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Abstract— This paper presents a novel self-supervised on-
line learning method to discover driving behaviors from data
acquired with an inertial measurement unit (IMU) and a cam-
era. Both sensors where mounted in a car that was driven by
a human through a typical city environment with intersections,
pedestrian crossings and traffic lights. The presented system
extracts motion segments from the IMU data and relates
them to visual cues obtained from camera data. It employs
a Bayesian on-line estimation method to discover the motion
segments based on change-point detection and uses a Dirichlet
Compound Multinomial (DCM) model to represent the visual
features extracted from the camera images. By incorporating
these visual cues into the on-line estimation process, labels are
computed that are equal for similar motion segments. As a
result, typical traffic situations such as braking maneuvers in
front of a red light can be identified automatically. Furthermore,
appropriate actions in form of observed motion changes are
associated to the discovered traffic situations. The approach is
evaluated on a real data set acquired in the center of Zurich.

I. Introduction

The development of intelligent driver assistant systems has
become a very active research field in the last years. The
large spectrum of potential applications for such systems
ranges from automatic warning systems that detect obstacles
and dynamic objects over automated parking systems to fully
autonomous cars that are able to navigate in busy city envi-
ronments. One aspect that is of major importance in all these
systems is the perception part of the vehicle, i.e., the data
acquisition and semantic interpretation of the environment.
The major challenges here include the required accuracy of
the detection system, the time constraints given by the speed
of the vehicle and its implied temporal restrictions on the
decision process, as well as the large variability in which
potential objects and the environment itself may appear.
Especially this latter point poses a significant challenge on
the perception task, because standard learning techniquesthat
most often rely on supervised off-line classification algo-
rithms tend to give poor results when the test environment
largely differs from the acquired training data. Furthermore,
such systems are not capable of adapting to new, unseen
situations, which reduces their applicability for long-term use
cases.

In this paper, we present a self-supervised on-line learning
algorithm that recognizes driving behaviors and predicts
appropriate actions accordingly. A driving behavior in our
context is defined as a short sequence of actuation commands
to the vehicle that typically occur in certain traffic situations.

Fig. 1. Example of a traffic light scenario (label 10) detected by our
algorithm. The suggested action is a braking maneuver.

An example is the braking maneuver in front of a red traffic
light. In our system, the driving behaviors are observed using
an inertial measurement unit (IMU) and a camera while a
human is driving the vehicle. Using our approach, the system
is able to detect and classify new traffic scenarios and predict
appropriate actions based on the driving behaviors learnedin
earlier stages of the data acquisition process. The principle
idea is to first segment the data stream from the IMU into
consistent sequences usingchange-point detection, and then
relate these motion sequences to visual features observed in
the camera data during the corresponding motion. To find
the change-points in the motion data, we use an efficient
Bayesian approach based on a Rao-Blackwellized particle
filter. The visual features are represented in a bag-of-words
approach using a Dirichlet Compound Multinomial (DCM)
model. The detected motion segments are grouped on-line
and without human intervention, according to their simi-
larities in their corresponding visual features. This enables
the system to predict new motion commands according to
the traffic situation it detects from new camera data. Thus,
it predicts a braking maneuver when it encounters enough
evidence for a red light in the camera data. Fig. 1 shows a
typical output of our algorithm.

The paper is structured as follows. Section II summarizes
the previous works related to ours. Section III introduces
our Bayesian framework. Section IV describes our motion
segmentation method. Section V shows how we model a
traffic situation. Section VI demonstrates our action model.
Section VII presents experimental results. Section VIII out-
lines our conclusions and provides some insights for future
work.



II. RelatedWork

Existing driving behavior models in psychology are largely
subjective and based on self-report scales [1]. They are
difficult to quantify, because they include many psycho-
logical aspects like motivation, or risk assessment. Many
works in the intelligent vehicle literature [2], [3], [4], [5]
focus on modeling the driver behavior via their steering
behavior or road tracking information or desired driver’s path
as source of behavior’s information. Other works recognize
driver’s intentions via Bayesian reasoning on a complex
input including the driver’s current control actions and the
traffic environment surrounding them [6], [7]. In a previous
work [8], we were able to infer an action from a direc-
tion sign in an indoor environment with a semi-supervised
approach using vision and prerecorded robot actions. We
extend this idea to outdoor, remove any supervision, and
predict vehicle actions in an on-line fashion. Meyeret
al. [9] predicted traffic situations using Hidden Markov
Models (HMM). They however restricted their situations
space by modeling states with respect to surrounding vehicles
(distance, speed, bearing) and manually segmented image
sequences for initial estimates. In this paper, we exclude any
manual intervention in the process and use a more complete
set of variables for predicting states. Other works [10],
[11] make use of supervised off-line classification methods
for learning the relation between driving actions and visual
features. The actions are manually annotated and discretized
in the training phase. To our knowledge, there has been few
research works that combine traffic scenario recognition and
action prediction in an on-line and unsupervised fashion.

