

Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Computer Vision Group

Robert Maier, Jörg Stückler, Daniel Cremers

International Conference on 3D Vision (3DV) October 2015, Lyon, France

Motivation

Given:

Low-resolution RGB-D frames (640 x 480)

Accurate geometric reconstruction

Motivation

Given:

Low-resolution RGB-D frames (640 x 480)

Accurate geometric reconstruction

- State-of-the-art w.r.t. visual appearance:
- Vertex colors: limited resolution
- Texture mapping: good-quality results, but slow/impractical

Motivation

Given:

Low-resolution RGB-D frames (640 x 480)

Accurate geometric reconstruction

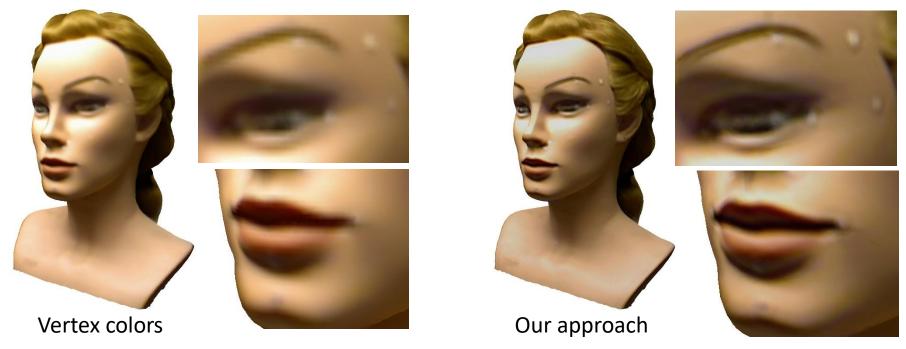
- State-of-the-art w.r.t. visual appearance:
- Vertex colors: limited resolution
- Texture mapping: good-quality results, but slow/impractical

Problem: Gap in research of fast and robust estimation of highquality visual appearance from low-cost RGB-D sensors

Computer Vision Group

• Our Approach:

- Our Approach:
 - Super-resolution (SR) Keyframe Fusion and Deblurring


- Our Approach:
 - Super-resolution (SR) Keyframe Fusion and Deblurring
 - Texture Mapping using SR keyframes (weighted median)

- Our Approach:
 - Super-resolution (SR) Keyframe Fusion and Deblurring

Computer Vision Group

- Texture Mapping using SR keyframes (weighted median)

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Related Work

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Related Work

- Vertex colors (weighted average)
 - Newcombe et al., KinectFusion: Real-time dense surface mapping and tracking. ISMAR 2011
 - Sturm et al., CopyMe3D: Scanning and printing persons in 3D. GCPR 2013

Related Work

- Vertex colors (weighted average)
 - Newcombe et al., KinectFusion: Real-time dense surface mapping and tracking. ISMAR 2011
 - Sturm et al., CopyMe3D: Scanning and printing persons in 3D. GCPR 2013
- Texture Mapping
 - Weighted Median [Coorg and Teller. Automatic extraction of textured vertical facades from pose imagery. 1998]
 - Single input view per face, minimize seams [Gal et al., Seamless montage for texturing models. 2010]
 - Variational super-resolution [Goldlücke et al., A super-resolution framework for high-accuracy multiview reconstruction, IJCV 2014]

