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Abstract— Visual scene understanding is an important ca-
pability that enables robots to purposefully act in their en-
vironment. In this paper, we propose a novel approach to
object-class segmentation from multiple RGB-D views using
deep learning. We train a deep neural network to predict
object-class semantics that is consistent from several view
points in a semi-supervised way. At test time, the semantics
predictions of our network can be fused more consistently in
semantic keyframe maps than predictions of a network trained
on individual views. We base our network architecture on a
recent single-view deep learning approach to RGB and depth
fusion for semantic object-class segmentation and enhance
it with multi-scale loss minimization. We obtain the camera
trajectory using RGB-D SLAM and warp the predictions of
RGB-D images into ground-truth annotated frames in order
to enforce multi-view consistency during training. At test time,
predictions from multiple views are fused into keyframes. We
propose and analyze several methods for enforcing multi-view
consistency during training and testing. We evaluate the benefit
of multi-view consistency training and demonstrate that pooling
of deep features and fusion over multiple views outperforms
single-view baselines on the NYUDv2 benchmark for semantic
segmentation. Our end-to-end trained network achieves state-
of-the-art performance on the NYUDv2 dataset in single-view
segmentation as well as multi-view semantic fusion.

I. INTRODUCTION

Intelligent robots require the ability to understand their
environment through parsing and segmenting the 3D scene
into meaningful objects. The rich appearance-based informa-
tion contained in images renders vision a primary sensory
modality for this task.

In recent years, large progress has been achieved in seman-
tic object-class segmentation of images. Most current state-
of-the-art approaches apply deep learning for this task. With
RGB-D cameras, appearance as well as shape modalities can
be combined to improve the semantic segmentation perfor-
mance. Less explored, however, is the usage and fusion of
multiple views onto the same scene which appears naturally
in the domains of 3D reconstruction and robotics. Here, the
camera is moving through the environment and captures the
scene from multiple view points. Semantic SLAM aims at
aggregating several views in a consistent 3D geometric and
semantic reconstruction of the environment.

In this paper, we propose a novel approach for using multi-
view context for deep learning of semantic segmentation
of RGB-D images. We base our network architecture on a
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Fig. 1: We train CNN to predict multi-view consistent semantic seg-
mentations for RGB-D images. The key innovations are the multi-
view consistency layers (MVCL), which warp semantic prediction
or feature maps at multiple scales into a common reference view
based on the SLAM trajectory. Our approach improves performance
for single-view segmentation and is specifically beneficial for multi-
view fused segmentation at test time.

recently proposed deep convolutional neural network (CNN)
for RGB and depth fusion [1] and enhance the approach with
multi-scale loss minimization. Based on the trajectory esti-
mate obtained through RGB-D simultaneous localization and
mapping (SLAM), we train our CNN to predict multi-view
consistent semantics in individual images. We propose and
evaluate several approaches for enforcing multi-view consis-
tency during training. A shared principle in our approaches
is to use the SLAM trajectory estimate for warping network
outputs or feature maps from nearby frames to keyframes
with ground truth annotations. By this, the network not only
learns features that are invariant under view-point change.
Our semi-supervised training approach also makes better use
of the annotated ground truth data than single-view learning.
This alleviates the need for large amounts of annotated
training data which is expensive to obtain for real imagery.
Complementary to our training approach, we aggregate the
predictions of our trained network in consistent semantic
segmentations of keyframes at test time. The predictions of
nearby overlapping images along the camera trajectory are
fused into the keyframe based on the SLAM estimate in a
probabilistic way.

In experiments, we evaluate the performance gain achieved
through multi-view training and fusion at test time over
single-view approaches. Our results demonstrate that multi-
view max-pooling of feature maps during training best
supports multi-view fusion at test time. Overall we find that
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Fig. 2: The CNN encoder-decoder architecture used in our approach. Input to our network are RGB-D images. The network extracts
features from depth images in a separate encoder whose features are fused with RGB features in a fused encoder network. The encoded
features at the lowest resolution are successively refined through deconvolutions in a decoder. To guide the refinement, we train the
network in a deeply-supervised manner in which segmentation loss is computed at all scales of the decoder.

enforcing multi-view consistency during training improves
fusion at test time significantly over fusing predictions from
networks trained on single views. Our end-to-end trained net-
work achieves state-of-the-art performance on the NYUDv2
dataset in single-view segmentation as well as multi-view
semantic fusion. While the fused keyframe segmentation can
be directly used in robotic perception, our approach can also
be useful as a building block for geometric and semantic
SLAM using RGB-D cameras.

