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Figure 1: Examples of dense correspondence computed with our method on real 3D scans (left pair, the areas of contact are glued together),
missing parts (middle) and strong topological artifacts (right, touching parts are glued together). Corresponding points are encoded with the
same color.

Abstract
We propose an efficient procedure for calculating partial dense intrinsic correspondence between deformable shapes performed
entirely in the spectral domain. Our technique relies on the recently introduced partial functional maps formalism and on the
joint approximate diagonalization (JAD) of the Laplace-Beltrami operators previously introduced for matching non-isometric
shapes. We show that a variant of the JAD problem with an appropriately modified coupling term (surprisingly) allows to
construct quasi-harmonic bases localized on the latent corresponding parts. This circumvents the need to explicitly compute the
unknown parts by means of the cumbersome alternating minimization used in the previous approaches, and allows performing
all the calculations in the spectral domain with constant complexity independent of the number of shape vertices. We provide
an extensive evaluation of the proposed technique on standard non-rigid correspondence benchmarks and show state-of-the-art
performance in various settings, including partiality and the presence of topological noise.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Shape Analysis

1. Introduction

Finding correspondence between 3D shapes is one of the prototy-
pical problems in computer graphics, geometric processing, and
vision. Different flavors of this problem arise in applications ran-
ging from texture and animation [vKZHCO11] to marker-less mo-
tion capture [WHC∗16]. The recent progress in the development of
commercial real-time 3D scanning technology has brought the need
for fast, accurate, and reliable correspondence methods capable of
dealing with real-world noise and artifacts. Particularly challenging
settings of the correspondence problem include: non-rigid corre-

spondence, where the shapes are allowed to undergo deformations
(in the simpler case assumed to be approximately isometric, and
in the more difficult one, non-isometric); partial correspondence,
where a subset of the shape has to be matched to its deformed full
version; and geometric and topological noise (the latter arising, for
example, due to occluded parts in the acquisition process). Practi-
cal scenarios involving real data acquisition consist of a combina-
tion of the above artifacts, where partiality, clutter, and topological
noise are notoriously hard. The main goal of our paper is to deal
with these challenging settings.
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Related work. Classical non-rigid correspondence methods as-
sume the shapes to be approximately isometric [BBK06] or to-
pologically equivalent [LF09]. Such assumptions are usually bro-
ken in the partial correspondence and topological noise settings.
Most recent works addressing the full correspondence problem
[APL15, MDK∗16, SPKS16, VLR∗17] can cope with the lack of
isometry to some extent, but cannot deal with significant parti-
ality. Rigid partial correspondence has been addressed by regu-
larized versions of the iterative closest point (ICP) algorithms
[AMCO08, ART15]. Extensions of these methods to the non-rigid
setting were proposed in [LSP08] but rely on an approximate initial
alignment, practically limiting the application to small deformati-
ons arising, for example, in 3D tracking applications.

Bronstein et al. [BB08, BBBK09] proposed using a combined
optimization problem over correspondence and parts, optimizing
for metric distortion and the regularity of corresponding parts. In
follow-up works, Rodolà et al. [RBA∗12] relaxed the regularity
requirement by allowing sparse correspondences and introduced a
mechanism to explicitly control the degree of sparsity of the solu-
tion [RTH∗13]. Sahillioğlu and Yemez [SY14] used a voting ap-
proach to match shape extremities, assuming them to be preserved
by the partiality transformation. The common deficiencies of the
above non-rigid partial correspondence methods are their ability to
provide only a sparse correspondence (typically, order of tens of
points), high computational complexity, and inability to deal with
extreme partiality where boundary effects play a significant role.

Pokrass et al. [PBB13a] proposed a descriptor-based partial ma-
tching approach where the optimization over parts is done to max-
imize the matching of bags of local descriptors. The main dra-
wback of this approach is that it only finds similar parts, wit-
hout providing a correspondence between them. Windheuser et
al. [WSSC11] formulated the shape matching problem as mini-
mal surfaces on the product manifold, whose solution provides a
guaranteed continuous and orientation-preserving matching. The
method was shown to allow dealing with partiality; its main li-
mitation is the assumption of mesh water-tightness and extreme
computational complexity. Brunton et al. [BWW∗14] computed
partial correspondence through the alignment of tangent spaces,
propagating some initial sparse correspondence. In the context of
collections of shapes, partial correspondence has been considered
in [VKTS∗11, CGH14, CRA∗16].

More closely related to our approach is the family of methods
based on the notion of functional correspondence. Ovsjanikov et
al. [OBCS∗12] introduced functional maps, modeling correspon-
dences as linear operators between spaces of functions on mani-
folds, which can be recovered provided a small set of known cor-
responding functions. In the Laplacian eigenbases, such operators
can be efficiently approximated as low-rank matrices with approx-
imately diagonal structure. Kovnatsky et al. [KBB∗13] proposed
finding bases that optimize for the diagonal structure of the cor-
respondence matrix using joint diagonalization of Laplacians. Po-
krass et al. [PBB∗13b] extended functional maps to the setting
where the ordering of the corresponding functions is unknown, sol-
ving simultaneously for a correspondence matrix and a permuta-
tion of the corresponding functions. Kovnatsky et al. [KBBV15]
computed functional maps solving a geometric matrix completion

problem, showing that non-isometric and mild partiality settings
could be addressed to some extent. Huang et al. [HWG14] consi-
dered correspondence between collections of non-isometric shapes.
Overall, while some formulations of functional maps allow to deal
with the lack of isometry and partiality, this framework is in prin-
ciple not designed to deal with partial correspondence.