Related Work

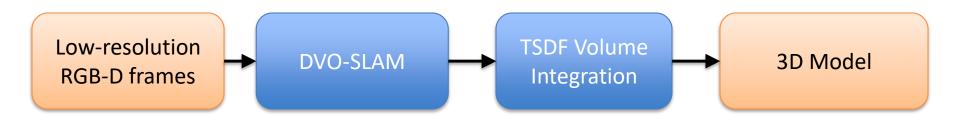
- Vertex colors (weighted average)
 - Newcombe et al., KinectFusion: Real-time dense surface mapping and tracking. ISMAR 2011
 - Sturm et al., CopyMe3D: Scanning and printing persons in 3D. GCPR 2013
- Texture Mapping
 - Weighted Median [Coorg and Teller. Automatic extraction of textured vertical facades from pose imagery. 1998]
 - Single input view per face, minimize seams [Gal et al., Seamless montage for texturing models. 2010]
 - Variational super-resolution [Goldlücke et al., A super-resolution framework for high-accuracy multiview reconstruction, IJCV 2014]
- RGB-D based 3D Reconstruction
 - Super-resolution RGB-D keyframes [Meilland and Comport. Super-resolution 3D tracking and mapping. ICRA 2013]
 - Optimization of camera poses and non-rigid correction [Zhou and Koltun. Color map optimization for 3D reconstruction with consumer depth cameras. TOG 2014]

Related Work

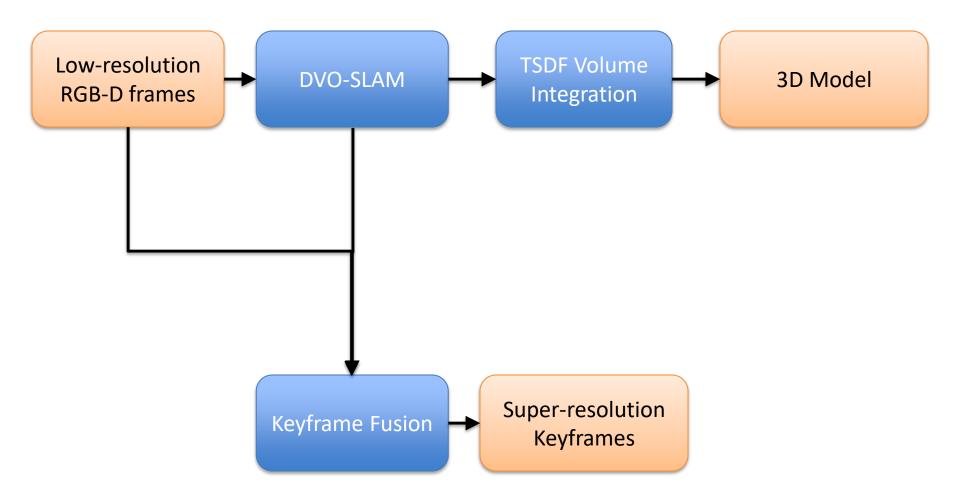
- Vertex colors (weighted average)
 - Newcombe et al., KinectFusion: Real-time dense surface mapping and tracking. ISMAR 2011
 - Sturm et al., CopyMe3D: Scanning and printing persons in 3D. GCPR 2013
- Texture Mapping
 - Weighted Median [Coorg and Teller. Automatic extraction of textured vertical facades from pose imagery. 1998]
 - Single input view per face, minimize seams [Gal et al., Seamless montage for texturing models. 2010]
 - Variational super-resolution [Goldlücke et al., A super-resolution framework for high-accuracy multiview reconstruction, IJCV 2014]
- RGB-D based 3D Reconstruction
 - Super-resolution RGB-D keyframes [Meilland and Comport. Super-resolution 3D tracking and mapping. ICRA 2013]
 - Optimization of camera poses and non-rigid correction [Zhou and Koltun. Color map optimization for 3D reconstruction with consumer depth cameras. TOG 2014]