III. Problem Formulation

Given a vehicle equipped with an Inertial Measurement
Unit (IMU) and a monocular camera, we seek to learn the
relation between motion and visual data in an on-line and un-
supervised manner. We shall follow an entirely probabilistic
approach and formulate the problem as the estimation of the
joint filtering distribution

p(rt, lt,at | z1:t, c1:t), (1)

where rt represents the motion segment length at timet,
lt the image label at timet, at the predicted action at timet,
z1:t the IMU measurements up to timet, andc1:t the camera
measurements up to timet.

Assumingrt is conditionally independent ofc1:t givenz1:t,
lt of z1:t givenc1:t, andat of c1:t givenz1:t, we can decompose
(1) into

p(rt, lt,at | z1:t, c1:t) = p(rt | z1:t)p(lt | rt, c1:t)p(at | rt, lt, z1:t).
(2)

p(rt | z1:t) corresponds to the motion segmentation of
Section IV, p(lt | rt, c1:t) to the traffic situation modeling
of Section V, andp(at | rt, lt, z1:t) to the action prediction
model of Section VI.

IV. Bayesian On-line Segmentation of Motion Data

Our motion segmentation algorithm is based onchange-
point detection. A change-point is an abrupt variation in
the generative parameters of sequential data. An efficient
Bayesian on-line method for detecting change-points has
been independently proposed by Adams and MacKay [12]
and by Fearnhead and Liu [13]. In the following, we first
present this method in general and then show how we apply
it to the problem of segmenting motion data.

A. Change-Point Detection

Suppose we are given a time-dependent sequence of
observationsz1, z2, . . . , zT , where thezt can be scalars or
vectors. Our goal is to find segmentss1, s2, . . . , sN with
sn = [zbn, . . . , zen], whereen > bn and bn = en−1 + 1 for n =
1, . . . ,N. We assume that all data pointszbn, . . . , zen of a seg-
ment sn are independently and identically distributed (i.i.d.)
according to a parameterized statistical modelp(z | ηn). The
parameter vectorsη1, . . . ηN are also assumed to be i.i.d. The
computation of the segments is done on-line, i.e., at each time
stept a decision is made whetherzt is added to the current
segmentsn = [zbn, . . . , zt−1] or a new segment is started. As
shown above, we denote the length of the current segment
as rt. Thus, after deciding onzt, we have eitherrt = rt−1 + 1
or rt = 0 in case we start a new segment.

To determine whether time stept is a change-point, we
analyze the posterior distribution of the segment length
conditioned on the data observed so far, i.e.p(rt | z1:t). Using
the product rule, this filtering distribution can be writtenas

p(rt | z1:t) ∝ p(rt, z1:t). (3)

The joint distribution in (3) can be further expressed as

p(rt, z1:t) =
∑

rt−1

p(rt, rt−1, z1:t)

=
∑

rt−1

p(rt, zt | rt−1, z1:t−1)p(rt−1, z1:t−1)

=
∑

rt−1

p(rt | rt−1)p(zt | rt−1, z1:t−1)p(rt−1, z1:t−1).(4)

The right-hand side of (4) consists of three terms: the
transition probability p(rt | rt−1) of the Markov chain formed
by r1, r2, . . . , rt, the predictive distribution p(zt | rt−1, z1:t−1),
and the posteriorp(rt−1, z1:t−1) from the previous time step.
We have exploited Markov assumption for the simplifications
in (4).

