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In this document, we provide additional experiments and details of our work "Efficient
Online Surface Correction for Real-time Large-Scale 3D Reconstruction". Specifically, we
demonstrate the effect of the different keyframe strategies on the completeness of recon-
structions; see Section 1. Moreover, we provide a detailed evaluation of the runtime (Sec-
tion 2) and memory consumption (Section 3) of our surface correction method. Finally,
Section 4 shows some more qualitative results for on-the-fly surface re-integration on ad-
ditional datasets. Our evaluation was performed on a workstation with Intel Core i7-3770
CPU, 32GB RAM and an NVIDIA GeForce GTX 1070 GPU.

Datasets For our evaluation, we use publicly available RGB-D datasets, an overview is
given in Table 1. All used sequences depict larger scenes and provide registered depth and
color images (with a resolution of 640× 480 at 30 fps) as well as respective camera poses.
For assessing the surface quality and to eliminate a substantial source of error, we rely on on
the (ground truth) camera poses provided directly with the datasets.

The real-world sequence TUM/long_office_household [6] shows a long sequence with
a loop closure and provides ground truth camera poses obtained from a high-speed motion
capture system.

BundleFusion/apt0 [2] features a very long camera trajectory estimated using a highly
accurate 3D reconstruction framework.

AUG_ICL/Liv1 [1] is a synthetic RGB-D sequence generated from manually modeled
scenes of a living room. In addition to providing ground truth camera poses, the dataset also
provides exact ground truth 3D scene models which allow for a quantitative comparison of
surface quality of reconstructed 3D models. The AUG_ICL sequences consist of separate
sequences with clean and noisy depth maps, which exhibit a more realistic camera noise
model.

Surface evaluation methods and metrics In order to perform a quantitative evaluation
of our reconstructed 3D models with ground truth models, we first introduce the employed
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Sequence # frames Synthetic GT trajectory GT 3D model
TUM/long_office_household [6] 2486 No Yes No
AUG_ICL/Liv1 [1] 2870 Yes Yes Yes
BundleFusion/apt0 [2] 8560 No No No

Table 1: RGB-D datasets used for our evaluation. (GT stands for ground truth)

methods and metrics. The evaluation procedure for a comparison with synthetic ground truth
is adapted from [3] and first extracts a 3D meshM from the Signed Distance Field (SDF)
volume using the Marching Cubes algorithm [4].

Then, using CLOUDCOMPARE 1, we sample a ground truth reference modelR from the
mesh provided for AUG_ICL/Liv1, giving a point cloud with 50 million vertices distributed
uniformly on the models. Note that we generate distinct models for clean and noisy se-
quences. By using the poses from the sequences, our models are already aligned with the
reference. We use SURFREG 2 to measure the distance of each vertex of our reconstruction
M to its closest vertex in the reference point cloud R and compute the values for the mean
absolute deviation MAD. This technique assesses the correctness (CORR) of the model and
basically compares the accuracy of the reconstructed surfaces w.r.t. the ground truth model.

However, this method fails to evaluate the completeness (COMPL) of the reconstruction,
which is especially important for determining the information loss when applying keyframe
fusion. For measuring COMPL, we use the inverse procedure and compare every vertex of
the reference R to the nearest neighbor inM. Since the ground truth model contains more
surface than actually covered in the synthetic RGB-D frames, we re-generate the reference
models by fusing all input frames (without keyframe fusion) into the SDF volume using the
ground truth trajectory. This yields reference models that are as complete as possible based
on the synthetic frames.

1 Keyframe Strategies
In our work, we have introduced four different strategies for creating Keyframe Fusion
keyframes (KF keyframes), namely KF_CONST, KF_DIST, KF_OVRLP and KF_DVO. The
number of input RGB-D frames fused into a keyframe has an important effect on both re-
integration efficiency and reconstruction surface quality. The more keyframes are generated,
the less frames need to be re-integrated on DVO-SLAM pose graph updates, resulting in a
more efficient surface correction. At the same time there is a loss in reconstruction quality
(completeness COMPL in particular) that goes along with less keyframes, since 3D infor-
mation cannot be fully represented in the 2.5D keyframe depth maps. Our keyframe fusion
generally follows [5] and consists of separate steps for depth and color fusion.

The different keyframe strategies result in a different number of keyframes and conse-
quently directly influence the reconstruction quality. Each keyframe strategy can be config-
ured with specific parameters; the more relaxed these parameters are, the more keyframes are
created in general. Figure 1 shows the effect of the different strategies on the completeness
COMPL of noisy AUG_ICL/Liv1, with parameters chosen in a way that all strategies fuse
roughly the same average number κ̄ of input frames in each keyframe. We additionally show
the result of omitting intermediate frames, i.e. only integrating the (unfused) depth map of
the input frame corresponding to the keyframe into the SDF volume.

1http://www.danielgm.net/cc/
2https://github.com/mp3guy/SurfReg
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Figure 1: Reconstruction of noisy AUG_ICL/Liv1 with different keyframe strategies:
Keyframe fusion is generally more efficient, but also results in more noisy reconstructions
(left) and less complete 3D models (middle and right).
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Figure 2: Average runtime required per frame for reconstruction of AUG_ICL/Liv1 with
KF_CONST keyframe strategy w.r.t. the number of frames fused per keyframe κ . For each
pose update, k = 100/κ frames were re-integrated. Our system (consisting of the steps
Integrate, Update, Wait for DVO-SLAM and Miscellaneous, see text) and DVO-SLAM are
executed in parallel, hence resulting in the two bars next to each other. While the strong
colored bars (A) represent our system run with our improved re-integration strategy, the
washed out bars (B) stand for our system run with BundleFusion’s strategy. Note that for
better visibility of short runtimes, the scale of the figure’s x-axis is adapted between κ = 5
and κ = 10. The dashed line shows our goal of 30 fps. Table 2 contains the raw data of this
figure.

