt(rn; 0,Σk, νk)
)
. (7)

With the distribution of r being a mixed model, the logarithm
acts outside the summation and the direct optimization no
longer yields a weighted least squares form. Even worse,
there is no closed-form solution for the hyper-parameter Σk.

The indicator zn is a latent variable which we cannot ob-
serve directly. Therefore, the observed data r are incomplete,
while {r, z} are complete. Using eq. (5), the complete log-
likelihood is,

log p(r, z) = log

N∏
n

K∏
k

(
ηkpt(rn; 0,Σk, νk)

)znk

=

N∑
n

K∑
k

znk log
(
ηkpt(rn; 0,Σk, νk)

)
. (8)



This shows that with the knowledge of the indicators z we
can regain the simple form of the optimization problems to
estimate motion and hyper-parameters.

3) Tracking as Expectation-Maximization: The EM al-
gorithm provides a probabilistic formalism to estimate the
parameters of posterior probability functions with latent
variables as in eq. (7). It constructs a lower bound on the
log-likelihood by optimizing the Kullback-Leibler divergence
between a simpler approximation and the actual posterior
probability (see [15] for details). In EM, one therefore
optimizes the conditional expectation of the log joint prob-
ability, conditioned on the posterior probability of the latent
variables. In our case, this is

Ep(z|r)[log p(r, z)] =

N∑
n

K∑
k

γnk log
(
ηkpt(rn; 0,Σk, νk)

)
,

(9)
where we define the mixing coefficient

γnk = Ep(z|r)[znk] = p(znk|rn). (10)

Further writing out the EM objective function yields,

Ep(z|r)[log p(r, z)] =

N∑
n

K∑
k

γnk · (νk + 2)

νk + rTnΣ−1k rn
rTnΣ−1k rn.

(11)
Apparently, this corresponds to the previous objective func-
tion in eq. (3) by setting

wnk =
νk + 2

νk + rTnΣ−1k rn
. (12)

Now we can deduct the EM steps. In the (t + 1) E-
step, we estimate the posterior probability of z holding
parameters ξ,η,Σ from the t M-step fixed. Working out
the mathematical details, this yields

γt+1
nk =

ηtkpt(rn; 0,Σt
k, νk)∑K

j η
t
jpt(rn; 0,Σt

j , νk)
. (13)

In the (t + 1) M-step, we in turn solve for the motion
estimation holding the mixing coefficients from the (t + 1)
E-step fixed. To this end, eq. (11) is iteratively linearized
with first-order Taylor approximation of r. At each iteration,
this yields a normal equation to solve for an increment ∆ξ
on the motion,

N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ−1k Jn∆ξ

= −
N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ−1k rn. (14)

The hyper-parameters are then updated by

ηt+1
k =

1

N

N∑
n

γt+1
nk , Σt+1

k =

∑N
n γ

t+1
nk w

t+1
nk rnrTn∑N

n γ
t+1
nk

. (15)

From the above deduction, we see the alternating opti-
mization principle of EM. The E-step computes the soft

(a) keyframe and its plane segmentation

(b) hard labeling (c) EM, shown with 1− γn0
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Fig. 3: Comparison between the hard labeling and EM soft labeling to
associate planar points in the current frame. The soft labeling is more robust
against the false segmentation in the keyframe, e.g., the keyboard and the
book are assigned 0 probability to being on the plane of the table.

labeling given the current parameter values, while the M-
step reestimates the parameters based on the latest soft
labeling. To implement the EM framework, we use projective
data association [16] to guide the iterative EM steps. At
each M-step, we warp the current frame into the keyframe
and find correspondences for pixels if possible. With the
segmented keyframe, the data association propogates the
keyframe labeling to the current frame. Since we have small
motion between frames and a good initial guess through
tracking, the label propogation is mostly correct. Therefore,
if a point is associated with plane j, we compute γnj
according to eq. (13) and set γn0 = 1− γnj . Otherwise, we
set γn0 = 1. This implementation efficiently approximates
the original EM solution due to the fact that a point most
likely belongs to only one plane (up to plane intersections).