As there are only two possible successor states forrt,
namelyrt−1 + 1 or 0, we can model the transition probability
using statistical survival analysis, i.e., the segment length can
either “survive” or “die”. To do this, we define asurvival
function S(t) as the probability that the current segment is
still alive after time stept. The complement ofS is usually
named thelifetime distribution function F(t) = 1−S(t) and its
temporal derivativef (t) is denoted theevent rate. Finally, the
hazard function h(t) is defined as the event rate conditioned
on the survival of the segment at timet, i.e.



h(t) =
f (t)
S(t)

=
f (t)

1− F(t)
. (5)

Intuitively, h(t) represents the probability that the segment
dies exactly at the current time instantt. We can useh(t) to
model the transition probability as

p(rt | rt−1) =



















h(rt−1 + 1) if rt = 0
1− h(rt−1 + 1) if rt = rt−1 + 1
0 otherwise.

(6)

A common approach is to modelS(t) as an exponential
function S(t) = exp(−λt) with some given rate parameterλ.
Then, the hazard function turns into

h(t) =
λexp(−λt)
exp(−λt)

= λ. (7)

Thus, the hazard rate is constant and the process is
“memoryless”.

For the computation of the predictive distribution, we
can make it dependent only on the last data pointzt−1

since we are doing a sequential update of the parameters.
Thus, it can be expressed asp(zt | rt−1, zt−1). We finally
introduce the model parametersηrt−1 that are learned on the
current segment and compute the predictive distribution by
marginalizing them out, i.e.

p(zt | rt−1, zt−1,ψ
rt−1) =

∫

ηrt−1

p(zt | η
rt−1)p(ηrt−1 | rt−1, zt−1,ψ

rt−1)dηrt−1. (8)

Here, we have added the prior hyperparametersψrt−1 for
completeness. The integral in (8) can be solved analytically
if we model the prior of the parameter vectorηrt−1 as a
conjugate to the probability density functionp(zt | η

rt−1).
Otherwise, this leads to expensive numerical computations.
When the terms inside the integral are conjugate models, the
marginal distribution is usually a function of the hyperparam-
etersψrt−1 which can be updated iteratively as data arrives.

B. Complexity and Approximate Inference

In order to exactly infer the positions of all change-points
until time t, we need to compute and storep(rt | z1:t) for t
and all previous time steps. We can then get the Maximum
A Posteriori (MAP) estimate of the sequence of segment
lengths using the on-line Viterbi algorithm of [13].

Regarding complexity, if we have processedn data points,
the storage of the full posterior distribution has a memory
cost of O(n2) and O(n) computational cost. This might be
prohibitive for huge datasets. For this reason, the distribution
has to be approximated. A simple way sketched in [12]
is to discard values where the distribution is significantly
low, i.e., lower than a given threshold. However, as we
want to accurately estimate our distribution and control the
computational costs, we use aparticle filter. The state-space
of rt being discrete and the number of successor states being
small, we can evaluate all the possible descendants ofrt.

Indeed, if rt takes k possible values,rt+1 will take k + 1
possible values. At each time stept, we approximate the
posterior distribution with a set{r (i)

t ,ψ
rt−1,(i)}Mi=1 of M particles

weighted by{w(i)
t }

M
i=1 with

w(i)
t ∝ p(zt | r

(i)
t−1, zt−1,ψ

rt−1,(i)). (9)

In order to limit the number of particles at each time step,
we use the Stratified Optimal Re-sampling (SOR) presented
in [13], wheneverM gets bigger than our particles number
limit P.

Using this method reduces the memory costs toO(n) and
the computational costs toO(1), i.e. constant run-time. We
also notice that this particle filter is Rao-Blackwellized [14]
and has thus a lower variance since the sampling space of
the state is reduced tort and the rest is marginalized out.

C. Application to Motion Data Segmentation

In our particular case, data comes from an IMU and we
consider accelerations in thex, y axes and theyaw rate, with
x pointing forward,y on the left, andz upward. We can
safely assume that an IMU measurementzt arises from a
multivariate normal distribution with meanµn and covariance
matrix Σn for segmentsn. The parameter vector for segment
rt is thus ηrt = {µrt ,Σrt }. In order to solve the integral in
(8) analytically, we model the parameter prior as a normal-
Wishart distribution which is conjugate to the multivariate
Gaussian. This distribution has four hyperparametersψrt =

{κrt , ρrt , νrt ,Λrt } that can be updated iteratively as a new data
point zt arrives with:

κrt = κrt−1 + 1

ρrt =
κrt−1 ρrt−1 + zt

κrt−1 + 1
νrt = νrt−1 + 1

Λ
rt = Λ

rt−1 +
κrt−1

κrt−1 + 1
(zt − ρ

rt−1)(zt − ρ
rt−1)⊺. (10)

In case we start a new segment andrt = 0, the hyperpa-
rameters are fixed to some prior valuesψ0 = {κ0, ρ0, ν0,Λ0}.