2 Surface Correction Runtime Evaluation
In the following, we show a quantitative runtime evaluation of our method. We rely on the
KF_CONST keyframe strategy, since it provices the best trade-off between efficiency, surface
quality and predictability (runtime and memory consumption).

Figure 2 gives the average runtimes per frame of our full 3D reconstruction framework
w.r.t. the number of input frames fused into a keyframe. Our system is split into it’s process-
ing steps:

Integrate Adding of a new frame, i.e., either fusion of a frame into the current keyframe or
integration of a keyframe into the 3D model.

Update Correcting the model, i.e., the re-integration procedure.

Wait for DVO-SLAM DVO-SLAM runs in parallel to our system. This component repre-
sents the time required for synchronization with DVO-SLAM.

Miscellaneous All other required processing.

For a keyframe size of κ ≥ 20 we achieve real-time performance. DVO-SLAM runs in
real-time on a single CPU, asynchronously to our system in a separate thread. Figure 2 also
compares our re-integration strategy to BundleFusion’s by Dai et al. [2]. Especially for low κ

we obtain a significant speed-up stemming from a reduction of runtime required for Update.
The raw data of Figure 2 is displayed in Table 2.
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Our re-integration strategy

κ Integrate Update Wait for DVO-SLAM Miscellaneous DVO-SLAM

1 18.70 101.40 1.28 3.24 25.45
2 14.31 53.55 3.24 3.39 25.50
5 8.97 26.07 6.55 3.35 24.89

10 7.65 16.14 6.99 3.42 24.89
20 6.90 10.65 9.47 3.41 25.01
50 5.83 6.52 12.18 3.38 24.85

BundleFusion’s re-integration strategy

κ Integrate Update Wait for DVO-SLAM Miscellaneous DVO-SLAM

1 19.22 410.83 1.25 2.85 25.32
2 14.42 200.57 3.14 3.06 25.31
5 9.65 91.87 6.68 2.94 25.47

10 7.61 50.01 7.62 2.99 25.01
20 7.07 25.98 8.13 2.98 25.18
50 5.83 10.89 10.37 3.06 24.71

Table 2: Raw data of Figure 2. Our re-integration method requires substantially less time for
updating, i.e., correcting, the surface on-the-fly compared to BundleFusion’s strategy, while
all other steps of the pipeline remain essentially the same.

3 Surface Correction Memory Evaluation
In addition to major runtime improvements during re-integration, keyframe fusion also leads
to decreased memory consumption on the host.

Figure 3 shows the memory consumption of our system for different numbers of frames
per keyframe κ . The memory consumption was measured every 10th frame and refers to
RSS (resident set size); we excluded the memory usage of DVO-SLAM, since our surface
reconstruction method is independent of the used SLAM system.

0 500 1,000 1,500 2,000 2,500 3,000
0

5

10

15

Frame

M
em

or
y

[G
iB

]

No Fusion κ = 10
κ = 2 κ = 20
κ = 5 κ = 50

Figure 3: Host memory consumption of our system (excluding DVO-SLAM). We measured
the RSS (resident set size) after every 10th frame during reconstruction of AUG_ICL/Liv1
with KF_CONST.

As demonstrated in Figure 3, the RSS increases linearly with progressing surface recon-
struction (i.e. with the number of integrated frames). Inversely, the memory consumption
decreases linearly with increasing κ . In our framework, most of the memory is used for
storing the keyframes for potential later re-integration. When comparing no keyframe fusion
with KF_CONST with κ = 20, we save about 90% of host memory (14.5 GiB vs. 1.5 GiB).
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i = 500
i = 1000

i = 1500 i = 2000

i = 2500 final
Figure 4: On-the-fly surface re-integration of AUG_ICL/Liv1. Every 500 frames, a model
was generated.

4 On-the-fly Surface Re-integration
Finally, we present some qualitative examples for on-the-fly surface re-integration on various
large-scale datasets.

The following sequences of models were created by reconstructing the RGB-D sequences
TUM/long_office_household, BundleFusion/apt0 and AUG_ICL/Liv1; the underlying cam-
era poses were provided by DVO-SLAM. With a certain frequency (specified in each figure’s
caption), a polygon 3D model was generated and later rendered using Blender. In order to
compare the outcome with and without re-integration, pairs of renderings are shown, with
the left and right image stemming from reconstruction without and with re-integration, re-
spectively. After integration of all frames, the final 3D model was generated, independently
of the above frequency. For the run with re-integration, before generation of the final 3D
model, all frames were re-integrated once to ensure that all pose updates were incorporated
in the 3D model.

In particular, Figure 4 shows the results for AUG_ICL/Liv1, while Figure 5 shows the
model for TUM/long_office_household and Figure 6 the reconstruction of BundleFusion/apt0.
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Figure 5: On-the-fly surface re-integration of TUM/long_office_household. Every 250
frames, a model was generated.



8 MAIER ET AL.: EFFICIENT LARGE-SCALE ONLINE SURFACE CORRECTION

i = 1000
i = 2000

i = 3000 i = 4000

i = 5000 i = 6000

i = 7000 i = 8000

final
Figure 6: On-the-fly surface re-integration of BundleFusion/apt0. Every 1000 frames, a
model was generated.
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