II. RELATED WORK

Recently, remarkable progress has been achieved in se-
mantic image segmentation using deep neural networks and,
in particular, CNNs. On many benchmarks, these approaches
excell previous techniques by a great margin. As one early
attempt, Couprie et al. [2] propose a multiscale CNN ar-
chitecture to combine information at different perceptive
field resolutions and achieved reasonable segmentation re-
sults. They were also one of the first to train a CNN
with depth information for RGB-D image segmentation.
Gupta et al. [3] integrate depth into the R-CNN approach
by Girshick et al. [4] to detect objects in RGB-D images. To
apply a CNN pretrained on ImageNet on the depth images,
they propose to transform depth into a disparity, height and
angle encoding. For semantic segmentation, they train a
classifier to label superpixels based on the CNN features.
Long et al. [5] propose a fully convolutional network (FCN)
which enables end-to-end training of a deep CNN for seman-
tic segmentation. Their FCN architecture reduces the input’s
spatial resolution by a great factor through layers of filtering
and pooling. It fuses low with high resolution predictions
to obtain the final prediction. Inspired by FCN and auto-
encoder networks [6], encoder-decoder architectures have
been proposed for semantic segmentation [7]. For RGB-D
images, Eigen et al. [8] propose multi-task CNN training that
aims to predict depth, surface normals and semantics with
one uniform network and achieve very good performance.

FuseNet [1] proposes a principled approach for fusing RGB
and depth cues in a single encoder-decoder CNN trained
end-to-end for semantic image segmentation. Li et al. [9]
use a LSTM recurrent neural network to fuse RGB and
depth cues and obtain smooth predictions. Lin et al. [10]
design a CNN that corresponds to a conditional random field
(CRF) and use piecewise training to learn both unary and
pairwise potentials end-to-end. While this method produces
very good results, it requires a mean-field approximation
for coarse inference and high-resolution refinement using a
dense CRF [11]. Our approach trains a network on multi-
view consistency and fuses the results from multiple view
points. It is complementary to the above mentioned single-
view CNN approaches.

In the domain of semantic SLAM, Salas-Moreno et al. [12]
developed the SLAM++ algorithm to perform RGB-D track-
ing and mapping at the object instance level. This method
works well for indoor scenes which contain many repeated
objects with predefined CAD models in a database. Her-
mans et al. [13] proposed 3D semantic mapping for indoor
RGB-D sequences based on RGB-D visual odometry and a
random forest classifier that performs semantic image seg-
mentation. The individual frame segmentations are projected
into 3D and a dense CRF [11] on the point cloud smoothes
the semantic segmentation in 3D. Stückler et al. [14] per-
form RGB-D SLAM and probabilistically fuse the semantic
segmentations of individual frames obtained with a ran-
dom forest in multi-resolution voxel maps. Recently, Ar-
meni et al. [15] propose a hierarchical parsing method for
large-scale 3D point clouds of indoor environments. They
first seperate point clouds into disjoint spaces, i.e., single
rooms, and then further cluster points at the object level
according to handcrafted features.

In contrast to the popularity of CNNs for image-based
segmentation, it is less common to apply CNNs for se-
mantic segmentation on multi-view 3D reconstructions. This



is partially due to the lack of an organized structure in
point clouds or the less managable scale of volumetric
representations for training a deep neural network. Recently,
Riegler et al. [16] apply 3D CNNs on sparse octree data
structures to perform semantic segmentation on voxels. Nev-
ertheless, the volumetric representations may discard details
through the voxelization which are present at the original
image resolution. McCormac et al. [17] proposed to fuse
CNN semantic image segmentations on a 3D surfel map [18].
In contrast to our approach, this method does not use multi-
view consistency during CNN training and cannot leverage
the view-point invariant features learned by our network.
Closely related to our approach for enforcing multi-view
consistency is the approach by Su et al. [19] who investigate
the task of 3D shape recognition. They render multiple views
onto 3D shape models which are fed into a CNN feature
extraction stage that is shared across views. The features are
max-pooled across view-points and fed into a second CNN
stage that is trained for shape recognition. Our approach uses
multi-view pooling for the task of semantic segmentation and
is trained using realistic imagery and SLAM pose estimates.
Our trained network is able to classify single views, but
we demonstrate that multi-view fusion using the network
trained on multi-view consistency improves segmentation
performance over single-view trained networks.

