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Abstract— This paper presents a novel self-supervised on-
line learning method to discover driving behaviors from data
acquired with an inertial measurement unit (IMU) and a cam-
era. Both sensors where mounted in a car that was driven by
a human through a typical city environment with intersections,
pedestrian crossings and trffic lights. The presented system
extracts motion segments from the IMU data and relates
them to visual cues obtained from camera data. It employs
a Bayesian on-line estimation method to discover the motion
segments based on change-point detection and uses a Dirichlet
Compound Multinomial (DCM) model to represent the visual
features extracted from the camera images. By incorporating
these visual cues into the on-line estimation process, labels are
computed that are equal for similar motion segments. As a
result, typical traffic situations such as braking maneuvers in
front of a red light can be identified automatically. Furthermore,
appropriate actions in form of observed motion changes are . . .
associated to the discovered tiffic situations. The approach is An example is the braking maneuver in front of a redfica
evaluated on a real data set acquired in the center of Zurich.  light. In our system, the driving behaviors are observedgisi

an inertial measurement unit (IMU) and a camera while a
human is driving the vehicle. Using our approach, the system
The development of intelligent driver assistant systenss has able to detect and classify newffia scenarios and predict

become a very active research field in the last years. Tlapropriate actions based on the driving behaviors leamed
large spectrum of potential applications for such systenearlier stages of the data acquisition process. The piacip
ranges from automatic warning systems that detect obstacldea is to first segment the data stream from the IMU into
and dynamic objects over automated parking systems to fulgonsistent sequences usidgange-point detectigrand then
autonomous cars that are able to navigate in busy city envelate these motion sequences to visual features observed i
ronments. One aspect that is of major importance in all thesike camera data during the corresponding motion. To find
systems is the perception part of the vehicle, i.e., the dathe change-points in the motion data, we use #itient
acquisition and semantic interpretation of the environtmenBayesian approach based on a Rao-Blackwellized particle
The major challenges here include the required accuracy fiter. The visual features are represented in a bag-of-svord
the detection system, the time constraints given by thedspeapproach using a Dirichlet Compound Multinomial (DCM)
of the vehicle and its implied temporal restrictions on thenodel. The detected motion segments are grouped on-line
decision process, as well as the large variability in whicland without human intervention, according to their simi-
potential objects and the environment itself may appedarities in their corresponding visual features. This desb
Especially this latter point poses a significant challenge othe system to predict new motion commands according to
the perception task, because standard learning techrticgtes the trdfic situation it detects from new camera data. Thus,
most often rely on supervisedffdine classification algo- it predicts a braking maneuver when it encounters enough
rithms tend to give poor results when the test environmemvidence for a red light in the camera data. Fig. 1 shows a
largely difers from the acquired training data. Furthermoretypical output of our algorithm.
such systems are not capable of adapting to new, unseerThe paper is structured as follows. Section Il summarizes
situations, which reduces their applicability for longrreuse  the previous works related to ours. Section Il introduces
cases. our Bayesian framework. Section IV describes our motion
In this paper, we present a self-supervised on-line legrnirsegmentation method. Section V shows how we model a
algorithm that recognizes driving behaviors and predictsaffic situation. Section VI demonstrates our action model.
appropriate actions accordingly. A driving behavior in ouiSection VIl presents experimental results. Section VIi-ou
context is defined as a short sequence of actuation commatides our conclusions and provides some insights for future
to the vehicle that typically occur in certain fiig situations. work.

Fig. 1. Example of a tfic light scenario (label 10) detected by our
algorithm. The suggested action is a braking maneuver.

|. INTRODUCTION



Il. ReLateD WORK IV. BAYESIAN ON-LINE SEGMENTATION OF MoTioN Data

Existing driving behavior models in psychology are largely Our motion segmentation algorithm is based arange-
subjective and based on self-report scales [1]. They aRPint detection A change-point is an abrupt variation in
difficult to quantify, because they include many psychothe generative parameters of sequential data. fiient
logical aspects like motivation, or risk assessment. MangaYGS'a” on-line method for detecting change-points has
works in the intelligent vehicle literature [2], [3], [4]5] Peen independently proposed by Adams and MacKay [12]
focus on modeling the driver behavior via their steeringnd by Fearnhead and Liu [13]. In the following, we first
behavior or road tracking information or desired drivergtp Present this method in general and then show how we apply
as source of behavior's information. Other works recognizi t the problem of segmenting motion data.