D. Properties of the EM Formulation

While our tracking method estimates camera motion, it
also estimates the segmentation of the current frame via soft
labeling. Note that a hard labeling can be easily obtained
using projective data association. However, soft labeling is
preferred, as it is more robust against false segmentation.
We illustrate this in Fig. 3, where the plane segmentation
contains outliers (e.g., the keyboard and the book). These
false detections are difficult to avoid due to noise and extreme
scenarios with two close parallel planes.

Another property of our EM tracking is demonstrated in
Fig. 4, which shows the soft labeling of subsequent frames
that are aligned to the same keyframe. In this example, track-
ing trusts the keyframe data more when the current frame has
a small temporal and spatial distance to the keyframe, while
it trusts the global plane model more when the current frame
is further away. This is logical and as expected. With frames
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(a) keyframe (c) the 1st, 11th, 21st, 31st and 44th (the last) frames that are registered to the keyframe

(b) plane segmentation (d) corresponding EM soft labeling of (c), shown value of 1− γn0

Fig. 4: Properties of our tracking method: While EM trusts the keyframe data more if the current frame has a small temporal and spatial distance to the
keyframe, it otherwise relies more on the global planar map. See Sec. III-D for details.

being close to the keyframe, the measurements very well
correspond to keyframe data and, hence, direct alignment
to the keyframe yields reliable and accurate registration.
However, when a frame moves away from the keyframe
both temporally and spatially, the difference between the
measurements increases and drift accumulates. In such cases,
the global plane model becomes beneficial.

E. Keyframe Selection and Loop Closure Detection

Following the work of [1], keyframes are selected by
examining the uncertainty of motion estimation. The normal
equation (14) provides an approximate Hessian matrix H,

H =

N∑
n

K∑
k

γt+1
nk w

t+1
nk JT

nΣ−1k Jn. (16)

Its inverse gives a lower bound on the covariance of the es-
timated motion, i.e., Σξ ≈ H−1. Assuming ξ ∼ N (ξ∗,Σξ),
we can extract the uncertainty embedded in covariance into
a scalar value using the differential entropy h(ξ) = 3

(
1 +

ln(2π)
)

+ 0.5 ln(|Σξ|). Given the current keyframe k, we
test the entropy ratio for every consecutive frame tracked
towards the keyframe by α = h(ξk+j)/h(ξk+1). Whenever
α drops below a pre-defined threshold, the (k+j)th frame is
selected as the new keyframe. Empirically, we find the value
range 0.9 ∼ 0.95 to generate good performance.

Whenever a new keyframe is produced, we find loop
closures by comparing the current keyframe to previous
keyframes via a spatial search. To register two keyframes,
we use direct image alignment and initialize the estimation
with the transformation computed from their poses. The same
ratio test is performed to determine a successful closure.
After the last keyframe being produced, we run an additional
loop closure search for all keyframes.

F. Joint Pose and Plane Graph Optimization

On the global scale, we optimize the keyframe poses and
the model planes for consistency in a graph

Θ∗ = arg min
Θ

∑
i,j

eT
ijHijeij , (17)

where eij is the error of the edge connecting vertices i, j
and Hij is the information matrix. The variable Θ is the
list of the parameters to be optimized. In our case, Θ =
(ξ1, ξ2, . . . , ξN ,π

g
1,π

g
2, . . . ,π

g
M ). Since there are two types

of vertices, keyframe poses and global planes, the graph
also consists of two types of edges: between two poses and
between a plane and a keyframe pose.

