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Abstract— Visual scene understanding is an important capa-
bility that enables robots to purposefully act in their environ-
ment. In this paper, we propose a novel deep neural network
approach to predict semantic segmentation from RGB-D se-
quences. The key innovation is to train our network to predict
multi-view consistent semantics in a self-supervised way. At test
time, its semantics predictions can be fused more consistently in
semantic keyframe maps than predictions of a network trained
on individual views. We base our network architecture on a
recent single-view deep learning approach to RGB and depth
fusion for semantic object-class segmentation and enhance
it with multi-scale loss minimization. We obtain the camera
trajectory using RGB-D SLAM and warp the predictions of
RGB-D images into ground-truth annotated frames in order
to enforce multi-view consistency during training. At test time,
predictions from multiple views are fused into keyframes. We
propose and analyze several methods for enforcing multi-view
consistency during training and testing. We evaluate the benefit
of multi-view consistency training and demonstrate that pooling
of deep features and fusion over multiple views outperforms
single-view baselines on the NYUDv2 benchmark for semantic
segmentation. Our end-to-end trained network achieves state-
of-the-art performance on the NYUDv2 dataset in single-view
segmentation as well as multi-view semantic fusion.

I. INTRODUCTION

Intelligent robots require the ability to understand their
environment through parsing and segmenting the 3D scene
into meaningful objects. The rich appearance-based informa-
tion contained in images renders vision a primary sensory
modality for this task.

In recent years, large progress has been achieved in
semantic segmentation of images. Most current state-of-the-
art approaches apply deep learning for this task. With RGB-
D cameras, appearance as well as shape modalities can
be combined to improve the semantic segmentation perfor-
mance. Less explored, however, is the usage and fusion of
multiple views onto the same scene which appears naturally
in the domains of 3D reconstruction and robotics. Here, the
camera is moving through the environment and captures the
scene from multiple view points. Semantic SLAM aims at
aggregating several views in a consistent 3D geometric and
semantic reconstruction of the environment.

In this paper, we propose a novel deep learning approach
for semantic segmentation of RGB-D images with multi-view
context. We base our network on a recently proposed deep
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Fig. 1: We train our CNN to predict multi-view consistent semantic
segmentations for RGB-D images. The key innovation is to enforce
consistency by warping CNN feature maps from multiple views
into a common reference view using the SLAM trajectory and to
supervise training at multiple scales. Our approach improves per-
formance for single-view segmentation and is specifically beneficial
for multi-view fused segmentation.

convolutional neural network (CNN) for RGB and depth
fusion [1] and enhance the approach with multi-scale deep
supervision. Based on the trajectory obtained through RGB-
D simultaneous localization and mapping (SLAM), we fur-
ther regularize the CNN training with multi-view consistency
constraints as shown in Fig. 1. We propose and evaluate
several variants to enforce multi-view consistency during
training. A shared principle is using the SLAM trajectory
estimate to warp network outputs of multiple frames into
the reference view with ground-truth annotation. By this,
the network not only learns features that are invariant under
view-point change. Our semi-supervised training approach
also makes better use of the annotated ground-truth data
than single-view learning. This alleviates the need for large
amounts of annotated training data which is expensive to
obtain. Complementary to our training approach, we aggre-
gate the predictions of our trained network in keyframes to
increase segmentation accuracy at testing. The predictions of
neighboring images are fused into the keyframe based on the
SLAM estimate in a probabilistic way.

In experiments, we evaluate the performance gain achieved
through multi-view training and fusion at testing over single-
view approaches. Our results demonstrate that multi-view



max-pooling of feature maps during training best supports
multi-view fusion at testing. Overall we find that enforcing
multi-view consistency during training significantly improves
fusion at test time versus fusing predictions from networks
trained on single views. Our end-to-end training achieves
state-of-the-art performance on the NYUDv2 dataset in
single-view segmentation as well as multi-view semantic fu-
sion. While the fused keyframe segmentation can be directly
used in robotic perception, our approach can also be useful as
a building block for semantic SLAM using RGB-D cameras.

II. RELATED WORK

Recently, remarkable progress has been achieved in se-
mantic image segmentation using deep neural networks and,
in particular, CNNs. On many benchmarks, these approaches
excell previous techniques by a great margin.