_driver’_s inte_ntions via_ Bayesian reasoning on a complex Change-Point Detection

input including the driver's current control actions ane th ) )
traffic environment surrounding them [6], [7]. In a previous  SUPPOSe we are given a time-dependent sequence of
work [8], we were able to infer an action from a direc-OPServationsz, z, ..., zr, where thez, can be scalars or
tion sign in an indoor environment with a semi-supervised€Ctors- Our goal is to find segmentg, s,.... sy with
approach using vision and prerecorded robot actions. We = [Zon:-- - Ze], whereeé, > by andby = €, +1 forn =

extend this idea to outdoor, remove any supervision, a - N We_assume that all dat_a p0|_mi§,..._,zeﬂ_ ofase_g-
predict vehicle actions in an on-line fashion. Meyer ments, are independently and identically distributed (i.i.d.)

al. [9] predicted tréfic situations using Hidden Markov according to a parameterized statistical mopl@| 7,). The

Models (HMM). They however restricted their situationsF""‘r""rnete_r vector,, ... 1y are'also assumed t'o be i.i.d. The
space by modeling states with respect to surrounding \ehic|COMPutation of the segments is done on-line, i.e., at eawh ti
(distance, speed, bearing) and manually segmented imaﬂgpt a decision is made whethey is added tq the current
sequences for initial estimates. In this paper, we excluge a ¢9Ment = [z, ....zi-1] or a new segment is started. As
manual intervention in the process and use a more compléigoWn above, we denote the length of the current segment
set of variables for predicting states. Other works [10[3S"t: Thgs, after deciding om, we have either; =r._; +1
[11] make use of supervisedfdine classification methods orre=01in case we start a new segment. i
for learning the relation between driving actions and Visua To determine Whe_zther_tlm_e s_tetpls a change-point, we
features. The actions are manually annotated and disedetiZ2N@lyze the posterior distribution of the segment length
in the training phase. To our knowledge, there has been feggnditioned on the data observed so far, p; | z11). Using
research works that combine flia scenario recognition and the product rule, this filtering distribution can be writtag
action prediction in an on-line and unsupervised fashion.
p(re | Z11) oc p(re, Zo1). (3
Il. ProBLEM FORMULATION The joint distribution in (3) can be further expressed as

Given a vehicle equipped with an Inertial Measurement
Unit_(IMU) and a mqnocular camera, we seek t(_) learn the p(re, Z14) :Z p(re, Fe1, Z14)
relation between motion and visual data in an on-line and un-
supervised manner. We shall follow an entirely probalidist
approach and formulate the problem as the estimation of the
joint filtering distribution

M1

=Z P(re, ¢ | re-1, Z14-1) P(Ne-1, Z1t-1)
M-1
=" Pl I 1)z ren, Zaea)plrics, Zaa1).(4)
M1
The right-hand side of (4) consists of three terms: the
wherer, represents the motion segment length at time transition probability gr¢ | r._1) of the Markov chain formed
l; the image label at timg a; the predicted action at timg by ra,rz,....r, the predictive distribution (e | re1,211-1),
21 the IMU measurements up to timeandcy; the camera and the posteriop(ri_1, z11-1) from the previous time step.
measurements up to timte We have exploited Markov assumption for the simplifications
Assumingr; is conditionally independent af.; givenzy;,  in (4).
I, of z14 givencyy, anda, of ¢y givenz;, we can decompose  AS there are only two possible successor statesrfor
(1) into namelyr,_; + 1 or 0, we can model the transition probability
using statistical survival analysis, i.e., the segmengtiercan
either “survive” or “die”. To do this, we define aurvival
p(re, lt, & | Z1t, Cat) = P(re | za) Pl | re, Ca)p(@s | re, b, Zat)- function St) as the probability that the current segment is
(2) still alive after time steg. The complement o8 is usually
p(r¢ | z14) corresponds to the motion segmentation ohamed thdifetime distribution function ) = 1-S(t) and its
Section IV, p(l; | ri,c1t) to the trdfic situation modeling temporal derivativef (t) is denoted thevent rate Finally, the
of Section V, andp(a; | r,lt, z11) to the action prediction hazard function [t) is defined as the event rate conditioned
model of Section VI. on the survival of the segment at tinbei.e.