III. CNN APPROACH TO SEMANTIC RGB-D IMAGE
SEGMENTATION

In this section, we detail our CNN architecture for seman-
tic segmentation in RGB-D images. We base our approach
on FuseNet [1] which consistently fuses RGB and depth
images for semantic segmentation, and enhance the approach
with multi-scale loss minimization. By this, we already
achieve a significant improvement in semantic segmentation
performance on single views.

A. Network Architecture

Fig. 2 illustrates our CNN architecture for semantic image
segmentation in RGB-D images. The network follows an
encoder-decoder design, similar to previous work on seman-
tic segmentation [7]. The encoder extracts a hierarchy of
features through convolutional layers and aggregates spatial
information by pooling over a local neighborhood to increase
the perceptive field. The last layer of the encoder outputs
high dimensional feature maps with low spatial resolution.
The decoder then upsamples the low-resolution feature maps
through several layers of memorized unpooling and decon-
volution and successively refines the low-resolution feature
maps back to the input resolution. To learn features from
RGB-D images, we adopt the FuseNet architecture [1] which
is shown to be more efficient in learning features from RGB-
D images in comparison to simple concatenation of RGB
and depth or to the use of HHA [3] representation. As
demonstrated in Fig. 2, the network contains two branches
each learning features from RGB (Frgb) and depth (Fd),
respectively. The feature maps from the depth branch are

consistently fused into the RGB branch at each scale. We
denote the fusion of the feature maps by Frgb ⊕Fd.

For semantic segmentation, the label set is denoted as L =
{1, 2, . . . ,K} and the category index is indicated with sub-
script j. Following notation convention, we compute the clas-
sification score S = (s1, s2, . . . , sK) at spatial location x and
map it to the probability distribution P = (p1, p2, . . . , pK)
with the softmax function σ(·). Network inference obtains
the probability

pj(x,W | I) = σ(sj(x,W)) =
exp(sj(x,W))∑K
k exp(sk(x,W))

, (1)

of all pixels x in the image for being labelled as class j,
given input RGB-D image I and network parameters W .

B. Multi-Scale Loss Minimization

We use the cross-entropy loss to learn network parameters
for semantic segmentation from ground-truth annotations lgt,

L(W) = − 1

N

N∑
i

K∑
j

Jj = lgtK log pj(xi,W | I) , (2)

where N is the number of pixels. This loss minimizes
the Kullback-Leibler (KL) divergence between predicted
distribution and the ground-truth, assuming the ground-truth
has a one-hot distribution on the true label.

The encoder of our network contains five pooling layers
of 2×2 filter size and downsamples the input resolution by a
factor of 32. The decoder learns to refine the low resolution
back to the original with five scales of memoried unpooling
layers followed by deconvolution. In order to guide the
decoder through the successive refinement, we adopt a deeply
supervised learning method [20], [21] and compute the cross-
entropy loss at all upsample scales. To this end, we append a
classification layer at each deconvolution scale and compute
the loss for the respective resolution ground-truth which is
obtained through stochastic pooling [22] of the full resolution
annotation (see Fig. 3 for an example).

IV. MULTI-VIEW CONSISTENCY

The key innovation of this work is to explore the use of
temporal multi-view consistency within an RGB-D sequence
for CNN training and prediction. While convolutional neural
networks (CNN) have been shown to obtain the state-of-the-
art semantic segmentation performances for many datasets,
most of these studies focus on single views. When observing
a scene from a moving camera such as on a mobile robot,
the system obtains multiple different views onto the same
objects. We aim to use this for increasing the consistency
of semantic maps by fusing semantic image segmentations
in keyframes from multiple view points. Moreover, we can
make use of the multi-view information in RGB-D video for
training a CNN to produce consistent semantic segmentations
under view-point changes.