Recently, Rodolà et al. [RCB∗16] provided an empirical evi-
dence and theoretical analysis of a surprising property of inte-
raction between Laplacian eigenfunctions as the result of removing
parts from surfaces. Applied to functional correspondence opera-
tors, this property results in a special slanted diagonal structure of
the correspondence matrix. Based on this observation, the authors
proposed the partial functional maps (PFM) framework. Follow-
up works extended PFM to the cluttered non-rigid correspondence
[CRM∗16] and multiple shape (‘non-rigid puzzles’) [LRB∗16b]
settings. While showing impressive quality in challenging settings,
the key deficiency of this line of works is an explicit model of parts,
resulting in a complicated alternating optimization over the functio-
nal correspondence matrix represented in the spectral domain (w.r.t.
the Laplacian eigenbasis) and the parts indicator function represen-
ted in the spatial domain (w.r.t. the Dirac basis).

Contribution. In this paper, we propose an efficient spectral-
domain method for finding partial dense intrinsic correspondence
between non-rigid shapes, which is capable of dealing with extreme
partiality settings, topological noise, and non-isometric deformati-
ons. Our framework mainly builds on the previous works on partial
functional maps [RCB∗16] and joint approximate diagonalization
(JAD) of Laplacians [KBB∗13]. We show that a variant of the JAD
problem with an appropriately modified coupling term allows to
construct quasi-harmonic bases localized on the latent correspon-
ding parts. This circumvents the need to explicitly compute the
unknown parts by means of the cumbersome alternating minimi-
zation used in the partial functional maps approach, allowing to
perform all the calculations in the spectral domain with constant
complexity independent of the number of shape vertices.

Compared to the previous approaches our method offers a sig-
nificant computational advantage, has an intuitive geometric inter-
pretation, and is more robust to large amounts of partiality and lack
of isometry. We show that the proposed approach achieves state-of-
the-art performance on the most recent SHREC partial [CRB∗16]
and topological noise [LRB∗16a] correspondence benchmarks.

2. Background

We model shapes as 2-manifoldsM (possibly with boundary ∂M)
equipped with the area element dµ induced by the standard me-
tric. The intrinsic gradient ∇M and the positive semi-definite
Laplace-Beltrami operator ∆M generalize the corresponding no-
tions from flat spaces to manifolds. The Laplacian admits an eigen-
decomposition

∆Mφi(x) = λiφi(x) x ∈ int(M) (1)

〈∇Mφi(x), n̂(x)〉= 0 x ∈ ∂M, (2)

with Neumann boundary conditions (2), where n̂ is the normal vec-
tor to the boundary. Here, 0 = λ1 ≤ λ2 ≤ . . . are eigenvalues and
φ1,φ2, . . . are the corresponding eigenfunctions. Due to the isome-
try invariance of the Laplacian, nearly-isometric shapes will have
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approximately the same eigenvalues and eigenspaces (up to ortho-
gonal transformation).

By analogy to the Euclidean case, the Laplace operator ∆M al-
lows us to extend Fourier analysis to manifolds. Since the eigen-
functions of the Laplacian form an orthonormal basis of L2(M) =
{ f : M→ R |

∫
M f 2dµ < ∞}, the space of square-integrable

functions onM, any function f ∈ L2(M) can be represented via
the Fourier series expansion

f (x) = ∑
i≥1
〈 f ,φi〉Mφi(x) , (3)

where we use the standard L2(M) inner product defined as
〈 f ,g〉M =

∫
M f g dµ.

Functional correspondence. Our method builds upon the functi-
onal maps framework of Ovsjanikov et al. [OBCS∗12]. The main
idea is to identify correspondences between shapes by a linear ope-
rator T : L2(M)→ L2(N ), mapping functions onM to functions
on N . One can easily see that classical point-to-point correspon-
dences constitute a special case where delta functions are mapped
to delta functions.

As a linear operator, T admits a matrix representation C = (ci j)
with coefficients computed as follows. Let {φi}i≥1 and {ψ j} j≥1

be orthonormal bases on L2(M) and L2(N ), respectively, and let
f ∈ L2(M). Then, the action of T on f can be written as

T f = T ∑
i≥1
〈 f ,φi〉Mφi = ∑

i≥1
〈 f ,φi〉MT φi

= ∑
i j≥1
〈 f ,φi〉M 〈T φi,ψ j〉N︸ ︷︷ ︸

c ji

ψ j . (4)

By choosing as functional bases {φi}i≥1, {ψ j} j≥1 the Lapla-
cian eigenfunctions on the respective manifolds, one obtains a par-
ticularly compact representation for the functional map: this choice
allows to truncate the series (4) after the first k terms as a band-
limited approximation of the original map, by analogy with Fourier
analysis. This results in a k× k matrix C encoding the functional
correspondence, where k is typically chosen to be a small number
(20 to 100 in practice). If, in addition, the functional map T is built
on top of a near-isometry, one obtains c ji = 〈T φi,ψ j〉N ≈ ±δ ji
since near-isometric shapes have corresponding eigenfunctions (up
to sign in case of simple spectra). The resulting matrix C thus ma-
nifests a diagonally dominant structure.