p(re, e, @ | Zu1, Cua), 1)



H(0) £(1) Indeed, ifr; takesk possible valuesry,; will take k + 1
h(t) = == = . (5) possible values. At each time stépwe approximate the
SO  1-F(@) posterior distribution with a sét{, y"-+}M of M particles
Intuitively, h(t) represents the probability that the segmentveighted byw{’}™, with
dies exactly at the current time instantWe can usén(t) to
model the transition probability as

W e pz 10, 20, " 0), 9)
h(re-1 +1) ifre=0 In order to limit the number of particles at each time step,
prefra) =4 1-h(rea+1)  ifre=ra+1  (6) we use the Stratified Optimal Re-sampling (SOR) presented
0 otherwise in [13], wheneverM gets bigger than our particles number
A common approach is to mod&(t) as an exponential limit P.
function S(t) = exp(-At) with some given rate parameter Using this method reduces the memory cost©fn) and
Then, the hazard function turns into the computational costs t9(1), i.e. constant run-time. We
also notice that this particle filter is Rao-Blackwellizeld]
h(t) = M -1 7) and has thus a lower variance since the sampling space of
exp(-At) the state is reduced 1@ and the rest is marginalized out.
Thus, the hazard rate is constant and the process is
“memoryless”. C. Application to Motion Data Segmentation

For the computation of the predictive distribution, we .
can make it dependent only on the last data paing In our particular case, data comes from an IMU and we

since we are doing a sequential update of the parametef@nsider accelerations in they axes and thgawrate, with
Thus, it can be expressed @€z | ri 1,z 1). We finally X pointing forward,y on the left, andz upwa_rd. We can
introduce the model parameteys that are learned on the Safély assume that an IMU measuremenarises from a

current segment and compute the predictive distribution Wultiyariate normal distribution with mean, and covariance
marginalizing them out, i.e. matrix X, for segments,. The parameter vector for segment

re is thusp* = {u",X"}. In order to solve the integral in
(8) analytically, we model the parameter prior as a normal-
Pzt | M1, 21,9 = Wishart distribution which is conjugate to the multivaeat
Gaussian. This distribution has four hyperparameyers=
Pz [ " )p(" | rer, zeeg, )dn™ . (8) (k. o v, A"} that can be updated iteratively as a new data

r71 . B .
b point z; arrives with:

Here, we have added the prior hyperparamegérs for
completeness. The integral in (8) can be solved analyicall

if we model the prior of the parameter vectgh as a dto= 4l
conjugate to the probability density functiop(z; | n"?). o KL ptt+z
Otherwise, this leads to expensive numerical computations p= K1+ 1
When the terms inside the integral are conjugate models, the oo = Y4
. . . . . . I
margmral dlst_nbutlon is usuallyafl_Jnctl(_)n of the hyperqtm_lr- At = Al K (z - Pz - p0)T. (10)
etersy'-* which can be updated iteratively as data arrives. Kt +1
B. Complexity and Approximate Inference In case we start a new segment amd O, the hyperpa-
In order to exactly infer the positions of all change-point§ameters are fixed to some prior valugg= {o. po. vo. Ao}.
until time t, we need to compute and stopér; | zi4) for t From (10), we can express the parameters of the resulting

and all previous time steps. We can then get the Maximufultivariate normal distribution in (8) as
A Posteriori (MAP) estimate of the sequence of segment
lengths using the on-line Viterbi algorithm of [13].