From (10), we can express the parameters of the resulting
multivariate normal distribution in (8) as

µrt = ρrt

Σ
rt = (Λrt )−1/κrt . (11)

Finally, for the computation of the predictive distribution
in (8), we approximate the multivariate normal distribution
with a Student’st-distribution which is known to be more
robust to outliers in case of few data points. This distribution
converges to the Gaussian when its degrees of freedom go
to infinity. We use the number of processed points as the
degrees of freedom for the distribution, so as to have a bigger
variance at the beginning.



V. Labeling of Traffic Situations

Our aim is to find a label for each segmented motion
pattern. This label represents a traffic situation, e.g., a stop
or turn condition. Moreover, we are interested in associating
two different motion segments to the same label whenever
they depict the same traffic situation. In the following, we
show how we can integrate this labeling into the on-line
framework of Section IV.

A. Traffic Situation Model

As shown above, we denote the label of a segmentrt as
lt. This label can take values in{1,2, . . . ,N} corresponding
to N parametric modelsM1,M2, . . . ,MN. Each of theMi

is a generative modelp(ct | ηi) for a particular traffic
situation with parameter vectorηi . At time t, we estimate
the distribution over the known models conditioned on the
data seen so far and the segment we are in with Bayes law
as

p(lt | rt, c1:t) ∝ p(ct | lt, rt, c1:t−1)p(lt | rt, c1:t−1)

= p(ct | lt, rt, ct−1)p(lt | rt, c1:t−1). (12)

For the prior part in (12), we use the posterior of the
previous time step, that isp(lt | rt, c1:t−1) = p(lt−1 |

rt−1, c1:t−1). If we are in a new segment withrt = 0, we set
the prior to a uniform distribution over the known models,
i.e., p(lt = 1 : N | rt, c1:t−1) = 1

N . The likelihood part in
(12) is computed with the model probability density function
p(ct | ηi) in the same fashion as in (8), i.e., using a conjugate
prior with hyperparametersψi as will be detailed below.
Furthermore, we have only kept the dependency on the last
data pointct−1 since we update the parameters iteratively.

As we want to be able to discover new traffic situations on-
line, we have to state if the current datact is unlikely to come
from any of theN known models so far. We use Bayesian
hypothesis testing and compute theBayes factor[15] for all
the modelsMi against an alternative model:

B =
p(ct | lt = i,ψi)

p(ct | lt, rt, ct−1,ψ
rt−1)
, (13)

where ψrt−1 are the hyperparameters learned over the
current segmentrt−1.

The valueB in (13) indicates our confidence in the model
Mi and we compare it to a thresholdξ for the decision.
In case all models are rejected, we create a new instance
MN+1 with hyperparameter vectorψrt−1, set p(lt = N + 1 |
rt, c1:t) = pnew, and p(lt = 1 : N | rt, c1:t) = (1− pnew)/N. We
finally update the hyperparametersψi of modelMi , such that
i = arg maxj=1:N p(lt = j | rt, c1:t), with ct.

From an implementation point of view, we attach the dis-
tribution (12), the hyperparametersψrt−1, and the incremental
set of known modelsMi to each particle. Thus, our system
is able to learn new traffic situations on-line and refine its
knowledge over previously visited scenes.

B. Measurements Representation

We represent images using the widely adoptedbag-of-
words model [16]. In the document modeling formulation,
text documents are represented as histograms of word counts
from a given dictionary. This model can be easily applied to
computer vision tasks, words being replaced by features and
text documents by images.

We use Scale-Invariant Feature Transform (SIFT) [17]
descriptors computed at Difference of Gaussians (DoG)
keypoints. SIFT descriptors have been shown to be highly
discriminative for object recognition. Although some authors
claim that they obtain significantly better results with dense
grid representations [18], DoG interest points are more
suitable for our purpose. Indeed, we are not interested in
capturing uniform regions such as sky, but rather focused
on objects.N images are randomly selected from the entire
dataset to build acodebookor dictionary of features using K-
means clustering. Each feature of an image is then assigned
to the nearestcodeword of the dictionary and we can
therefore build a convenient histogram representation.

