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A. Video
As mentioned in the paper, we provide a video of

the qualitative relocalization demo, which is available at
https://vision.in.tum.de/lm-reloc.

B. Network Architecture
CorrPoseNet. The CorrPoseNet takes 2 images (I and
I ′) as the input and outputs the relative pose R, t between
those images. The overall network architecture of the Cor-
rPoseNet is depicted in Figure 1. The convolutional blocks
consist of in total 9 convolutional layers followed by ReLU
activations. The architectural details of the convolutional
blocks are listed in Table 1. The correlation layer which
takes the output of the convolutional blocks as input is de-
scribed in the main paper. The correlation layer is followed
by the regression block which regresses the relative pose.
The layers of the regression block are listed in Table 2. The
output of the network is the rotation R as Euler angles and
translation t.

Table 1: Network architecture and parameters of the convolutional
blocks. k denotes kernel size, s stride, and p padding.

Convolutional blocks
layer in-chns out-chns k s p activation
conv0 3 16 16 2 3 ReLU
conv1 16 32 5 2 2 ReLU
conv2 32 64 3 2 1 ReLU
conv3 64 64 3 1 0 ReLU
conv4 64 128 3 2 2 ReLU
conv5 128 128 3 1 1 ReLU
conv6 128 256 3 2 1 ReLU
conv7 256 256 3 1 1 ReLU

LM-Net. We adopt U-Net [1] as the encoder of LM-Net.
However, we change the decoder part of the architecture
in the following way. Starting from the coarsest level, we
upsample (with bilinear interpolation) the feature maps by
2 and concatenate those feature maps with the feature map
of the higher level. This is followed by 1× 1 convolutional

∗Equal contribution.

Figure 1: Network architecture of CorrPoseNet.

filters. This procedure is repeated 4 times. This results in
the feature pyramid maps as described in Table 3.

C. Ablation Study Correlation Layer

We demonstrate the impact of the Correlation layer in
the proposed CorrPoseNet. We compare it to a simpler
pose estimation network where the correlation and regres-
sion layers are replaced with two 1 × 1 convolutions with
3 output-channels each, which directly regress rotation and
Euler angles. This simpler PoseNet has one more convo-
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(a) Translation error.
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(b) Rotation error.

Figure 2: Cumulative error plot for relocalization on the CARLA relocalization benchmark validation data [2]. It can be seen that the
correlation layer in CorrPoseNet has a large impact on the performance.

Table 2: Network architecture and parameters of the regression
block. k denotes kernel size, s stride, and p padding. Nc = 256
denotes the input channels for the CARLA model, and No = 260
denotes the input channels for the Oxford model, respectively.

Regression block
layer in-chns out-chns k s p activation
conv0 Nc / No 128 7 1 0 ReLU
BN 128 128 - - -
conv1 128 64 5 1 0 ReLU
BN 64 64 - - -
FC 2304 6 - - -

Table 3: Output of the decoder of LM-Net. H , and W denote
height and width of the feature maps.

Decoder layer Output size
F1 16×H/8×W/8
F2 16×H/4×W/4
F3 16×H/2×W/2
F4 16×H ×W

lutional block conv8 with 512 output channels, kernel size
3, stride 2, and padding 1. Otherwise the network architec-
ture and parameters are the same as for CorrPoseNet. The
results on the CARLA validation data are shown in Figure
2. Even the simpler pose estimation network (PoseNet w/o
Correlation layer) improves the result over using identity
as an initialization for the direct image alignment (LM-Net
only). However, utilizing the correlation layer significantly
boosts the performance.

Table 4: This table shows the AUC until 0.5 meters / 0.5 degrees
for the relocalization error on the Oxford validation sequences.
Our data augmentation (which warps the images using random
poses) improves both rotation and translation error.

Method tAUC RAUC

Ours 80.45 65.11
Ours w/o data augmentation 80.15 64.58

D. Ablation Study Oxford Data Augmentation
We show the impact of the data augmentation for the Ox-

ford RobotCar Relocalization benchmark, where we warp
the images to different poses using dense depths in Table
4. It can be seen that the proposed augmentation improves
translation and rotation error on the validation data.
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