Image-based Semantic Segmentation. As one early at-
tempt, Couprie et al. [2] propose a multiscale CNN archi-
tecture to combine information at different receptive field
resolutions and achieved reasonable segmentation results.
Gupta et al. [3] integrate depth into the R-CNN approach
by Girshick et al. [4] to detect objects in RGB-D images.
They convert depth into 3-channel HHA, i.e., disparity,
height and angle encoding and achieve semantic segmen-
tation by training a classifier for superpixels based on the
CNN features. Long et al. [5] propose a fully convolu-
tional network (FCN) which enables end-to-end training
for semantic segmentation. Since CNNs reduce the input
spatial resolution by a great factor through layers pooling,
FCN presents an upsample stage to output high-resolution
segmentation by fusing low-resolution predictions. Inspired
by FCN and auto-encoders [6], encoder-decoder architectures
have been proposed to learn upsampling with unpooling
and deconvolution [7]. For RGB-D images, Eigen et al. [8]
propose to train CNNs to predict depth, surface normals and
semantics with a multi-task network and achieve very good
performance. FuseNet [1] proposes an encoder-decoder CNN
to fuse color and depth cues in an end-to-end training for
semantic segmentation, which is shown to be more efficient
in learning RGB-D features in comparison to direct concate-
nation of RGB and depth or the use of HHA. Recently, more
complex CNN architectures have been proposed that include
multi-resolution refinement [9], dilated convolutions [10] and
residual units (e.g., [11]) to achieve state-of-the-art single
image semantic segmentation. Li et al. [12] use a LSTM
recurrent neural network to fuse RGB and depth cues and
obtain smooth predictions. Lin et al. [13] design a CNN that
corresponds to a conditional random field (CRF) and use
piecewise training to learn both unary and pairwise potentials
end-to-end. Our approach trains a network on multi-view
consistency and fuses the results from multiple view points. It
is complementary to the above single-view CNN approaches.

Semantic SLAM. In the domain of semantic SLAM,
Salas-Moreno et al. [14] developed the SLAM++ algorithm
to perform RGB-D tracking and mapping at the object
instance level. Hermans et al. [15] proposed 3D semantic
mapping for indoor RGB-D sequences based on RGB-D

visual odometry and a random forest classifier that performs
semantic image segmentation. The individual frame segmen-
tations are projected into 3D and smoothed using a CRF
on the point cloud. Stückler et al. [16] perform RGB-D
SLAM and probabilistically fuse the semantic segmentations
of individual frames obtained with a random forest in multi-
resolution voxel maps. Recently, Armeni et al. [17] propose
a hierarchical parsing method for large-scale 3D point clouds
of indoor environments. They first seperate point clouds into
disjoint spaces, i.e., single rooms, and then further cluster
points at the object level according to handcrafted features.

Multi-View Semantic Segmentation. In contrast to the
popularity of CNNs for image-based segmentation, it is less
common to apply CNNs for semantic segmentation on multi-
view 3D reconstructions. Recently, Riegler et al. [18] apply
3D CNNs on sparse octree data structures to perform se-
mantic segmentation on voxels. Nevertheless, the volumetric
representations may discard details which are present at the
original image resolution. McCormac et al. [19] proposed
to fuse CNN semantic image segmentations on a 3D surfel
map [20]. He et al. [21] propose to fuse CNN semantic seg-
mentations from multiple views in video using superpixels
and optical flow information. In contrast to our approach,
these methods do not impose multi-view consistency during
CNN training and cannot leverage the view-point invariant
features learned by our network. Kundu et al. [22] extend
dense CRFs to videos by associating pixels temporally using
optical flow and optimizing their feature similarity. Closely
related to our approach for enforcing multi-view consistency
is the approach by Su et al. [23] who investigate the task of
3D shape recognition. They render multiple views onto 3D
shape models which are fed into a CNN feature extraction
stage that is shared across views. The features are max-
pooled across view-points and fed into a second CNN stage
that is trained for shape recognition. Our approach uses
multi-view pooling for the task of semantic segmentation and
is trained using realistic imagery and SLAM pose estimates.
Our trained network is able to classify single views, but
we demonstrate that multi-view fusion using the network
trained on multi-view consistency improves segmentation
performance over single-view trained networks.

III. CNN ARCHITECTURE FOR SEMANTIC
SEGMENTATION

In this section, we detail the CNN architecture for seman-
tic segmentation of each RGB-D image of a sequence. We
base our encoder-decoder CNN on FuseNet [1] which learns
rich features from RGB-D data. We enhance the approach
with multi-scale loss minimization, which gains additional
improvement in segmentation performance.