Now assume to be given q corresponding functions gi ≈ T fi,
i = 1, . . . ,q and let A = (〈φi, f j〉M) and B = (〈ψi,g j〉N ) be the
k× q matrices of Fourier coefficients of the given corresponding
functions. The functional correspondence problem considered in
[OBCS∗12] has the general form of

min
C
‖CA−B‖2

F , (5)

with the additional orthogonality constraint C>C = I if the under-
lying map is known to be area-preserving [OBCS∗12].

Joint diagonalization. When dealing with non-isometric shapes,
the diagonally dominant structure of C is broken since the ap-
proximate equality c ji = 〈T φi,ψ j〉N ≈ ±δ ji ceases to hold. In
[KBB∗13] it was proposed to find a pair of new bases {φ̂i, ψ̂i}k

i=1

in which C still has a near-diagonal structure. The new bases are
constructed as linear combinations of k standard Laplacian eigen-
functions,

φ̂i =
k

∑
j=1

p jiφ j , ψ̂i =
k

∑
j=1

q jiψ j (6)

where P,Q are the k×k matrices with the combination coefficients.
It is easy to check that the requirement for orthogonality of the new
bases 〈φ̂i, φ̂ j〉M = δi j and 〈ψ̂i, ψ̂ j〉N = δi j implies the orthogona-
lity of the matrices P>P = I and Q>Q = I. Further, the coeffi-
cients of { fi,gi} in the new bases can be expressed as Â = P>A
and B̂ = Q>B. The goal is to find matrices P,Q resulting in “quasi-
harmonic” bases {φ̂i, ψ̂i}, i.e., that behave approximately as eigen-
functions of the Laplacian, while being coupled in the sense Â≈ B̂.
Due to the coupling, the new basis functions behave consistently
resulting in almost perfectly diagonal C even in the absence of a
perfect isometry.

The orthogonal basis {φ̂i} behaves as the eigenbasis of ∆M if it
minimizes the Dirichlet energy ∑

k
i=1〈φ̂i,∆Mφ̂i〉M = tr(P>ΛΛΛMP),

where ΛΛΛMis a diagonal matrix of the first k eigenvalues of ∆M,
and where we used the fact that 〈φi,∆Mφ j〉M = λ jδi j. Alterna-
tively, the trace term can be replaced by an off-diagonal penalty
[CS96], arriving at the optimization problem

min
P,Q

off(P>ΛΛΛMP)+off(Q>ΛΛΛNQ)+µ‖P>A−Q>B‖2
F (7)

s.t. P>P = I , Q>Q = I ,

where off(A) = ∑i 6= j a2
i j. Problem (7) can be interpreted as a

joint approximate diagonalization of the Laplacians ∆M and ∆N
[KBB∗13]. Note that if µ = 0 (i.e., no coupling) the global solution
to (7) is P = Q = I, resulting in the standard eigenfunctions of ∆M
and ∆N when plugged into (6).

The orthogonal matrices P and Q act as rotations and reflections
of the original eigenbases, trying to align them in the k-dimensional
eigenspace. Because of this interpretation, it is possible to simplify
problem (7) by optimizing for a new basis on one shape only and
keeping the other fixed to the standard Laplacian eigenfunctions,

min
Q∈S(k,k)

off(Q>ΛΛΛNQ)+µ‖A−Q>B‖2
F, (8)

where S(n,k) = {X ∈ Rn×k : X>X = Ik} denotes the Stiefel ma-
nifold of n× k orthogonal matrices (when k < n, such matrices
are also called ortho-projections). Problems (7–8) are instances
of manifold optimization and can be solved using efficient nume-
rical techniques performing optimization on the matrix manifold
[BMAS14].

Robust formulation. In practical settings, the corresponding
functions fi,gi might be noisy, such that T fi 6= gi for some i’s. As
a result, some of the columns in the data term A−Q>B might
have large norm. A standard way to cope with such outliers is to
replace the `2 (Frobenius) norm in (8) with a robust matrix norm
‖X‖2,1 = ∑i ‖xi‖2 promoting column-wise sparsity (here xi is the
ith column of X). When the input functions are different dimen-
sions of a high-dimensional descriptor field, this has the effect of
discarding entire feature channels from the data. Note that robus-
tness to point (as opposed to channel) mismatches may be achie-
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φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8 φ9 φ10