I I

Regarding complexity, if we have processedata points, uo= pt
the storage of the full posterior distribution has a memory o= (A")7L (112)
cost of O(n?) and O(n) computational cost. This might be
prohibitive for huge datasets. For this reason, the digiob Finally, for the computation of the predictive distributio

has to be approximated. A simple way sketched in [12h (8), we approximate the multivariate normal distribatio

is to discard values where the distribution is significantlwith a Student'st-distribution which is known to be more
low, i.e., lower than a given threshold. However, as weobust to outliers in case of few data points. This distitut
want to accurately estimate our distribution and contrel thconverges to the Gaussian when its degrees of freedom go
computational costs, we useparticle filter. The state-space to infinity. We use the number of processed points as the
of ry being discrete and the number of successor states beitegrees of freedom for the distribution, so as to have a bigge
small, we can evaluate all the possible descendants. of variance at the beginning.



V. LABELING OF TRAFFIC SITUATIONS B. Measurements Representation

Our aim is to find a label for each segmented motion We represent images using the widely adophe-of-
pattern. This label represents affi@ situation, e.g., a stop words model [16]. In the document modeling formulation,
or turn condition. Moreover, we are interested in assawgati ©Xt documents are represented as histograms of word counts

two different motion segments to the same label whenevE&PM @ given dictionary. This model can be easily applied to
they depict the same fic situation. In the following, we computer vision tasks, words being replaced by features and

show how we can integrate this labeling into the on-lind€Xt documents by images.

framework of Section IV. We use Scale-Invariant Feature Transform (SIFT) [17]
descriptors computed at ference of Gaussians (DoG)
A. Trafiic Situation Model keypoints. SIFT descriptors have been shown to be highly

discriminative for object recognition. Although some aarth
As shown above, we denote the label of a segmea  claim that they obtain significantly better results with sen
l;. This label can take values i1,2,..., N} corresponding grid representations [18], DoG interest points are more
to N parametric modelsMl;, M, ..., M. Each of theM;  suitable for our purpose. Indeed, we are not interested in
is a generative modep(c; | n;) for a particular tréfic  capturing uniform regions such as sky, but rather focused
situation with parameter vectay,. At time t, we estimate on objects.N images are randomly selected from the entire
the distribution over the known models conditioned on thgataset to build aodeboolor dictionary of features using K-
data seen so far and the segment we are in with Bayes laMeans clustering. Each feature of an image is then assigned
as to the nearestcodeword of the dictionary and we can
therefore build a convenient histogram representation.
The link between bag-dieatures models in computer
Pt [ re.cae) o p(C | e re, Coe-1)P(le | Fe, Creo1) vision and bag-of-words models in text document modeling
= pc |l re. c-1)p(le I e, Cre-1).  (12)  isintuitive. We can therefore use the generative model 9f [1
to represent an image in a probabilistic manner as was
For the prior part in (12), we use the posterior of theyready proposed in [20]. Image histograms are modeled
previous time step, that i9(l; | r.cii-1) = Pp(ica | with a Dirichlet Compound Multinomial (DCM), also known
r-1,Cit-1). If we are in a new segment with = 0, we set as multivariate Polya distribution. The DCM combines a
the prior to a uniform distribution over the known modelsmultinomial model and a Dirichlet prior, and provides an
ie, p =1 : N | r,ciea) = §. The likelihood part in  analytical solution to the marginalization of the multiniain
(12) is computed with the model probability density funotio parameters [21]. The multinomial distributigs(c; | 6) has
p(ct | m;) in the same fashion as in (8), i.e., using a conjugatgarameters = [6y,6,, ...,6«], corresponding tay above.
prior with hyperparameterg; as will be detailed below. The Dirichlet prior p(@ | @) has hyperparameters =

Furthermore, we have only kept the dependency on the Iggf,, ., ..., ax], corresponding tay above. The likelihood
data pointc._; since we update the parameters iteratively. part of (12) can now be formulated as

As we want to be able to discover newftra situations on-
line, we have to state if the current datas unlikely to come

from any of theN known models so far. We use Bayesian p(ct | .1, cg, @) =
hypothesis testing and compute tBayes factof15] for all f p(ce | 01 p(6™* | Iy, I, Cog, @"2)dO ™ =
the modelsM; against an alternative model: g1
n! T@™) o T+ )
=i , 14
B= pc |l =i,4;) (13) nszl ny! I(n+ a'1) g r(aLt—l (14)

©opc | 1y, Cog, )

where y'=* are the hyperparameters learned over the,
a
current segment;_;.

whereI'(.) is the Gamma functiomy = ¢; (k), n = ZEﬂ Nk,
-1 = ZEZI aL“, and we have added the hyperparameters
a'-1 in the conditional.