A. RGB-D Semantic Encoder-Decoder

Fig. 2 illustrates our CNN architecture. The network
follows an encoder-decoder design, similar to previous work
on semantic segmentation [7]. The encoder extracts a hier-
archy of features through convolutional layers and aggre-
gates spatial information by pooling layers to increase the
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Fig. 2: The CNN encoder-decoder architecture used in our approach. Input to the network are RGB-D sequences with corresponding poses
from SLAM trajectory. The encoder contains two branches to learn features from RGB-D data as inspired by FuseNet [1]. The obtained
low-resolution high-dimension feature maps are successively refined through deconvolutions in the decoder. We warp feature maps into
a common reference view and enforce multi-view consistency with various constraints. The network is trained in a deeply-supervised
manner where loss is computed at all scales of the decoder.

receptive field. The encoder outputs low-resolution high-
dimensional feature maps, which are upsampled back to the
input resolution by the decoder through layers of memorized
unpooling and deconvolution. Following FuseNet [1], the
network contains two branches to learn features from RGB
(Frgb) and depth (Fd), respectively. The feature maps from
the depth branch are consistently fused into the RGB branch
at each scale. We denote the fusion by Frgb ⊕Fd.

The semantic label set is denoted as L = {1, 2, . . . ,K}
and the category index is indicated with subscript j. Fol-
lowing notation convention, we compute the classification
score S = (s1, s2, . . . , sK) at location x and map it to the
probability distribution P = (p1, p2, . . . , pK) with the soft-
max function σ(·). Network inference obtains the probability

pj(x,W | I) = σ(sj(x,W)) =
exp(sj(x,W))∑K
k exp(sk(x,W))

, (1)

of all pixels x in the image for being labelled as class j,
given input RGB-D image I and network parameters W .

We use the cross-entropy loss to learn network parameters
for semantic segmentation from ground-truth annotations lgt,

L(W) = − 1

N

N∑
i

K∑
j

Jj = lgtK log pj(xi,W | I) , (2)

where N is the number of pixels. This loss minimizes
the Kullback-Leibler (KL) divergence between predicted
distribution and the ground-truth, assuming the ground-truth
has a one-hot distribution on the true label.

B. Multi-Scale Deep Supervision

The encoder of our network contains five 2 × 2 pooling
layers and downsamples the input resolution by a factor of
32. The decoder learns to refine the low resolution back to
the original one with five memorized unpooling followed

by deconvolution. In order to guide the decoder through
the successive refinement, we adopt the deeply supervised
learning method [24], [25] and compute the loss for all
upsample scales. For this purpose, we append a classification
layer at each deconvolution scale and compute the loss for
the respective resolution of ground-truth which is obtained
through stochastic pooling [26] over the full resolution
annotation (see Fig. 3 for an example).

IV. MULTI-VIEW CONSISTENT LEARNING AND
PREDICTION

While CNNs have been shown to obtain the state-of-the-
art semantic segmentation performances for many datasets,
most of these studies focus on single views. When observing
a scene from a moving camera such as on a mobile robot,
the system obtains multiple different views onto the same
objects. The key innovation of this work is to explore the use
of temporal multi-view consistency within RGB-D sequences
for CNN training and prediction. For this purpose, we
perform 3D data association by warping multiple frames into
a common reference view. This then enables us to impose
multi-view constraints during training. In this section, we
describe several variants of such constraints. Notably, these
methods can also be used at test time to fuse predictions
from multiple views in a reference view.

A. Multi-view Data Association Through Warping

Instead of single-view training, we train our network
on RGB-D sequences with poses estimated by a SLAM
algorithm. We define each training sequence to contain one
reference view Ik with ground-truth semantic annotations
and several overlapping views Ii that are tracked towards Ik.
The relative poses ξ of the neighboring frames are estimated
through tracking algorithms such as DVO SLAM [27]. In



Fig. 3: Example of multi-scale ground-truth and predictions. Upper row: successive subsampled of ground-truth annotation obtained
through stochastic pooling. Lower row: CNN prediction on each scale. The resolutions are coarse to fine from left to right with 20× 15,
40× 30, 80× 60, 160× 120 and 320× 240.

order to impose temporal consistency, we adopt the warp-
ing concept from multi-view geometry to associate pixels
between view points and introduce warping layers into our
CNN. The warping layers synthesize CNN output in a
reference view from a different view at any resolution by
sampling given a known pose estimate and the known depth.
The warping layers can be viewed as a variant of spatial
transformers [28] with fixed transformation parameters.