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10

ψ̂1 ψ̂2 ψ̂3 ψ̂4 ψ̂5 ψ̂6 ψ̂7 ψ̂8 ψ̂9 ψ̂10

Figure 2: The standard Laplacian eigenfunctions (two first rows) are strongly affected by the lack of perfect isometry and in the presence of
missing parts. In the top and middle rows we show the first ten eigenfunctions {φi}10

i=1 and {ψ j}10
j=1 on a partial and full shape respectively;

note the inconsistent behavior at corresponding indices. In the bottom row we show the optimal basis functions {ψ̂ j}10
j=1 obtained with our

method: the new basis manifests the same behavior as in the first row, and is at the same time localized on the latent corresponding part.

ved by row-wise sparsity in the spatial domain, however doing so
would sacrifice the benefits of shifting to a spectral representation.
Finally, the presence of the `2,1 norm makes the objective function
non-smooth. In such a setting, non-smooth manifold optimization
techniques such as MADMM [KGB16] can be employed to reach
a good local optimum.

Partial functional correspondence. Assume now to be given a full
shape N and a partial shapeM that is approximately isometric to
some (unknown) sub-region N ′ ⊆N . We are interested in deter-
mining a partial functional map T : L2(M) → L2(N ) mapping
functions onM to functions supported on the regionN ′.

Recently, Rodolà et al. [RCB∗16] showed that for each “partial”
eigenfunction φ j (i.e., each eigenfunction of the partM) there ex-
ists a corresponding “full” eigenfunction ψi of N for some i≥ j
(see for example φ3 and ψ5 in Figure 2). Differently from the
full-to-full setting, where the correspondence is observed for i = j,
here the inequality i≥ j induces a slanted-diagonal structure on
matrix C. In particular, under the correct isometry encoded in T
(i.e., the image T φ j is localized to N ′ ⊆ N ), the inner product
c ji = 〈T φ j,ψi〉N will have a large (absolute) value whenever T φ j
and ψi correlate, and a small value (in general 6= 0) otherwise. The
authors showed that an estimate for this diagonal slope can be sim-
ply computed as the ratio of areas, θ≈ |M||N| .

The key idea behind their analysis is to model partiality as a per-
turbation of the Laplacian matrices ∆∆∆M, ∆∆∆N of the two shapes.
Specifically, consider the dog shape N shown in the inset, and as-
sume a vertex ordering where the points contained in the red region

M appear before those of the blue region M̄. Then, the full Lap-
lacian ∆∆∆N will assume the structure

∆∆∆N =

(
∆∆∆M 0

0 ∆∆∆M̄

)
+

(
PM E
E> PM̄

)
, (9)

M

M̄

N
where the second matrix encodes the pertur-
bation due to the boundary interaction bet-
ween the two regions. Such a matrix is typi-
cally very sparse and low-rank, since it con-
tains non-zero elements at the interface bet-
ween the boundaries ∂M to ∂M̄.

If the perturbation matrix is identically
zero, then (9) is exactly block-diagonal; this
describes the case in which M and M̄ are
disjoint parts, and the eigenpairs of ∆∆∆N are an interleaved sequence
of those of the two blocks. The key result shown in [RCB∗16] is
that this interleaving property still holds even when considering the
full matrix ∆∆∆N as given in (9): Its eigenpairs consist of those of the
blocks ∆∆∆M, ∆∆∆M̄, up to some bounded perturbation that depends on
the length and position of the boundary ∂M. This provides a mo-
tivation as to why one observes large correlation 〈T φ j,ψi〉N with
i≥ j in the partial case.

The problem considered in [RCB∗16] has the form

min
C,v
‖CA−B(v)‖+ρcorr(C)+ρpart(v) , (10)

where v :N → [0,1] is a (soft) indicator function for the unknown
sub-region N ′ ⊆N , and B(v) = (〈ψi,v · g j〉N ) = (〈ψi,g j〉N ′) is
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the matrix of coefficients for the functions {gi} restricted to the
area indicated by v.

The penalties ρcorr(C) and ρpart(v) act as regularizers on corre-
spondence and part respectively. The former includes, among se-
veral others, a regularization term promoting a slanted diagonal
structure on C with diagonal slope θ, precomputed as the area ra-
tio as discussed above. This way, problem (10) incorporates the
prior knowledge on the particular structure observed on C in par-
tial correspondence problems. The ρpart(v) term favors fewer large
contiguous regions over several small fragmented segments, thus
imposing a prior on the type of partiality (we refer to [RCB∗16]
for the technical details). Note that function v is defined over the
vertices ofN , hence scaling linearly with shape size. Problem (10)
is optimized alternatingly over the Fourier and spatial domains in
order to solve for correspondence and part respectively.

The above model was extended to multiple parts in [LRB∗16b]
(a setting referred to as “non-rigid puzzle”), and in [CRM∗16] to
deal with clutter. Despite the additional constraints on the parts, the
problem formulations are essentially the same as in (10) and make
use of similar regularizers on part and correspondence.