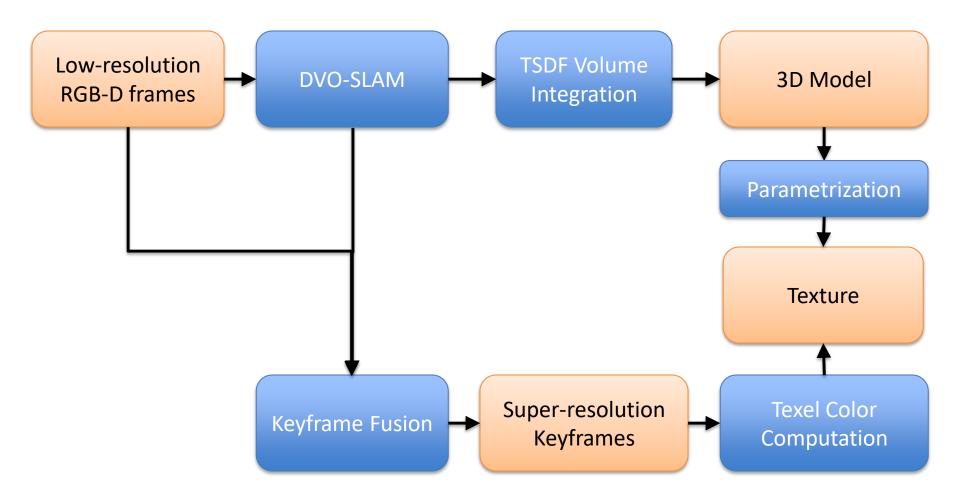
• Contribution: Texture Mapping using Super-resolution Keyframes

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures



Low-resolution RGB-D frames





Geometric 3D Reconstruction

Geometric 3D Reconstruction

- DVO-SLAM: camera trajectory
 - [Kerl et al., Dense visual slam for RGB-D cameras.
 IROS 2013]
 - Real-time 3D reconstruction on a CPU
 - Robust Dense Visual Odometry
 - Loop closure detection + pose graph optimization

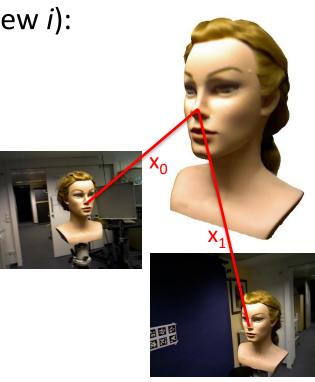
Geometric 3D Reconstruction

Computer Vision Group

- DVO-SLAM: camera trajectory
 - [Kerl et al., Dense visual slam for RGB-D cameras.
 IROS 2013]
 - Real-time 3D reconstruction on a CPU
 - Robust Dense Visual Odometry
 - Loop closure detection + pose graph optimization

• Model Fusion (TSDF Volume): 3D mesh

Computer Vision Group


• Mesh vertex v, input views C_i (blur measure b_i), camera poses ξ_i

- Mesh vertex v, input views C_i (blur measure b_i), camera poses ξ_i
- Compute observations (x_i is obs. of v in view i):

$$\mathbf{x}_i = \mathcal{C}_i(\pi(\mathbf{v}, \xi_i))$$

Computer Vision Group

- Mesh vertex v, input views C_i (blur measure b_i), camera poses ξ_i
- Compute observations (x_i is obs. of v in view i):

$$\mathbf{x}_i = \mathcal{C}_i(\pi(\mathbf{v},\xi_i))$$

• Discard *x_i* close to depth discontinuities

- Mesh vertex v, input views C_i (blur measure b_i), camera poses ξ_i
- Compute observations (x_i is obs. of v in view i):

$$\mathbf{x}_i = \mathcal{C}_i(\pi(\mathbf{v},\xi_i))$$

- Discard x_i close to depth discontinuities
- Weights of obs. x_i :

$$w_i = \frac{\cos(\theta) * b_i}{d^2}$$

Computer Vision Group

- Mesh vertex v, input views C_i (blur measure b_i), camera poses ξ_i
- Compute observations (x_i is obs. of v in view i):

$$\mathbf{x}_i = \mathcal{C}_i(\pi(\mathbf{v},\xi_i))$$

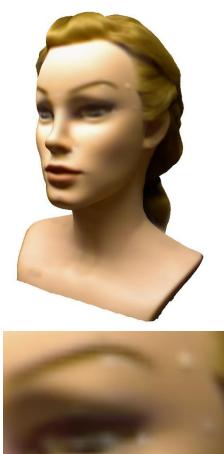
- Discard x_i close to depth discontinuities
- Weights of obs. x_i :