We now formulate the warping. Given 2D image coordi-
nate x ∈ R2, the warped pixel location

xω := ω(x, ξ) = π
(
T(ξ)π−1(x, Zi(x))

)
, (3)

is determined through the warping function ω(x, ξ) which
transforms the location from one camera view to the other
using the depth Zi(x) at pixel x in image Ii and the SLAM
pose estimate ξ. The functions π and its inverse π−1 project
homogeneous 3D coordinates to image coordinates and vice
versa, while T(ξ) denotes the homogeneous transformation
matrix derived from pose ξ.

Using this association by warping, we synthesize the
output of the reference view by sampling the feature maps
of neighboring views using bilinear interpolation. Since the
interpolation is differentiable, it is straight-forward to back-
propagate gradients through the warping layers. With a slight
abuse of notation, we denote the operation of synthesizing
the layer output F given the warping by Fω := F(ω(x, ξ)).

We also apply deep supervision when training for multi-
view consistency through warping. As shown in Fig. 2,
feature maps at each resolution of the decoder are warped
into the common reference view. Despite the need to per-
form warping at multiple scales, the warping grid is only
required to be computed once at the input resolution, and
is normalized to the canonical coordinates within the range
of [−1, 1]. The lower-resolution warping grids can then be
efficiently generated through average pooling layers.

B. Consistency Through Warp Augmentation

One straight-forward solution to enforce multi-view seg-
mentation consistency is to warp the predictions of neigh-
boring frames into the ground-truth annotated keyframe
and computing a supervised loss there. This approach can
be interpreted as a type of data augmentation using the

available nearby frames. We implement this consistency
method by warping the keyframe into neighboring frames,
and synthesize the classification score of the nearby frame
from the keyframe’s view point. We then compute the cross-
entropy loss on this synthesized prediction. Within RGB-D
sequences, objects can appear at various scales, image loca-
tions, view perspective, color distortion given uncontrolled
lighting and shape distortion given rolling shutters of RGB-
D cameras. Propagating the keyframe annotation into other
frames implicitly regulates the network predictions to be
invariant under these transformations.

C. Consistency Through Bayesian Fusion

Given a sequence of measurements and predictions at test
time, Bayesian fusion is frequently applied to aggregate the
semantic segmentations of individual views. Let us denote
the semantic labelling of a pixel by y and its measurement
in frame i by zi. We use the notation zi for the set of
measurements up to frame i. According to Bayes rule,

p(y | zi) = p(zi | y, zi−1) p(y | zi−1)

p(zi | zi−1)
(4)

= ηi p(zi | y, zi−1) p(y | zi−1) . (5)

Suppose measurements satisfy the i.i.d. condition, i.e. p(zi |
y, zi−1) = p(zi | y), and equal a-priori probability for each
class, then Equation (4) simplifies to

p(y | zi) = ηi p(zi | y) p(y | zi−1) =
∏
i

ηi p(zi | y) . (6)

Put simple, Bayesian fusion can be implemented by tak-
ing the product over the semantic labelling likelihoods of
individual frame at a pixel and normalizing the product to
yield a valid probability distribution. This process can also
be implemented recursively on a sequence of frames.

When training our CNN for multi-view consistency using
Bayesian fusion, we warp the predictions of neighboring
frames into the keyframe using the SLAM pose estimate.
We obtain the fused prediction at each keyframe pixel
by summing up the unnormalized log labelling likelihoods
instead of the individual frame softmax outputs. Applying
softmax on the sum of log labelling likelihoods yields the



fused labelling distribution. This is equivalent to Eq. (6) since∏
i p

ω
i,j∑K

k

∏
i p

ω
i,k

=

∏
i σ(s

ω
i,j)∑K

k

∏
i σ(s

ω
i,k)

= σ

(∑
i

sωi,j

)
, (7)

where sωi,j and pωi,j denote the warped classification scores
and probabilities, respectively, and σ(·) is the softmax func-
tion as defined in Equation (1).

D. Consistency Through Multi-View Max-Pooling

While Bayesian fusion provides an approach to integrate
several measurements in the probability space, we also ex-
plore direct fusion in the feature space using multi-view max-
pooling of the warped feature maps. We warp the feature
maps preceeding the classification layers at each scale in
our decoder into the keyframe and apply max-pooling over
corresponding feature activations at the same warped location
to obtain a pooled feature map in the keyframe,

F = max pool(Fω
1 ,Fω

2 , . . . ,Fω
N ) . (8)

The fused feature maps are classified and the resulting
semantic segmentation is compared to the keyframe ground-
truth for loss calculation.