3. Fully spectral partial correspondence

The main drawback of partial functional maps [RCB∗16] and the
follow-up works [LRB∗16b, CRM∗16] is their explicit model of
the part, requiring a somewhat cumbersome solver alternating be-
tween optimization in the spatial domain (over the part indicator
function) and in the spectral domain (over the correspondence ma-
trix). Furthermore, the complexity of the spatial domain optimi-
zation depends on the number of mesh vertices and scales poorly
(see Section 5 for an evaluation). One of the main contributions of
our paper is a simple observation allowing to formulate the partial
functional maps problem entirely in the spectral domain. Our met-
hod bears resemblance to joint approximate diagonalization but has
a fundamental difference that we will emphasize in the sequel.

Localization. A key feature of partial functional maps lies in
their spatially localized behavior: Any solution to (10) is a map
T : L2(M)→ L2(N ) that is supported on some region N ′ ⊆ N
of the full model, meaning that for all y ∈N \N ′ the approximate
equality (T f )(y)≈ 0 holds for any f ∈ L2(M). This can be easily
seen by noting that the image of A under C must be localized to
the region indicated by v in order for the data term ‖CA−B(v)‖
to reach a minimum; in other words, the functional map C must
localize the correspondence.

This localization property comes at the price of modeling the re-
gionN ′ ⊆N explicitly. In this paper we propose to absorb the spa-
tial mask into a new basis {ψ̂ j} for L2(N ); in doing so, we dispose
of the explicit part v and obtain a simpler optimization problem, as
we elucidate in the following.

Assume C,v are a solution to (10), such that CA = B(v) holds
approximately, and consider two functions f ∈ L2(M),g ∈ L2(N )
whose spectral representations are columns of A and B respecti-
vely. In the spatial domain, the equality becomes

k

∑
i j
〈 f ,φi〉Mc jiψ j =

k

∑
i=1
〈v ·g,ψi〉Nψi ≈ v ·g , (11)

where the approximation is due to truncation to the first k terms. By
defining a new basis ψ̂i = ∑

k
j=1 c jiψ j , we get to

k

∑
i j
〈 f ,φi〉Mψ̂ j ≈ v ·g , (12)

in other words, the modified basis {ψ̂ j} induces the sought locali-
zation. Importantly, in order for (12) to hold for general f and g, the
new basis functions themselves must be localized, i.e., ψ̂i = v · ψ̂i
for all i.

Using the fact that orthogonal C implies orthogonal {ψ̂ j}, we
can phrase (12) in the spectral domain as:

A≈ C>B(v) = C>B ; (13)

in the last equality, we absorbed the indicator function v into the
new basis functions {ψ̂ j}.

Problem. In light of our previous analysis, we consider the follo-
wing manifold optimization problem:

min
Q∈S(k,r)

off(Q>ΛΛΛNQ)+µ‖Ar−Q>B‖2,1 , (14)

where S(k,r) is the Stiefel manifold of orthogonal k× r matrices
(ortho-projections), and Ar = WrA with Wr = (Ir×r 000r×k−r) de-
notes the r×k matrix containing the first r rows of A. The value of
r is directly related to the rank of the partial functional map C in
(10) and can be estimated simply from the area ratio θ, or optimi-
zed for explicitly by solving (14) for a range of r’s. The rank r and
the orthogonality of Q act as partiality priors, since they are related
to the underlying map being area-preserving [OBCS∗12,RCB∗16].

The optimization problem (14) models partial correspondence as
the search for a new basis that is localized to a latent part of the full
shape. In this view, the matrix Q is not regarded as a functional
map between shapes, but rather as a matrix of transformation coef-
ficients for the basis (the off-diagonal regularity term ensures that
the transformation is smooth). This interpretation will allow us (see
Eq. (16)) to tackle part-to-part settings as a simple modification to
(14). The first r functions {ψ̂1, . . . , ψ̂r} of the new orthogonal ba-
sis ψ̂i = ∑

k
j=1 q jiψ j obtained as the result of such a transforma-

tion would be approximately orthogonal to {φ1, . . . ,φr} under the
functional correspondence (see Figure 2),

〈T φi, ψ̂ j〉N ≈ δi j; i, j = 1, . . . ,r . (15)

It is important to remark that, while the correct partial correspon-
dence is a solution to our problem by Eq. (11–13), this is not neces-
sarily unique as it directly depends on the input data. Not all such
optima are localized to the correct region, and some might even
have global support. The choice of the input corresponding functi-
ons { fi,gi} ultimately determines the quality of the localization
(see Figure 5). In practice, it is enough to employ dense descriptor
fields that are sufficiently similar on the corresponding regions in
order to drive the optimization to the correct solution.