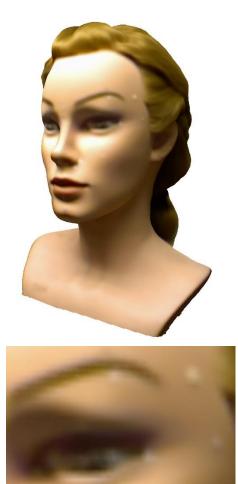
$$w_i = \frac{\cos(\theta) * b_i}{d^2}$$

- Compute vertex color *x*:
 - Weighted mean:
 - Weighted median:

dian:
$$\arg \min_{x} \sum_{x_i}^{x_i} w_i ||x - x_i||$$

arg min $\sum w_i ||x - x_i||^2$


R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures



Unweighted Mean

Weighted Median

Weighted Mean

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

- Per-vertex colors: limited resolution
- Increase resolution: Texture

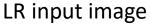
- Approach:
 - SR Keyframe Fusion
 - Texture Mapping from SR keyframes

Keyframe Fusion

• Idea: fuse low-resolution (LR) input RGB-D frames into high resolution RGB-D keyframes

Keyframe Fusion

- Idea: fuse low-resolution (LR) input RGB-D frames into high resolution RGB-D keyframes
 - Depth fusion
 - Warp LR depth maps into keyframe (using relative poses)
 - Upsample and fuse depth using weighted averaging


Keyframe Fusion

- Idea: fuse low-resolution (LR) input RGB-D frames into high resolution RGB-D keyframes
 - Depth fusion
 - Warp LR depth maps into keyframe (using relative poses)
 - Upsample and fuse depth using weighted averaging
 - Color fusion
 - Deconvolution: Wiener Filter on LR input images
 - Warp fused keyframe depth to input images for color lookup
 - Fuse colors using weighted median

Keyframe Fusion

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Computer Vision Group

 Texture Parametrization: One-to-one mapping between 3D mesh and 2D texture

Computer Vision Group

 Texture Parametrization: One-to-one mapping between 3D mesh and 2D texture

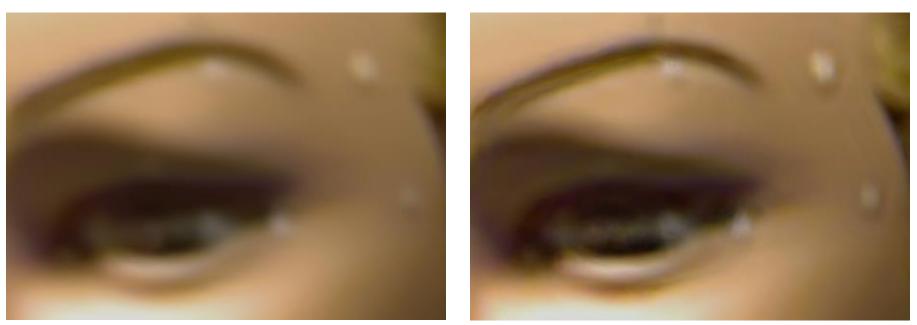
- Texel color computation:
 - Compute 3D vertex for 2D texel (based on enclosing triangle using barycentric coordinates)
 - Compute color from SR keyframes analogous to per-vertex recoloring scheme (weighted median)

Qualitative Evaluation: Deconvolution

Without deconvolution

With deconvolution

Qualitative Evaluation: SR Keyframe resolution



Keyframe dimensions 1280 x 960 (scale s = 2) Keyframe dimensions 2560 x 1920 (scale s = 4)

Qualitative Evaluation: LR input frames vs. SR keyframes

With LR input frames

With SR keyframes

Runtime Evaluation

Datasets:

	face	phone	keyboard
# RGB-D frames	512	1359	642
<pre># vertices (original) # triangles (original) # triangles (decimated)</pre>	159583 319176 40000	82942 165888 40000	155842 311686 40000