For an edge connecting two poses ξi and ξj with the
measured constraint ξji, the edge error is calculated by

eij = g−1
(
g(ξ−1i )g(ξj)g(ξji)

)
, (18)

The Hessian in eq. (16) is used as the information matrix.
Now we define the error for an edge connecting a global

plane πgj and a keyframe pose ξi, given the local plane ob-
servation πji in the keyframe. Notice that the Hessian plane
equation is an over-parameterization of 3D planes, since
a plane has only three degrees of freedom. Therefore, the
Hessian form will lead to complications in the optimization,
which requires extra constraints to ensure the unit length of
the plane normal. To avoid this problem, we use the minimal
parameterization τ = (φ, ψ, d), where φ and ψ are the
azimuth and elevation angle of the normal, respectively. The
following conversion between the Hessian and the minimal
representation applies,

τ = q(π) = (φ = arctan
ny
nx
, ψ = arccosnz, d)T, (19)

q−1(τ ) = (cosφ cosψ, sinφ cosψ,− sinψ, d)T. (20)

To avoid the singularities of the minimal representation, we
force the angle to fall into (−π, π]. The error for plane-
keyframe edges is then defined as

eij = q(πgj )− q
(
t(ξi,πji)

)
. (21)

The information matrix for plane-keyframe edges is set to
isotropic using σ−2π I .

We optimize the graph when a new keyframe is inserted
into the graph using the g2o [17] framework.



Fig. 5: Comparison of accumulated point clouds from keyframes using SLAM. From left to right: tracking without planes, hard labeling the planes, and
soft labeling the planes (our EM approach).

IV. EXPERIMENTAL RESULTS

In this section, we evaluate our EM tracking method
and the overall SLAM algorithm. Two public datasets with
groundtruth trajectories are used in the assessment: the
TUM RGB-D benchmark [18] and the ICL-NUIM synthetic
scenes [19]. We also evaluate our algorithm with the Stanford
scene3D dataset [20], which has longer and more compli-
cated trajectories. The EM tracking is implemented with
CUDA and run on an NVidia GTX780 GPU with 2304 cores,
3.7 GHz, and 3 GB memory. The remaining SLAM methods
are implemented in C++ to run on CPU and evaluated with
an Intel Core i7-2660, 3.4 GHz and 8 GB RAM.

In the first experiment, we evaluate the performance of our
EM tracking method by comparing with two other variants:
a) tracking without planes and b) tracking with planes using
hard-labeling. We set α = 0.9 for keyframe selection in
all methods and compare the obtained trajectories without
the final graph optimization. Table I shows the root mean
square error (RMSE) of the absolute trajectory error (ATE)
and Fig. 5 gives a visual comparison of the alignment results.
It can be seen that our tracking improves trajectory accuracy
and yields better consistent models.

In the second experiment, we evaluate the benefits of
the global plane model in our full CPA-SLAM system.
Table II presents a comparison between our method and
two other SLAM algorithms that use planes: dense planar
SLAM [9] and point-plane SLAM [7]. Our EM-based al-
gorithm achieves much better accuracy on the sequences.
These improvements come from joining the advantages of
keyframe-based and model-based tracking into a flexible and
robust EM framework.

We also compare our CPA-SLAM algorithm to several
state-of-the-art RGB-D SLAM systems, including DVO-
SLAM [1], Kintinuous with deformable mapping [21],
MRSMap [22], and RGB-D SLAM [23]. We report the ATE
of the final trajectories in Table III. The results showcase
that our SLAM algorithm performs better or on par with the
state-of-the-art algorithms on the sequences. For sequences
with many planar structures or containing heavy noise, e.g.,
fr3/nst, iclnuim/lr2noisy and iclnuim/lr3noisy, our algorithm
demonstrates most advantages in reducing tracking errors.
Fig. 6 shows the output of our SLAM methods. It can be
seen that with a global plane model, constraints between
non-overlapping keyframes are established, as long as they

TABLE I: RMSE of absolute trajectory error (no final optimization) of
tracking methods: without plane model, plane model with hard labeling and
plane model with soft EM labeling (bold marks the best).