Part-to-part. Let us now assume that only a part N ′ of the shape
N matches the corresponding part M′ ⊂M (see Figure 5). As
observed by Litany et al. [LRB∗16b], one still obtains a slanted-
diagonal structure of C with angle θ =

|M|
|N| , that is, θ depends

only on the area ratio of the known full shapes and not that of the
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Initialization Iteration 5 Iteration 25 Iteration 75 Iteration 150 Iteration 700 Iteration 1400 Iteration 4000

Figure 3: Our optimization process admits an interpretation as a non-rigid alignment of the spectral embeddings of the input shapes (in this
example, the cat meshes of Figure 7). Top: The spectral embeddings (in 2D for simplicity) at different time steps. The localization effect is
manifested in the “extra” unmatchable part (pink point cloud) shrinking towards zero in the spectral domain as the optimization converges
to a correct partial correspondence. In the last iterations, the two matching point clouds (blue and red) are almost perfectly aligned. Bottom:
Correspondence matrices in the new basis, computed as the matrix C(t) minimizing C(t)A = Q(t)>B in the least squares sense. Note that
this correspondence matrix is never actually used in our matching pipeline, and is being included here for illustration purposes. Middle: We
plot the segmentation function indicating the region on the full shape that is put into correspondence with the partial shape (cold and hot
colors represent small and large values respectively). The function is simply taken to be the image of the constant function via C(t).

unknown parts, |M
′|

|N ′| . On the other hand, if N ′ were given, only

about |N
′|

|M| k out of k first eigenfunctions of ∆M would correspond
to the first k eigenfunctions of ∆N . This means that while the ma-
trix C in the partial functional correspondence problem (10) will
have the same slanted diagonal structure regardless of the size of
the corresponding partsM′ andN ′, the actual fraction of non-zero
entries on the slanted diagonal will be about min

{
|N ′|
|M| ,

|M′|
|N |

}
or,

assuming approximately isometric parts, min
{
|M′|
|M| ,

|N ′|
|N |

}
. Mo-

reover, the exact indices of these corresponding functions cannot
be predicted a priori.

Since the first r eigenfunctions of ∆M typically contain only a
subset of all the corresponding eigenfunctions, in order to satisfy
(14) we have to modify the coefficients A as well. This leads to

min
(P,Q)∈S2(k,r)

off(P>ΛΛΛMP)+off(Q>ΛΛΛNQ)+µ‖P>A−Q>B‖2,1 ,

(16)
where optimization is now performed on the product of Stiefel ma-
nifolds. In Figure 5 we illustrate the localization behavior of the
new bases under different inputs A,B, and as a function of r. As
we will also show in the experimental section, it is sufficient to use
robust enough descriptor fields in order to get a good localization
to the latent corresponding region. Further note how the choice of
r also affects map locality.

Comparison to joint diagonalization. Problems (14) and (16)
can be viewed as variants of joint approximate diagonalization pro-

blems (8) and (7), respectively with the `2 data fitting term replaced
by the more robust `2,1 counterpart as was previously suggested
in [PBB∗13b] and [KGB16]. Despite this resemblance, the crucial
difference lies in the fact that in the former problems k× r ortho-
projections are used in place of full-rank k×k orthogonal matrices.

The data term of problem (16) can be rewritten using full-rank
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Figure 4: This plot shows the evolution of the spectral coefficients
of points belonging to the matchable (in red) and unmatchable (in
pink) parts for the example shown in Figure 3. Observe the forma-
tion of two distinct groups of values from the very first iterations,
with the values of the unmatched part tending towards zero.
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(a) (b) (c)

r/k = 0.1 r/k = 0.5 r/k = 1.0 (full)
Figure 5: Effect of changing the data term in (16) by using (a) des-
criptor fields localized to the correct region of the human shape
(i.e., the region corresponding to the human part of the centaur);
(b) descriptor fields supported on the entire shape, but similar only
on the correct region; and (c) noisy descriptors with similar values
outside the correct region. We visualize the segmentation of the hu-
man shape after optimization of (16). In the bottom row, we show
localization as a function of the rank r.

k× k orthogonal matrices P,Q as ‖Wr(P>A−Q>B)‖2,1 and can
be interpreted as the fitting term of (7) with a modified metric. The
effect of using the mask Wr is visualized in Figure 7. Theoretical
and experimental justification provided in this paper suggests that,
surprisingly, such an apparently simple modification of the problem
is sufficient to handle a wide range of settings involving partiality,
clutter, and topological noise, as well as lack of isometry.

Geometric interpretation. The joint approximate diagonaliza-
tion process (7) can be interpreted as a rigid alignment of the
k-dimensional spectral embeddings {φi}k

i=1 and {ψi}k
i=1 of two

shapes, where the orthogonal matrices P,Q rotate/reflect the eigen-
functions such that the resulting bases (6) are aligned. Similarly,
our approach (16) can be interpreted as a non-rigid alignment in
the r-dimensional eigenspace. The new bases {φ̂i}r

i=1 and {ψ̂i}r
i=1

are constructed as linear combinations of k eigenvectors; if k� r,
one can produce almost arbitrary sets of r aligned orthogonal basis
functions. The off term in our problem (16) acts as a regulariza-
tion ensuring that the functions are smooth. The combined effect
of the data and regularization terms is that of a non-rigid alignment
(see Figures 3, 4 and 7). Note that while some spectral approa-
ches [JZvK07, MHK∗08, RMC15] seek for a correspondence by
non-rigid ICP in the spectral domain, none of these successfully
tackle the case of missing geometry and topological noise.