The link between bag-of-features models in computer
vision and bag-of-words models in text document modeling
is intuitive. We can therefore use the generative model of [19]
to represent an image in a probabilistic manner as was
already proposed in [20]. Image histograms are modeled
with a Dirichlet Compound Multinomial (DCM), also known
as multivariate Polya distribution. The DCM combines a
multinomial model and a Dirichlet prior, and provides an
analytical solution to the marginalization of the multinomial
parameters [21]. The multinomial distributionp(ct | θ) has
parametersθ = [θ1, θ2, . . . , θK ], corresponding toη above.
The Dirichlet prior p(θ | α) has hyperparametersα =
[α1, α2, . . . , αK ], corresponding toψ above. The likelihood
part of (12) can now be formulated as

p(ct | lt, rt, ct−1,α
rt−1) =

∫

θrt−1

p(ct | θ
rt−1)p(θrt−1 | lt, rt, ct−1,α

rt−1)dθrt−1 =

n!
∏K

k=1 nk!

Γ(αrt−1)
Γ(n+ αrt−1)

K
∏

k=1

Γ(nk + α
rt−1

k )

Γ(αrt−1

k )
, (14)

whereΓ(.) is the Gamma function,nk = ct (k), n =
∑K

k=1 nk,
αrt−1 =

∑K
k=1α

rt−1

k , and we have added the hyperparameters
αrt−1 in the conditional.

For the iterative update of the hyperparametersαrt , we can
use the simple rule

αrt = αrt−1 + ct. (15)

In case we start a new segment andrt = 0, the hyperpa-
rameters are fixed to some prior valuesψ0 = {α0}.

VI. Action Model

We want to estimate the posterior probability distribution
over actions conditioned on the current traffic situation and
segment. To this end, we closely follow the strategy of



Section V. To each of the traffic situation modelMi is
associated an action modelAi , which we fit with a Gaussian
Mixture Model (GMM). For the same traffic situationMi , we
are able to model several possible behaviors corresponding
to the different Gaussian components. For instance, when we
reach a traffic light, we might brake when the light is red
and continue when it is green. Moreover, a driver does not
always brake or accelerate exactly the same manner every
time. Finally, our system can adapt to new drivers. We can
thus formulate the following model that we estimate and
update at each time step:

p(at | rt, lt, z1:t,ψ
xt ) =

∑

xt

p(xt)p(at | xt, rt, lt, z1:t,ψ
xt ), (16)

where xt is a K-dimensional vector with a single one
at the positionk encoding for thek-th Gaussian and zeros
elsewhere,p(xt) is the prior for selecting a particular Gaus-
sian componentxt, and p(at | xt, rt, lt, z1:t,ψ

xt ) is a Gaussian
distribution with hyperparametersψxt . In a similar fashion
as in Section IV, we have marginalized out the parameters
of the Gaussian and are thus able to iteratively update the
hyperparameters. The prior distributionp(xt) is defined as

p(xt(i) = 1) ∝ ni
t, (17)

where ni
t is the sum of the points assigned to Gaussian

componenti.
Upon reception of a new data pointzt, we compute the

Bayes factor for all the Gaussian componentsxt−1 of the
model lt and compare it toε. If all the components are
rejected, a new Gaussian is created with hyperparameters
ψ0. We update the hyperparameters of the most likely Gaus-
sian component with the rule from (10) and increment the
correspondingni

t.
From an implementation point of view, the distribu-

tion (16) and the learned GMMAi are attached to the particle
filter of Section IV.

VII. Experiments

In order to evaluate the approach proposed in this paper,
we have collected a dataset with a car in an urban setting. Our
car is equipped with a Sony XCD-SX910 camera recording
1280x960 images at 3.75 frames per second and an XSens
MTi IMU running at 100 Hz withx pointing forward,y to
the right, andz upward. The sequence contains 8218 images
and lasts around 40 minutes. We have encountered different
scenes comprising of traffic lights, crosswalks, or changes of
speed limit. We have driven in a loop so as to come several
times in the same situation and thus have an estimation of
the quality of our solution.