We define each training sequence to contain one reference
keyframe Ik with ground-truth semantic annotation and
several nearby overlapping frames Ii. The relative poses ξ
of the nearby frames towards the reference keyframe are



Fig. 3: Example of multi-scale ground-truth and predictions. Upper row: successive subsampled of ground-truth annotation obtained
through stochastic pooling. Lower row: CNN prediction on each scale. The resolutions are coarse to fine from left to right with 20× 15,
40× 30, 80× 60, 160× 120 and 320× 240.

estimated through a SLAM method such as [23]. In order to
impose temporal consistency, we adopt the warping concept
from multiview geometry to associate pixels between view
points. To this end, we introduce warping layers into the
CNN architecture that synthesize the CNN output at any
stage in one view point by sampling the output of another
view point based on the SLAM pose estimate. These layers
can be seen as a variant of spatial transformers [24]. Through
these warping layers, it is possible to impose temporal
multi-view consistency. In the following, we describe our
warping layers and introduce several variants of multi-view
consistency constraints based on warping.

A. Multiview Association Through Warping

Given the normalized 2D image coordinate x ∈ R2, its
warped image location

xω := ω(x, ξ) = π
(
T(ξ)π−1(x, Zi(x))

)
(3)

is determined through the warping function ω(x, ξ) which
transforms the location from one camera frame to the other
based on the depth Zi(x) at x in image Ii and the SLAM
pose estimate ξ. The functions π and its inverse π−1 project
homogeneous 3D coordinates to normalized image coordi-
nates and vice versa, while T(ξ) denotes the homogeneous
transformation matrix for pose ξ.

The warping function associates pixels between two view-
points. Using this association, it is possible to synthesize the
output of any CNN layer in one view point by sampling the
output of another view point. For a network with several spa-
tial resolutions, the warping grid only needs to be computed
once at the input resolution. For this purpose, we normalize
the warping grid by the input resolution to obtain a canonical
representation within the range of [−1, 1]. The canonical
representation enables efficient generation of warping grids
at any lower resolution through average pooling layers. Using
bilinear interpolation, it is then straight-forward to synthesize
the output at any scale and gradients can be back-propagated
through the warping layer. With a slight abuse of notation,
we denote the operation of synthesizing the layer output F
given the warping by Fω := F(ω(x, ξ)).

B. Consistency Through Warp Augmentation
One way to enforce multi-view consistency in the segmen-

tation is to warp the predictions of nearby frames into the
ground-truth annotated keyframe and computing a supervised
loss there. This approach can be interpreted as a kind of data
augmentation using the available nearby frames.

We implement this consistency method by warping the
keyframe into the nearby frame, and synthesize the classifi-
cation score of the nearby frame from the keyframe’s view
point. We compute the cross-entropy loss on this synthesized
semantic segmentation. Within RGB-D sequences, objects
can appear at various scales, image locations and view
angles. Propagating the keyframe annotation into the other
frames implicitly regulates the network predictions to be
invariant under these transformations.

C. Consistency Through Bayesian Fusion
Given a sequence of measurements and predictions at

test time, Bayesian fusion is frequently applied to aggregate
the semantic segmentations of individual views. Without a
loss of generality, let us denote the semantic labelling of a
pixel by y and its measurement in frame i by zi. We use
the notation zi for the set of measurements up to frame i.
According to Bayes rule,

p(y | zi) = p(zi | y, zi−1) p(y | zi−1)

p(zi | zi−1)
(4)

= ηi p(zi | y, zi−1) p(y | zi−1) (5)

Suppose measurements satisfy the i.i.d. condition, i.e. p(zi |
y, zi−1) = p(zi | y), and equal a-priori probability for each
class, then Equation (4) simplifies to

p(y | zi) = ηi p(zi | y) p(y | zi−1) =
∏
i

ηi p(zi | y). (6)

Put simple, Bayesian fusion is implemented by taking the
product over the individual frame semantic labelling like-
lihoods at a pixel and normalizing the product to yield
a valid probability distribution. This process can also be
implemented recursively on a sequence of frames.

When training our CNN for multi-view consistency using
Bayesian fusion, we warp the predictions of nearby frames



into the keyframe using the SLAM pose estimate. We obtain
the fused prediction at each keyframe pixel by summing the
unnormalized log labelling likelihoods instead of the individ-
ual frame softmax outputs. Applying softmax on the sum of
log labelling likelihoods yields the fused labelling probability
distribution. This method is equivalent to Equation (6) since∏

i p
ω
i,j∑K

k

∏
i p

ω
i,k

=

∏
i σ(s

ω
i,j)∑K

k

∏
i σ(s

ω
i,k)

= σ

(∑
i

sωi,j

)
, (7)

where sωi,j and pωi,j denote the warped classification scores
and probabilities, respectively, and σ(·) is the softmax func-
tion as defined in Equation (1).