Comparison to partial functional maps. As discussed earlier,
any solution to the functional correspondence problem (10) is also
a solution to our formulation (14). A key difference lies in the di-
rection of the map: If we regard matrix Q as the spectral represen-
tation of a functional map, our data term evaluates its pre-image
inM (the partial shape), while (10) looks at the image on the full
shapeN , thus requiring an explicit modeling of the part.

Further, as described in [RCB∗16], the regularizer ρcorr(C) in

(10) includes a penalty term promoting C>C ≈
(

Ir 0
0 0

)
. This

area-preservation requirement is phrased as a hard constraint in our
problem, where we optimize over the Stiefel manifold S(k,r), such
that Q>Q = Ir. Overall, the optimization problem (14) is less en-
gineered than (10), has less parameters, and is simpler to optimize.
See Figures 6-8 for further comparisons.

4. Implementation

Our optimization problem (14) is manifold-constrained and non-
smooth (due to the `2,1 norm). We solve it by using the MADMM
scheme of Kovnatsky et al. [KGB16]. We implemented our method
in Matlab using manopt [BMAS14], a framework for optimization
over manifolds. Laplacians were discretized using the classical co-
tangent scheme [PP93, MDSB03]; note that although this step and
the subsequent eigen-decomposition clearly depend on the number
of vertices, they are carried out only once for each shape and thus
count as an off-line cost. We further note that, although the ma-
nifold constraints render the problem non-convex and MADMM
gives no global optimality guarantees, in practice we observed a
stable behavior with a strictly decreasing cost value and fast con-
vergence (an empirical evaluation is provided in Section 5).

Initialization. We initialize the orthogonal matrices in problems
(14) and (16) as k× r random matrices with k = 50 and r estimated
via the area ratio. Since the availability of known corresponding
functions for the data term is a restrictive assumption, in practice
we avoid using this input by replacing { fi,gi}q

i=1 with dense des-
criptor fields calculated on M and N , where q is the number of
dimensions of the descriptor. In all our experiments we used the
352-dimensional SHOT [TSDS10] with default parameters.

Point-wise map conversion and refinement. After convergence,

Ours

PFM

rank = 36 rank = 23 rank = 7

Figure 6: Correspondence matrices at increasing partiality. We
show the solutions obtained by our method in the new basis (middle
row) and by PFM in the standard Laplacian eigenbasis (bottom
row). Observe how our representation remains crisp even at ex-
treme levels of partiality (rightmost column).
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Laplacian eigenbasis Joint eigenbasis Ours

Figure 7: Top: Input shapes (dark red denotes the part corre-
sponding to the partial blue shape). Middle: Spectral embeddings
(shown are the first two eigenfunctions) using the standard Lapla-
cian eigenbasis (left), in the basis obtained by joint approximate
diagonalization (center), and in the basis obtained with our appro-
ach (right); color coding is as in the top row. Bottom: Correspon-
dence matrices in the three bases. Note how our method results in
almost perfect alignment of basis functions.

we recover the point-wise correspondence by a simple nearest-
neighbor search in the k-dimensional spectral domain [OBCS∗12]
(e.g., in the example of Figure 7, each blue point is matched to the
closest red point). The solution is further refined by selecting 10%
of the matches using farthest point sampling, and using them to
construct new corresponding functions { fi,gi} as sparse (yet well
spread) localized smooth delta functions. The new data term re-
places the initial one, which was based solely on descriptors. The
value of µ is adjusted accordingly to keep a similar weight bet-
ween the new data term and the regularizer. We repeat this process
5 times. For a fair comparison, we applied the same refinement
procedure to partial functional maps [RCB∗16] and joint diago-
nalization [KBB∗13]. Note that while more sophisticated recovery
methods exist [RMC15], these work under the assumption of no
partiality, which is violated in our setting.

5. Experimental results

We evaluated our method extensively in a variety of settings. Our
method was executed on an Intel i7-4710MQ 2.50GHz CPU with
8 logical cores.

Evaluation. Correspondence quality is quantitatively evaluated
according to the Princeton benchmark protocol [KLF11]. Assume

Ours

PFM

Figure 8: The three partial shapes shown above have equal mis-
sing area, although in different shapes and sizes. The resulting cor-
respondence matrices in our new basis have same rank and similar
off-diagonal patterns. Note how, differently from PFM, the diago-
nal in our representation remains sharp in all three cases.
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Figure 9: SHREC’16 Topology benchmark, includes shapes under-
going strong topological changes. While being fully spectral, our
method improves upon PFM by over 10% at a fraction of the com-
putational cost. Sparse correspondence methods (producing 250-
1000 matches) and dense correspondence methods are denoted by
dashed and solid lines, respectively.

that a correspondence algorithm produces a match (x,y)∈M×N ,
whereas the ground-truth correspondence is (x,y∗). Then, the in-
accuracy of the correspondence is measured as

ε(x) =
dN (y,y∗)
|N |1/2

, (17)

where dN is the geodesic distance on N . We plot cumulative cur-
ves showing the percent of matches which have error smaller than
a variable threshold. Symmetric solutions are given no penalty.