Runtime Evaluation

Datasets:

	face	phone	keyboard
# RGB-D frames	512	1359	642
<pre># vertices (original) # triangles (original) # triangles (decimated)</pre>	159583 319176 40000	82942 165888 40000	155842 311686 40000

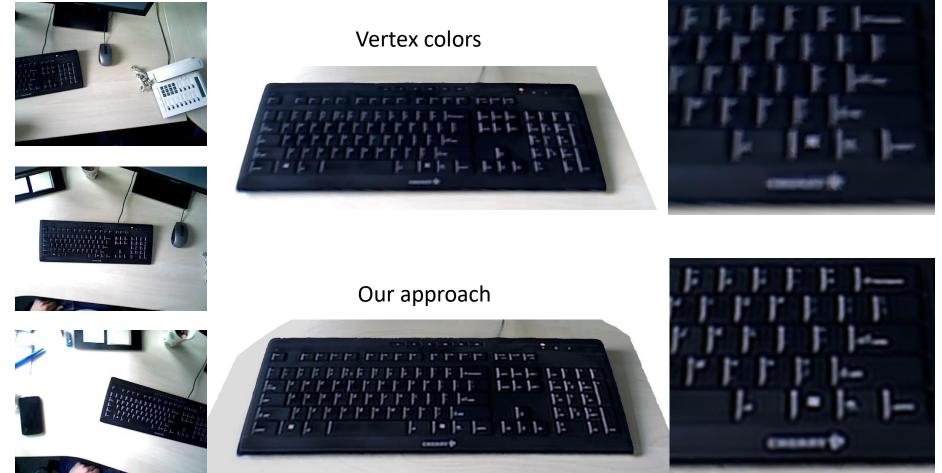
Runtimes:		s	<i>fac</i> t [s]	e fps	phor t [s]	ne fps	<i>keybo</i> t [s]	ard fps
	Texture Mapping		91.5	5.6	330.8	4.1	128.8	5.0
	Keyframe Fusion SR Texture Mapping	$\left \begin{array}{c}2\\2\end{array}\right $	57.5 18.7	8.9 2.8	222.0 50.7	6.1 2.7	72.1 18.8	8.9 3.5
	Keyframe Fusion SR Texture Mapping	44	100.9 26.4	5.1 2.0	362.8 58.2	2.2 1.4	214.9 42.6	3.0 1.5

(Standard desktop PC with Intel Core i7-2600 CPU with 3.40GHz and 8GB RAM)

Phone dataset

RGB input images

Vertex colors


Our approach

R. Maier, J. Stückler, D. Cremers: Super-Resolution Keyframe Fusion for 3D Modeling with High-Quality Textures

Keyboard dataset

RGB input images

Computer Vision Group

• **Robust** and **efficient** method for high-quality texture mapping in RGB-D-based 3D reconstruction

- Robust and efficient method for high-quality texture mapping in RGB-D-based 3D reconstruction
 - Fuse low-quality color images into SR keyframes

- **Robust** and **efficient** method for high-quality texture mapping in RGB-D-based 3D reconstruction
 - Fuse low-quality color images into SR keyframes
 - Map high-quality keyframes onto 3D model texture using weighted median scheme

- **Robust** and **efficient** method for high-quality texture mapping in RGB-D-based 3D reconstruction
 - Fuse low-quality color images into SR keyframes
 - Map high-quality keyframes onto 3D model texture using weighted median scheme
- Experimental results:

- Increased photo-realism of reconstructed 3D models
- Very efficient and practical post-processing step (runtimes within a few minutes)

- **Robust** and **efficient** method for high-quality texture mapping in RGB-D-based 3D reconstruction
 - Fuse low-quality color images into SR keyframes
 - Map high-quality keyframes onto 3D model texture using weighted median scheme
- Experimental results:

Computer Vision Group

- Increased photo-realism of reconstructed 3D models
- Very efficient and practical post-processing step (runtimes within a few minutes)

Thank you!