D. Consistency Through Multi-View Max-Pooling

While Bayesian fusion provides an approach to integrate
several measurements in the probability space, we also ex-
plore direct fusion in the feature space using multi-view max-
pooling of the warped feature maps. We warp the feature
maps preceding the classification layers at each scale in
our decoder into the keyframe and apply max-pooling over
corresponding feature activations at the same warped location
to obtain a pooled feature map in the keyframe,

F = max pool(Fω
1 ,Fω

2 , . . . ,Fω
N ). (8)

The fused feature maps are classified and the resulting
semantic segmentation is compared to the keyframe ground-
truth for loss calculation.

V. EVALUATION

We evaluate our proposed approach using the
NYUDv2 [25] RGB-D dataset. The NYUDv2 dataset
provides 1449 pixel-wise annotated RGB-D images
that is commonly split into a subset of 795 frames for
training/validation (trainval) and 654 frames for testing.
The dataset contains various indoor environments captured
with consumer RGB-D cameras. The original sequences
that contain these 1449 images are also available. Using
the DVO-SLAM algorithm [23], we determine the camera
motion around each annotated keyframe to obtain training
and test sequences. As a result, we obtain sequences with
in total 267,675 frames, despite that tracking fails for 30
out of 1449 keyframes. Following the original trainval/test
split, we use 770 sequences consisting of 143,670 total
frames for training and 649 sequences with 124,005 frames
for testing. For benchmarking, we evaluate our method
for the NYUDv2 13-class [2] and 40-class [26] semantic
segmentation tasks. For training and testing, we use the raw
depth images without inpainted missing values. While larger
RGB-D datasets with ground-truth annotation are available,
unfortunately they do not provide sequences.

A. Training Details

We implemented our approach using the Caffe frame-
work [27]. For all experiments, the network parameters are
initialized as follows. For the convolutional kernels in the
encoder, we use the pretrained 16-layer VGGNet model [28]
and for the deconvolutional kernels in the decoder, we use

TABLE I: Single-view semantic segmentation accuracy of our
network in comparison to the state-of-the-art methods for NYUDv2
13-class and 40-class segmentation tasks.

methods input pixelwise classwise IoU

N
Y

U
D

v2
13

cl
as

se
s

Couprie et al. [2] RGB-D 52.4 36.2 -
Hermans et al. [13] RGB-D 54.2 48.0 -
SceneNet [31] DHA 67.2 52.5 -
Eigen et al. [8] RGB-D-N 75.4 66.9 52.6
FuseNet-SF3 [1] RGB-D 75.8 66.2 54.2
MVCNet-Mono RGB-D 77.6 68.7 56.9
MVCNet-Augment RGB-D 77.6 69.3 57.2
MVCNet-Bayesian RGB-D 77.8 69.4 57.3
MVCNet-MaxPool RGB-D 77.7 69.5 57.3

N
Y

U
D

v2
40

cl
as

se
s

RCNN [3] RGB-HHA 60.3 35.1 28.6
FCN-16s [5] RGB-HHA 65.4 46.1 34.0
Eigen et al. [8] RGB-D-N 65.6 45.1 34.1
FuseNet-SF3 [1] RGB-D 66.4 44.2 34.0
Context-CRF [10] RGB 67.6 49.6 37.1
MVCNet-Mono RGB-D 68.6 48.7 37.6
MVCNet-Augment RGB-D 68.6 49.9 38.0
MVCNet-Bayesian RGB-D 68.4 49.5 37.4
MVCNet-MaxPool RGB-D 69.1 50.1 38.0

He initialization [29]. We train the network with stochastic
gradient descent (SGD) [30] with 0.9 momentum, 0.0005
weight decay and set the batch size to 4. The learning rate is
set to 0.001 and multiplied by a factor of 0.9 every 30,000
iterations. We apply random shuffling after each epoch and
train the network until convergence. All the images are
resized to a resolution of 320 × 240 pixels as input to
the network and the predictions are also up to this scale.
We use cubic interpolation to downsample RGB images
and nearest-neighbor interpolation to downsample depth and
label images. Most of the keyframes have long tracking
sequences, where tracking drift typically accumulates along
the sequence. Hence for multi-view training, we feed the
close-by frames first to the network and gradually include
10 further-away frames in 5 epochs.