A. Simulation

Since it is easier to have a ground truth on simulated
data and hence validate our approach, we first display an
experiment of the whole algorithm on synthetic data. For
visualization purposes, we have simulated IMU data with an
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Fig. 2. Simulation results of the algorithm. From top to bottom,the plots
display the simulated IMU datazt, the inferred segment lengthsrt, the
inferred labelslt (blue circle) with ground truth (red square), and the MAP
estimate for the actionat.

univariate normal distribution and have introduced change-
points every 50 data points. We have randomly generated 3
differentαi with K = 256 coding for the traffic situations.
Although the algorithm starts with no prior knowledge, we
could also start with previously learned modelsMi and Ai .

Fig. 2 depicts the output of the simulation and demon-
strates the pertinence of our method. We display the MAP
solution for (16) on the bottom plot and thus the prediction
reflects the Gaussian with the maximum number of data
points. At time step 100, a new Gaussian with mean 10 is
created for label 2. It becomes the MAP only at time step 300
after accumulating enough evidence. Even though the label
numberslt differ from the ground truth, they are actually
correctly estimated since the induced partition is equivalent.

B. Motion Segmentation

We have estimated the quality of our motion segmentation
algorithm from Section IV on real-world data and performed
inference on the final posterior distribution (4) to get the
optimal sequence of segment lengths which represents our
motion segments. We set the hazard rate toλ = 1/10, the
number of particles toP = 100, and the prior hyperparame-
ters of the normal-Wishart toκ0 = 1, ρ0 = 0, ν0 = 3,Λ0 = I .
We only considered IMU data at 10 Hz.

Fig. 3 shows the extracted motion segments along with
the corresponding IMU data. Our algorithm identified 165
segments which are validated by visual inspection of the
IMU data. Furthermore, the segmentation has been compared
to a manual annotation of our image sequence and exhibited
an accuracy of approximatively 92%. For the labeling of the
change-points, we have watched the video and noted down
where we would expect a change of driving behavior. The
parameterλ controls the false positives/negatives rates.

C. Traffic Situation Labeling and Recognition

We have evaluated the technique presented in Section V
and performed inference on (12) to obtain the most likely
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Fig. 3. Optimal motion segmentation from IMU data. The three topplots
are the IMU raw values over time. The bottom plot depicts the motion
segments discovered by our algorithm.

label for a scene. In a first phase, we have collected a subset
of images from traffic lights, yield signs, and pedestrian
crossings. ModelsMi were learned on these images using
(15) and frozen during the evaluation. In a second phase,
we have started the algorithm with no prior models. The
dictionary was created from a set ofN = 400 randomly
picked images and the SIFT features quantized intoK = 256
visual words. The prior hyperparameters of the Dirichlet
distribution were set toα0 = 1.

In the supervised case, we have manually annotated the
image sequence and compared the resulting labeling to the
ground truth. We obtained an accuracy of 93% for traffic
light scenes, 99% for yield scenes, and 91% for pedestrian
crossings scenes. We except these results to drop slightly
in a previously unseen environment. In the unsupervised
case,ξ acts as a concentration parameter, i.e., it controls
the tendency to create new classes. The final labeling is
challenging to evaluate. Two traffic lights scenes might for
instance get different labels without interfering into the final
action prediction. Withξ = 200, our algorithm discovered
15 different traffic situations and was able to re-associate
correctly to the same labels in the different runs of our
driving loop.

D. Action Prediction

The strategy presented in Section VI is relatively straight-
forward to evaluate, since predictions can be compared to
incoming IMU data. We set the threshold for creating a
new Gaussian toǫ = 5 and inferred on (16). Our algorithm
performed accurately in predicting the driving actions.

VIII. Conclusion

In this paper, we have presented a novel approach for
on-line learning of driving behaviors in an unsupervised
fashion. To this end, we have developed an entire Bayesian
framework that is able to learn and adapt to new traffic situ-
ations and drivers. Visual traffic situations models have been
modeled probabilistically from image streams and associated

to motion segments from IMU data. Potential actions related
to a particular traffic scene are jointly learned, providing
predictions in unseen environments. Our system is suitable
for lifelong learning since it is able to continuously update
its models. We quantified the usefulness and the performance
of this approach on a challenging urban dataset.

In a further work, we aim at improving our image rep-
resentation with a more sophisticated model in order to
determine which object in the scene induces an action.
Action modeling at a higher level could be represented with
a Hidden Markov Model (HMM).
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