V. EVALUATION

We evaluate our proposed approach using the NYUDv2
RGB-D dataset [29]. The dataset provides 1449 pixelwise
annotated RGB-D images capturing various indoor scenes,
and is split into 795 frames for training/validation (trainval)
and 654 frames for testing. The original sequences that
contain these 1449 images are also available with NYUDv2,
whereas sequences are unfortunately not available for other
large RGB-D semantic segmentation datasets. Using DVO-
SLAM [27], we determine the camera poses of neighboring
frames around each annotated keyframe to obtain multi-
view sequences. This provides us with in total 267,675
RGB-D images, despite that tracking fails for 30 out of
1449 keyframes. Following the original trainval/test split,
we use 770 sequences with 143,670 frames for training
and 649 sequences with 124,005 frames for testing. For
benchmarking, our method is evaluated for the 13-class [2]
and 40-class [30] semantic segmentation tasks. We use the
raw depth images without inpainted missing values.

A. Training Details

We implemented our approach using the Caffe frame-
work [31]. For all experiments, the network parameters
are initialized as follows. The convolutional kernels in the
encoder are initialized with the pretrained 16-layer VG-
GNet [32] and the deconvolutional kernels in the decoder
are initialized using He’s method [33]. For the first layer
of the depth encoder, we average the original three-channel
VGG weights to obtain a single-channel kernel. We train the
network with stochastic gradient descent (SGD) [34] with 0.9
momentum and 0.0005 weight decay. The learning rate is set
to 0.001 and decays by a factor of 0.9 every 30k iterations.
All the images are resized to a resolution of 320×240 pixels
as input to the network and the predictions are also up to

TABLE I: Single-view semantic segmentation accuracy of our
network in comparison to the state-of-the-art methods for NYUDv2
13-class and 40-class segmentation tasks.

methods input pixelwise classwise IoU

N
Y

U
D

v2
13

cl
as

se
s

Couprie et al. [2] RGB-D 52.4 36.2 -
Hermans et al. [15] RGB-D 54.2 48.0 -
SceneNet [35] DHA 67.2 52.5 -
Eigen et al. [8] RGB-D-N 75.4 66.9 52.6
FuseNet-SF3 [1] RGB-D 75.8 66.2 54.2
MVCNet-Mono RGB-D 77.6 68.7 56.9
MVCNet-Augment RGB-D 77.6 69.3 57.2
MVCNet-Bayesian RGB-D 77.8 69.4 57.3
MVCNet-MaxPool RGB-D 77.7 69.5 57.3

N
Y

U
D

v2
40

cl
as

se
s

RCNN [3] RGB-HHA 60.3 35.1 28.6
FCN-16s [5] RGB-HHA 65.4 46.1 34.0
Eigen et al. [8] RGB-D-N 65.6 45.1 34.1
FuseNet-SF3 [1] RGB-D 66.4 44.2 34.0
Context-CRF [13] RGB 67.6 49.6 37.1
MVCNet-Mono RGB-D 68.6 48.7 37.6
MVCNet-Augment RGB-D 68.6 49.9 38.0
MVCNet-Bayesian RGB-D 68.4 49.5 37.4
MVCNet-MaxPool RGB-D 69.1 50.1 38.0

this scale. To downsample, we use cubic interpolation for
RGB images and nearest-neighbor interpolation for depth
and label images. During training, we use a minibatch of
6 that comprises two sequences, with one keyframe and
two tracking frames for each sequence. We apply random
shuffling after each epoch for both inter and intra sequences.
The network is trained until convergence. We observed
that multi-view CNN training does not require significant
extra iterations for convergence. For multi-view training,
we sample from the nearest frames first and include 10
further-away frames every 5 epochs. By this, we alleviate
that typically tracking errors accumulate and image overlap
decreases as the camera moves away from the keyframe.