B. Evaluation Criteria

We measure the semantic segmentation performance of
our network with three criteria: global pixelwise accu-
racy, average classwise accuracy and average intersection-
over-union (IoU) scores. These three criteria can be cal-
culated from the confusion matrix C ∈ RK×K . Each
element in the confusion matrix cij is the total amount
of pixels belonging to class i which are predicted to be
class j. The global pixelwise accuracy is computed by∑

i cii/
∑

ij cij and the average classwise accuracy is com-
puted by 1

K

∑
i(cii/

∑
j cij). The average IoU score is

calculated according to 1
K

∑
i

(
cii/(

∑
i cij +

∑
j cij − cii)

)
.

C. Single Frame Segmentation

In a first set of experiments, we evaluate the performance
of several variants of our network for direct semantic seg-
mentation of frames. This means we do not fuse predictions
from nearby frames to obtain the final prediction in frame.
We predict semantic segmentation with our trained models
on the 654 test images of the NYUDv2 dataset and compare
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Fig. 4: Qualitative semantic segmentation results of our methods and several state-of-the-art baselines on NYUDv2 13-class segmentation
(see Table III for color coding, left columns: semantic segmentation, right columns: falsely classified pixels, black is void). Our multi-view
consistency trained models produce more accurate and homogeneous results than single-view methods. Bayesian fusion further improves
segmentation quality (e.g. MVCNet-MaxPool-F).

our methods with state-of-art approaches. The results are
shown in Table I. Unless otherwise stated, we take the
results from the original papers for comparison and report
their best results (i.e. SceneNet-FT-NYU-DO-DHA model
for SceneNet [31], VGG-based model for Eigen et al. [8]).
The result of Hermans et al. [13] is obtained after applying a
dense CRF [11] for each image and in-between neighboring
3D points to further smoothen their results. We also remark
that the results reported here for the Context-CRF model

are finetuned on NYUDv2 like in our approach to facili-
tate comparison. Furthermore, the network output is refined
using a dense CRF [11] which is claimed to increase the
accuracy of the network by approximately 2%. The results
for FuseNet-SF3 are obtained by our own implementation.
Our baseline model MVCNet-Mono is trained without multi-
view consistency, which amounts to FuseNet with multiscale
deeply supervised loss at decoder. However, we apply single
image augmentation to train the FuseNet-SF3 and MVCNet-



TABLE II: Multi-view segmentation accuracy of our network using
Bayesian fusion for NYUDv2 13-class and 40-class segmentation.

methods pixelwise classwise IoU

N
Y

U
D

v2
13

cl
as

se
s FuseNet-SF3 [1] 77.19 67.46 56.01

MVCNet-Mono 78.70 69.61 58.29
MVCNet-Augment 78.94 70.48 58.93
MVCNet-Bayesian 79.13 70.48 59.04
MVCNet-MaxPool 79.13 70.59 59.07

N
Y

U
D

v2
40

cl
as

se
s FuseNet-SF3 [1] 67.74 44.92 35.36

MVCNet-Mono 70.03 49.73 39.12
MVCNet-Augment 70.34 51.73 40.19
MVCNet-Bayesian 70.24 51.18 39.74
MVCNet-MaxPool 70.66 51.78 40.07

Mono with random scaling between [0.8, 1.2], random crop
and mirror. This data augmentation is not used fro multi-view
training. Nevertherless, our results show that the different
variants of multi-view consistency training outperform the
state-of-art methods for single image semantic segmentation.
Overall, multi-view max-pooling (MVCNet-MaxPool) has a
small advantage over the other multi-view consistency train-
ing approaches (MVCNet-Augment and MVCNet-Bayesian).

D. Multi-View Fused Segmentation

Since we train on sequences, in the second set of experi-
ment, we also evaluate the fused semantic segmentation over
the test sequences. The number of fused frames is fixed to 50,
which are uniformly sampled over the entire sequence. Due
to the lack of ground-truth for neighboring frames, we fuse
the prediction of neighboring frames in the keyframes using
Bayesian fusion according to Equation (7). This fusion is typ-
ically applied for semantic mapping using RGB-D SLAM.
The results are shown in Table II. Bayesian multi-view fusion
improves the semantic segmentation by approx. 2% on all
evaluation measures towards single-view segmentation. Also,
the training for multi-view consistency achieves a stronger
gain over single-view training (MVCNet-Mono) when fusing
segmentations compared to single-view segmentation. This
performance gain is observed in the qualitative results in
Fig. 4. It can be seen that our multi-view consistency training
and Bayesian fusion produces more accurate classifications
and more homogeneous segmentations. Fig. 5 shows typical
challenging cases for our model.