The valueB in (13) indicates our confidence in the model For the iterative update of the hyperparametgrswe can
M; and we compare it to a threshold for the decision. use the simple rule

In case all models are rejected, we create a new instance
Mns1 With hyperparameter vectap™?, setp(ly = N + 1 |

" =o'+ 15
F1:C10) = Prew ANAP(i = 12N |11, €10) = (L— prew/N. We °‘ (19)
finally update the hyperparametefsof model M;, such that In case we start a new segment and: 0, the hyperpa-
i =argmaX_,y P(lt = j | rt, Cu), With . rameters are fixed to some prior valugs= {ao}.

From an implementation point of view, we attach the dis-
tribution (12), the hyperparametag§, and the incremental
set of known modeldvl; to each particle. Thus, our system We want to estimate the posterior probability distribution
is able to learn new tfAc situations on-line and refine its over actions conditioned on the currentffi@ situation and
knowledge over previously visited scenes. segment. To this end, we closely follow the strategy of

VI. ActioN MobEL
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Section V. To each of the tfiac situation modelM; is
associated an action mod&|, which we fit with a Gaussian
Mixture Model (GMM). For the same tfac situationM;, we

are able to model several possible behaviors corresponding
to the diferent Gaussian components. For instance, when we
reach a trfic light, we might brake when the light is red
and continue when it is green. Moreover, a driver does not
always brake or accelerate exactly the same manner every
time. Finally, our system can adapt to new drivers. We can AL ‘ 5
thus formulate the following model that we estimate and -
update at each time step:
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where x; is a K-dimensional vector with a single one ° * 10 0 el 0 30 0
at the positionk encoding for thek-th Gaussian and zeros

; ; ; ; _Fig. 2. Simulation results of the algorithm. From top to bottdhg plots
elsewherep(x,) is the prior for selecting a particular Gaus display the simulated IMU data;, the inferred segment lengths, the

si.an_cor_npongnxt, and p(a | X, rt, It, o1, ¥™) .iS a Gausslian inferred labeld, (blue circle) with ground truth (red square), and the MAP
distribution with hyperparametenrg™. In a similar fashion estimate for the actioa.
as in Section IV, we have marginalized out the parameters

: . . univariate normal distribution and have introduced change
of the Gaussian and are thus able to iteratively update the 9

. o . " points every 50 data points. We have randomly generated 3
hyperparameters. The prior distributip() is defined as differenta; with K = 256 coding for the trific situations.

i i Although the algorithm starts with no prior knowledge, we
p(xe(i) = 1) ec 1y, (A7) could also start with previously learned modals and A;.

whereni is the sum of the points assigned to Gaussian Fig. 2 depicts the output of the simulation and demon-
component. strates the pertinence of our method. We display the MAP

Upon reception of a new data poimt we compute the solution for (16) on the bottom plot and thus the prediction
Bayes factor for all the Gaussian componerts of the reflects the Gaussian with the maximum number of data

model I, and compare it tas. If all the components are points. At time step 100, a new Gaussian with_ mean 10 is
rejected, a new Gaussian is created with hyperparametéf?ated for Iabe[2. It becomes.the MAP only at time step 300
W,. We update the hyperparameters of the most likely Gauéfter accumL_JIatlng enough evidence. Even though the label
sian component with the rule from (10) and increment th@umbersly differ from the ground truth, they are actually
correspondingy. correctly estimated since the induced partition is eqeival
From an implementation point of view, the distribu-B. Motion Segmentation
tion (16) and the learned GMM; are attached to the particle
filter of Section IV.