B. Evaluation Criteria

We measure the semantic segmentation performance with
three criteria: global pixelwise accuracy, average classwise
accuracy and average intersection-over-union (IoU) scores.
These three criteria can be calculated from the confusion
matrix. With K classes, each entry of the K ×K confusion
matrix cij is the total amount of pixels belonging to class i
that are predicted to be class j. The global pixelwise accuracy
is computed by

∑
i cii/

∑
ij cij , the average classwise accu-

racy is computed by 1
K

∑
i(cii/

∑
j cij), and the average IoU

score is calculated by 1
K

∑
i

(
cii/(

∑
i cij +

∑
j cij − cii)

)
.

C. Single Frame Segmentation

In a first set of experiments, we evaluate the perfor-
mance of several variants of our network for direct semantic
segmentation of individual frames. This means we do not
fuse predictions from nearby frames to obtain the final
prediction in a frame. We predict semantic segmentation
with our trained models on the 654 test images of the
NYUDv2 dataset and compare our methods with state-of-
art approaches. The results are shown in Table I. Unless
otherwise stated, we take the results from the original papers
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Fig. 4: Qualitative semantic segmentation results of our methods and several state-of-the-art baselines on NYUDv2 13-class segmentation
(see Table III for color coding, left columns: semantic segmentation, right columns: falsely classified pixels, black is void). Our multi-view
consistency trained models produce more accurate and homogeneous results than single-view methods. Bayesian fusion further improves
segmentation quality (e.g. MVCNet-MaxPool-F).

for comparison and report their best results (i.e. SceneNet-
FT-NYU-DO-DHA model for SceneNet [35], VGG-based
model for Eigen et al. [8]). The result of Hermans et al. [15]
is obtained after applying a dense CRF [36] for each image
and in-between neighboring 3D points to further smoothen
their results. We also remark that the results reported here
for the Context-CRF model are finetuned on NYUDv2 like
in our approach to facilitate comparison. Furthermore, the
network output is refined using a dense CRF [36] which
is claimed to increase the accuracy of the network by

approximately 2%. The results for FuseNet-SF3 are ob-
tained by our own implementation. Our baseline model
MVCNet-Mono is trained without multi-view consistency,
which amounts to FuseNet with multiscale deeply supervised
loss at decoder. However, we apply single image augmen-
tation to train the FuseNet-SF3 and MVCNet-Mono with
random scaling between [0.8, 1.2], random crop and mirror.
This data augmentation is not used fro multi-view training.
Nevertherless, our results show that the different variants of
multi-view consistency training outperform the state-of-art



TABLE II: Multi-view segmentation accuracy of our network using
Bayesian fusion for NYUDv2 13-class and 40-class segmentation.

methods pixelwise classwise IoU

N
Y

U
D

v2
13

cl
as

se
s FuseNet-SF3 [1] 77.19 67.46 56.01

MVCNet-Mono 78.70 69.61 58.29
MVCNet-Augment 78.94 70.48 58.93
MVCNet-Bayesian 79.13 70.48 59.04
MVCNet-MaxPool 79.13 70.59 59.07

N
Y

U
D

v2
40

cl
as

se
s FuseNet-SF3 [1] 67.74 44.92 35.36

MVCNet-Mono 70.03 49.73 39.12
MVCNet-Augment 70.34 51.73 40.19
MVCNet-Bayesian 70.24 51.18 39.74
MVCNet-MaxPool 70.66 51.78 40.07

methods for single image semantic segmentation. Overall,
multi-view max-pooling (MVCNet-MaxPool) has a small
advantage over the other multi-view consistency training
approaches (MVCNet-Augment and MVCNet-Bayesian).

D. Multi-View Fused Segmentation

Since we train on sequences, in the second set of ex-
periment, we also evaluate the fused semantic segmentation
over the test sequences. The number of fused frames is
fixed to 50, which are uniformly sampled over the entire
sequence. Due to the lack of ground-truth for neighboring
frames, we fuse the prediction of neighboring frames in the
keyframes using Bayesian fusion according to Equation (7).
This fusion is typically applied for semantic mapping using
RGB-D SLAM. The results are shown in Table II. Bayesian
multi-view fusion improves the semantic segmentation by
approx. 2% on all evaluation measures towards single-view
segmentation. Also, the training for multi-view consistency
achieves a stronger gain over single-view training (MVCNet-
Mono) when fusing segmentations compared to single-view
segmentation. This performance gain is observed in the
qualitative results in Fig. 4. It can be seen that our multi-
view consistency training and Bayesian fusion produces
more accurate and homogeneous segmentations. Fig. 5 shows
typical challenging cases for our model.