We also compare classwise and average IoU scores for 13-
class semantic segmentation on NYUDv2 in Table III. The
results of Eigen et al. [8] are from their publicly available
model tested on 320×240 resolution. The results demonstrate
that our approach gives high performance gains across all
occurence frequencies of the classes in the dataset.

VI. CONCLUSION

In this paper we propose methods for enforcing multi-
view consistency during the training of CNN models for
semantic RGB-D image segmentation. We base our CNN
design on FuseNet [1], a recently proposed CNN architecture
in an encoder-decoder scheme for semantic segmentation of
RGB-D images. We augment the network with multi-scale

Fig. 5: Challenging cases for MVCNet-MaxPool-F (top to bottom:
RGB image, ground-truth, single-view prediction on keyframe,
multi-view prediction fused in keyframe). On the left, the network
fails to classify the objects for all frames. In the middle, the network
makes some errors in single-view prediction, but through multi-view
fusion, some mistakes are corrected. On the right, multi-view fusion
degenerates performance due to the mirror reflections.

loss supervision to improve its performance. We present and
evaluate three different approaches for multi-view consis-
tency training. Our methods use an RGB-D SLAM trajectory
estimate to warp semantic segmentations or feature maps
from one view point to another. Multi-view max-pooling of
feature maps overall provides the best performance gains in
single-view segmentation and fusion of multiple views.

We demonstrate the superior performance of multi-view
consistency training and Bayesian fusion on the NYUDv2
13-class and 40-class semantic segmentation benchmark.
All multi-view consistency training approaches outperform
single-view trained baselines. They are key to boosting
segmentation performance when fusing network predictions
from multiple view points during testing. On NYUDv2, our
model sets a new state-of-the-art performance using an end-
to-end trained network for single-view predictions as well
as multi-view fused semantic segmentation without further



TABLE III: NYUDv2 13-class semantic segmentation IoU scores. Our method achieves best per-class accuracy and average IoU.
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class frequency 4.08 7.31 3.45 12.71 1.47 9.88 3.40 2.84 3.42 24.57 4.91 2.78 0.99

si
ng

le
-v

ie
w

Eigen et al. [8] 56.71 38.29 50.23 54.76 64.50 89.76 45.20 47.85 42.47 74.34 56.24 45.72 34.34 53.88
FuseNet-SF3 [1] 61.52 37.95 52.67 53.97 64.73 89.01 47.11 57.17 39.20 75.08 58.06 37.64 29.77 54.14
MVCNet-Mono 65.27 37.82 54.09 59.39 65.26 89.15 49.47 57.00 44.14 75.31 57.22 49.21 36.14 56.88
MVCNet-Augment 65.33 38.30 54.15 59.54 67.65 89.26 49.27 55.18 43.39 74.59 58.46 49.35 38.84 57.18
MVCNet-Bayesian 65.76 38.79 54.60 59.28 67.58 89.69 48.98 56.72 42.42 75.26 59.55 49.27 36.51 57.26
MVCNet-MaxPool 65.71 39.10 54.59 59.23 66.41 89.94 49.50 56.30 43.51 75.33 59.11 49.18 37.37 57.33

m
ul

ti-
vi

ew

FuseNet-SF3 [1] 64.95 39.62 55.28 55.90 64.99 89.88 47.99 60.17 42.40 76.24 59.97 39.80 30.91 56.01
MVCNet-Mono 67.11 40.14 56.39 60.90 66.07 89.77 50.32 59.49 46.12 76.51 59.03 48.80 37.13 58.29
MVCNet-Augment 68.22 40.04 56.55 61.82 67.88 90.06 50.85 58.00 45.98 75.85 60.43 50.50 39.89 58.93
MVCNet-Bayesian 68.38 40.87 57.10 61.84 67.98 90.64 50.05 59.70 44.73 76.50 61.75 51.01 36.99 59.04
MVCNet-MaxPool 68.09 41.58 56.88 61.56 67.21 90.64 50.69 59.73 45.46 76.68 61.28 50.60 37.51 59.07

postprocessing stages such as dense CRFs.
In future work, we want to further investigate integration

of our approach in a semantic SLAM system, for example,
through seamless coupling of pose tracking and SLAM with
our semantic predictions.
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