Topological changes We performed a full quantitative evaluation
on the recent SHREC’16 Topology benchmark [LRB∗16a] (low re-
solution setting, ∼10K vertices per shape). The dataset consists
of 90 matching problems between human shapes undergoing to-
pological changes of various intensity (some examples are shown
in Figure 15). The methods appearing in the original benchmark
are random forests (RF) [RRBW∗14], Green’s embedding (GE)
[LRB∗16a], and isometric embedding (EM) [SY12a]. As reported
in Figure 9, previous approaches demonstrated poor performance
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Figure 10: SHREC’16 Partial Correspondence benchmark. Our
method compares favorably with PFM, while being considerably
more efficient (see also Figure 13). Sparse correspondence met-
hods (producing 50-100 matches) and dense correspondence met-
hods are denoted by dashed and solid lines, respectively.

due to the challenging setting. We additionally included in the com-
parison partial functional maps (PFM) [RCB∗16] and the recent
convex optimization (CO) method of Chen and Koltun [CK15],
which performs an explicit modeling of topological artifacts but did
not previously appear in the benchmark. For a fair comparison, we
disabled the extrinsic regularization term of [CK15] since it relies
on the shapes being approximately aligned in R3.

Part-to-full. We quantitatively evaluated our method in the par-
tial matching scenario on the challenging SHREC’16 Partial Cor-
respondence benchmark [CRB∗16]. The dataset is composed of
400 partial shapes (from a few hundred to ∼9K vertices each) be-
longing to 8 different classes (humans and animals), undergoing
nearly-isometric deformations in addition to having missing parts
of various forms and sizes. Each class comes with a “null” shape in
a standard pose which is used as the full template to which partial
shapes are to be matched. This results in 400 matching problems in
total. The dataset is split into two subsets, namely cuts (removal of
a few large parts) and holes (removal of many small parts).

The results are reported in Figures 10 and 11, and qualitati-
vely in Figure 16. We compare with partial functional maps (PFM)
[RCB∗16], random forests (RF) [RRBW∗14], scale-invariant iso-
metric matching (IM) [SY12b], game-theoretic matching (GT)
[RBA∗12], and elastic net matching (EN) [RTH∗13], as these met-
hods appeared in the original benchmark. We additionally include
joint diagonalization (JAD) [KBB∗13] in the comparison.

We see from the plots that our method has a∼10% improvement
on PFM, the closest competitor, in both datasets. Given the purely
spectral nature of our method and its considerably simpler formu-
lation, as opposed to the cumbersome optimization in the spatial
domain performed by PFM, we find these results quite remarka-
ble (a runtime comparison of the two methods will be presented in
Section 5) The poor performance of JAD puts in evidence the im-
portance of correctly estimating the rank of the new basis, as we
discussed in Section 3.
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Figure 11: Performance of different methods on the SHREC’16
Partial Correspondence benchmark at increasing levels of parti-
ality (measured as percentage of missing area).

Scanned data. We carried out qualitative experiments on the
FAUST dataset [BRLB14], which contains real human shapes
acquired with a 3D scanning device. By nature of the acquisition
process, these shapes are affected by topological artifacts as well
as missing parts due to self-occlusions, resulting in a challenging
testbed for shape matching. The results are shown in Figure 14.

Runtime. In Figure 13 we report a runtime comparison with PFM
at increasing number of vertices. Since our technique operates ex-
clusively in the spectral domain, the computational cost of each ite-
ration only depends on the prescribed basis dimension k, hence it is
constant w.r.t. shape size (see Equation (14)). In contrast, due to the
alternating optimization over the spectral and spatial domains, the
runtime complexity of PFM grows linearly with shape size (Equa-
tion (10)). The average runtime on the SHREC’16 benchmarks was
∼220 sec. for our method and ∼1240 sec. for PFM.

6. Discussion and conclusions

We introduced a novel method for partial dense intrinsic correspon-
dence between deformable shapes. Contrarily to existing approa-
ches, our method is generic in that it allows to tackle topological
noise, strong partiality, and non-isometric deformations within the
same framework, making it amenable for application in practical
settings involving real data acquisition. A remarkable feature of our
method lies in its purely spectral nature, allowing to perform all cal-
culations (except for the initial calculation of the first k Laplacian
eigenfunctions) with constant complexity independent of the shape
size. Our method improves the state of the art for shape correspon-
dence on three recent benchmarks, where it is faster than the closest
competitor by one order of magnitude, and performs demonstrably
well on real data.

Limitations. Examples of failure cases are shown in Figure 12.
The main limitation of our method lies in its reliance on good local
features to drive the matching process. Correspondence quality is
directly affected by the robustness of the chosen descriptor fields
to the artifacts that one may encounter in practice, and designing
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a local descriptor that is robust to deformations, topological noise
and missing geometry is indeed an open challenge tackled by few.
Second, our approach shares with other intrinsic methods its inva-
riance to intrinsic symmetries, resulting in reflected solutions that
may be undesirable in certain applications. Operating again at the
feature level by incorporating some notion of symmetry-awareness
(hence an extrinsic quantity) in the local descriptor may be a possi-
ble and promising direction to pursue.
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