We also compare classwise and average IoU scores for 13-
class semantic segmentation on NYUDv2 in Table III. The
results of Eigen et al. [8] are from their publicly available
model tested on 320×240 resolution. The results demonstrate
that our approach gives high performance gains across all
occurence frequencies of the classes in the dataset.

VI. CONCLUSION

In this paper we propose methods for enforcing multi-
view consistency during the training of CNN models for
semantic RGB-D image segmentation. We base our CNN
design on FuseNet [1], a recently proposed CNN architecture
in an encoder-decoder scheme for semantic segmentation of
RGB-D images. We augment the network with multi-scale
loss supervision to improve its performance. We present and
evaluate three different approaches for multi-view consis-
tency training. Our methods use an RGB-D SLAM trajectory
estimate to warp semantic segmentations or feature maps

Fig. 5: Challenging cases for MVCNet-MaxPool-F (top to bottom:
RGB image, ground-truth, single-view prediction on keyframe,
multi-view prediction fused in keyframe). On the left, the network
fails to classify the objects for all frames. In the middle, the network
makes some errors in single-view prediction, but through multi-view
fusion, some mistakes are corrected. On the right, multi-view fusion
degenerates performance due to the mirror reflections.

from one view point to another. Multi-view max-pooling of
feature maps overall provides the best performance gains in
single-view segmentation and fusion of multiple views.

We demonstrate the superior performance of multi-view
consistency training and Bayesian fusion on the NYUDv2
13-class and 40-class semantic segmentation benchmark.
All multi-view consistency training approaches outperform
single-view trained baselines. They are key to boosting
segmentation performance when fusing network predictions
from multiple view points during testing. On NYUDv2, our
model sets a new state-of-the-art performance using an end-
to-end trained network for single-view predictions as well
as multi-view fused semantic segmentation without further
postprocessing stages such as dense CRFs. In future work,
we want to further investigate integration of our approach in
a semantic SLAM system, for example, through coupling of
pose tracking and SLAM with our semantic predictions.



TABLE III: NYUDv2 13-class semantic segmentation IoU scores. Our method achieves best per-class accuracy and average IoU.
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class frequency 4.08 7.31 3.45 12.71 1.47 9.88 3.40 2.84 3.42 24.57 4.91 2.78 0.99
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w

Eigen et al. [8] 56.71 38.29 50.23 54.76 64.50 89.76 45.20 47.85 42.47 74.34 56.24 45.72 34.34 53.88
FuseNet-SF3 [1] 61.52 37.95 52.67 53.97 64.73 89.01 47.11 57.17 39.20 75.08 58.06 37.64 29.77 54.14
MVCNet-Mono 65.27 37.82 54.09 59.39 65.26 89.15 49.47 57.00 44.14 75.31 57.22 49.21 36.14 56.88
MVCNet-Augment 65.33 38.30 54.15 59.54 67.65 89.26 49.27 55.18 43.39 74.59 58.46 49.35 38.84 57.18
MVCNet-Bayesian 65.76 38.79 54.60 59.28 67.58 89.69 48.98 56.72 42.42 75.26 59.55 49.27 36.51 57.26
MVCNet-MaxPool 65.71 39.10 54.59 59.23 66.41 89.94 49.50 56.30 43.51 75.33 59.11 49.18 37.37 57.33

m
ul

ti-
vi

ew

FuseNet-SF3 [1] 64.95 39.62 55.28 55.90 64.99 89.88 47.99 60.17 42.40 76.24 59.97 39.80 30.91 56.01
MVCNet-Mono 67.11 40.14 56.39 60.90 66.07 89.77 50.32 59.49 46.12 76.51 59.03 48.80 37.13 58.29
MVCNet-Augment 68.22 40.04 56.55 61.82 67.88 90.06 50.85 58.00 45.98 75.85 60.43 50.50 39.89 58.93
MVCNet-Bayesian 68.38 40.87 57.10 61.84 67.98 90.64 50.05 59.70 44.73 76.50 61.75 51.01 36.99 59.04
MVCNet-MaxPool 68.09 41.58 56.88 61.56 67.21 90.64 50.69 59.73 45.46 76.68 61.28 50.60 37.51 59.07

REFERENCES

[1] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: in-
corporating depth into semantic segmentation via fusion-based cnn
architecture,” in Asian Conf. on Computer Vision (ACCV), 2016.

[2] C. Couprie, C. Farabet, L. Najman, and Y. Lecun, Indoor semantic
segmentation using depth information. 2013.

[3] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich
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