dataset without plane hard labeling soft labeling

fr1/desk 0.034 0.080 0.030
fr1/plant 0.050 0.072 0.073
fr2/desk 0.097 0.134 0.095
fr3/office 0.086 0.077 0.076
fr3/structure texture near 0.049 0.028 0.036
fr3/nst 0.076 0.032 0.032
iclnuim/lr3 0.002 0.049 0.002
iclnuim/lr3noisy 0.028 0.024 0.019

TABLE II: Comparison of our CPA-SLAM to other SLAM algorithms that
use planes. The RMSE of the absolute trajectory error (m) is shown and
the results of other methods are cited from the original papers.

dataset CPA-SLAM planar SLAM [9] point-plane SLAM [7]

iclnuim/lr0noisy 0.007 0.246 –
iclnuim/lr1noisy 0.006 0.017 –
fr1/xyz 0.011 – 0.024
fr1/floor 0.085 – 0.065

observe the same global plane. As can be seen, geometry is
accurately reconstructed from the estimated trajectory.

Table IV presents the runtime of the computationally
intensive parts of our method. Tracking achieves real-time
performance with approximately 50 fps. Plane segmentation
is also efficiently performed with approximately 100 fps.
Combining frame tracking, plane segmentation and associ-
ation, our implementation requires around 40 ms to process
one keyframe. Searching loop closures and optimizing the
graph requires relatively long time, however, this can be run
on parallel CPU threads. As a result, our method is capable
of real-time performance for 30 fps RGB-D mapping.

V. CONCLUSION

In this paper, we proposed a novel method that combines
direct image alignment and global model alignment for RGB-
D SLAM. Our method tracks camera motion towards the
nearest keyframe and the global plane model in an EM
framework. This reduces drift and establishes constraints
among non-overlapping keyframes that observe the same
plane. The keyframe poses and the plane model are optimized
in one graph concurrently. Our method exhibits state-of-the-
art accuracy on publicly available benchmark datasets and
is capable of real-time performance. In future work, we will



Fig. 6: Fused model by our SLAM methods. The trajectories with and without graph optimization are shown in blue and red, and the constraints between
keyframe poses and planes are shown in cyan.

TABLE III: The RMSE of the absolute trajectory error (m) of our CPA-SLAM approach in comparison to state-of-the-art algorithms (bold marks best).

SLAM system fr1/desk fr1/desk2 fr1/plant fr1/room fr1/rpy fr1/xyz fr2/desk fr2/xyz fr3/office fr3/nst iclnuim/lr2noisy iclnuim/lr3noisy

CPA-SLAM 0.018 0.029 0.029 0.055 0.024 0.011 0.046 0.014 0.025 0.016 0.089 0.009
DVO-SLAM 0.021 0.046 0.028 0.053 0.020 0.011 0.017 0.018 0.035 0.038 0.339 0.152
Kintinous 0.037 0.071 0.047 0.075 0.028 0.017 0.034 0.029 0.030 0.031 0.129 0.864
MRSMap 0.043 0.049 0.026 0.069 0.027 0.013 0.052 0.020 0.042 1.530 0.331 1.127
RGB-D SLAM 0.023 0.043 0.091 0.084 0.026 0.014 0.095 0.026 – – – –

TABLE IV: The average runtime performance of our algorithm in ms. Frame
tracking runs well within the typical camera frame-rate of 30 fps. Plane
segmentation and association has to run only at each keyframe creation. The
comparably slow graph optimization runs in a background thread. Therefore,
our RGB-D SLAM is able to perform in realtime.

fr3/office fr3/nst iclnuim/lr3noisy

keyframes/ frames 118/ 2489 66/ 1637 59/ 1241
global planes/ local planes 18/ 197 1/ 66 7/ 64
frame tracking (ms) 20.9 24.1 23.2
plane segmentation (ms) 9.3 14.4 9.8
plane association (ms) 10.7 8.4 8.4
graph optimization (ms) 75.8 24.0 22.0

consider the integration of further types of geometric shapes
and complex objects into our SLAM system. One important
question here is how to learn and acquire object models on-
the-fly, and how to come to adequate object hypotheses.
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