We have estimated the quality of our motion segmentation
algorithm from Section IV on real-world data and performed
inference on the final posterior distribution (4) to get the

. ) optimal sequence of segment lengths which represents our
In order to evaluate the approach proposed in this papghotion segments. We set the hazard ratette 1/10, the

we have collected a dataset with a car in an urban setting. O\imper of particles t® = 100, and the prior hyperparame-
car is equipped with a Sony XCD-SX910 camera recordings s of the normal-Wishart too = 1,pp = 0,v0 = 3,Ag = I.

1280x960 images at.B5 frames per second and an XSengye only considered IMU data at 10 Hz.

MTi IMU running at 100 Hz withx pointing forward,y to Fig. 3 shows the extracted motion segments along with
the right, andz upward. The sequence contains 8218 imagege corresponding IMU data. Our algorithm identified 165
and lasts around 40 minutes. We have encounteréereiit  segments which are validated by visual inspection of the
scenes comprising of iz lights, crosswalks, or changes of \y data. Furthermore, the segmentation has been compared
speed limit. We have driven in a loop so as to come severgyy 3 manual annotation of our image sequence and exhibited
times |n.the same situation and thus have an estimation gf, accuracy of approximatively 92%. For the labeling of the
the quality of our solution. change-points, we have watched the video and noted down
where we would expect a change of driving behavior. The

] o ) ) parametenl controls the false positivsegatives rates.
Since it is easier to have a ground truth on simulated

data and hence validate our approach, we first display & Trafic Situation Labeling and Recognition
experiment of the whole algorithm on synthetic data. For We have evaluated the technique presented in Section V
visualization purposes, we have simulated IMU data with aand performed inference on (12) to obtain the most likely

VIIl. EXPERIMENTS

A. Simulation



to motion segments from IMU data. Potential actions related
to a particular tréic scene are jointly learned, providing
predictions in unseen environments. Our system is suitable
for lifelong learning since it is able to continuously upelat

its models. We quantified the usefulness and the performance

I I
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Fig. 3. Optimal motion segmentation from IMU data. The three ituts
are the IMU raw values over time. The bottom plot depicts theionot
segments discovered by our algorithm.

(1]

label for a scene. In a first phase, we have collected a subsB!
of images from tréfic lights, yield signs, and pedestrian [3]
crossings. ModelsVl; were learned on these images using
(15) and frozen during the evaluation. In a second phaséf‘]
we have started the algorithm with no prior models. The
dictionary was created from a set &f = 400 randomly
picked images and the SIFT features quantized kte 256
visual words. The prior hyperparameters of the Dirichlet[s]
distribution were set tag = 1.

In the supervised case, we have manually annotated tHé
image sequence and compared the resulting labeling to thej
ground truth. We obtained an accuracy of 93% fofffica
light scenes, 99% for yield scenes, and 91% for pedestrial
crossings scenes. We except these results to drop slightly
in a previously unseen environment. In the unsupervised
case,¢ acts as a concentration parameter, i.e., it contro
the tendency to create new classes. The final labeling is
challenging to evaluate. Two fiic lights scenes might for [11]
instance get dierent labels without interfering into the final
action prediction. With¢ = 200, our algorithm discovered [12]
15 different trdfic situations and was able to re-associate
correctly to the same labels in thefiédrent runs of our
driving loop.

(5]

. . [14]
D. Action Prediction
The strategy presented in Section VI is relatively straigh1[15]
forward to evaluate, since predictions can be compared [os]
incoming IMU data. We set the threshold for creating a
new Gaussian te = 5 and inferred on (16). Our algorithm [17]
performed accurately in predicting the driving actions.
VIII. ConcLusioN 1ol
In this paper, we have presented a novel approach fgirg]
on-line learning of driving behaviors in an unsupervise
fashion. To this end, we have developed an entire Bayesian
framework that is able to learn and adapt to newvfitasitu- (20]
ations and drivers. Visual tfizc situations models have been|21]
modeled probabilistically from image streams and assediat

of this approach on a challenging urban dataset.

In a further work, we aim at improving our image rep-
resentation with a more sophisticated model in order to
determine which object in the scene induces an action.
Action modeling at a higher level could be represented with
a Hidden Markov Model (HMM).
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