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ABSTRACT

Tridimensional shape recovery based on Photometric Stereo (PS) recently received a strong improvement due to
new mathematical models based on partial differential irradiance equation ratios.1 This modern approach to PS
faces more realistic physical effects among which light attenuation and radial light propagation from a point light
source. Since the approximation of the surface is performed with single step method, accurate reconstruction is
prevented by sensitiveness to noise. In this paper we analyse a well-known parametrization2 of the tridimensional
surface extending it on any auxiliary convex projection functions. Experiments on synthetic data show preliminary
results where more accurate reconstruction can be achieved using more suitable parametrization specially in case
of noisy input images.
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1. INTRODUCTION

The three-dimensional representation of the surrounding world through accurate shape reconstructions has
increased its importance together with the computational power of current computers capable to process enough
data for shape recovery in a reasonable amount of time. The process of reconstructing shapes from shading
information has been studied from the seminal paper about the Shape from Shading (SfS) problem3 (single image)
and enforced by the extension to the Photometric Stereo (PS) technique4 (multiple images). Relating to the SfS,
several approaches have been presented5,6 attempting to prove its well-posedness. In this framework, the way
to parametrize surface and light beam is crucial. For example, Prados and Faugeras2 derived a specific pinhole
parametrization for the surface in the perspective scenario showing that their particular formulation made the
SfS problem well-posed. Following, after few years Breuß et al.7 showed that it was actually not completely
well-posed.

On the other hand, PS is one of the monocular techniques for three-dimensional reconstruction providing
very accurate shape recovery. The main drawback of this technique is the very limited capability to work in
realistic scenarios. For example, instead of considering shaped light sources which spread light depending on their
geometry and positions, the light sources are usually considered placed far away from the observed object in
order to simplify the incident light as a uniform beam, without considering consequently light attenuation. In
order to model simple physical conditions, most of the literature in the PS field solves standard mathematical
problems by minimizing energy functionals8,9 or computing pseudo-inverse matrices.4,10 In other words, a suitable
parametrization of the problem can actually make the difference on formulating a PS model in order to face
realistic scenarios and provide suitable formulation yielding to more appropriate mathematical problems.

In this direction, Partial Differential Equations (PDEs) are becoming an important mathematical tool for
modeling PS under realistic physical assumptions.

Unlike very common procedures that need to approximate the normal field4 and afterwards the depth,11–14

recent PDE methods based on image ratios allow direct computation of the surface. For example, Chandracker et
al.15,16 consider more general irradiance equations with unknown light sources, and compute the photometric
invariants describing the surface through its isocontours.17 However, the shape reconstruction process requires
additional initial or boundary information. Mecca et al.18,19 use specific irradiance equations for diffuse surfaces,
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Figure 1. A schematic section of the derivation of the perspective view geometry. In the perspective world (i.e., the image
coordinate system given by Oxyz) the light reflected at image point (x, y) comes form the real point (ξ, η, ζ) of the surface.

and the uniqueness of solution is proved by characteristic strip expansion and assuming known light information
(i.e., direction or position).

Related to this last approach, another step towards more realistic PS was undertaken in1 where the close-range
problem for a scene lit by point-light sources is approached with quasi-linear PDEs parametrizing different types
of realistic light attenuations. An iterative numerical scheme based on the fast-marching method is used in order
to approximate the shape. In this framework, the importance of using an appropriate parametrization becomes
clear. In this paper, we explore more in detail how different parametrizations of a surface Σ, modeled as a function
M : Ω→ R3 (where Ω = Ω ∪ ∂Ω is the image domain), can affect the reconstruction in terms of shape accuracy.

Our contributions can be summarized as follows:

• We generalize the parametrization presented in2 ;

• We derive the model presented in1 with respect to the previous type of parametrization;

• We show how these different parametrizations can influence the accuracy of the shape recovery, due to the
numerical approximation of the respective quasi-linear PDEs.

2. MODEL DERIVATION

We recall how the PS problem is formulated in1 starting by the well-known irradiance equation for Lambertian
surfaces, given by the following inner product:

Ii(x, y) = ρ(x, y)ai(x, y)[n̄(x, y) · l̄i(x, y)] , (1)

where n is the outgoing normal to the surface, Ii, ρ : Ω→ [0, 1] are the image function taken under the i-th light
source and the unknown albedo respectively. Here we indicate as ·̄ a normalized vector.

With the aim to model realistic attenuation effects, we consider the function derived in1 :

ai(x, y) =

(
l3i (x, y)

li(x, y)

)µ
(2)

where µ ≥ 0 describes the amount of the attenuation.



Since the point light source is assumed to be fixed at point Pi = (ξi, ηi, ζi) (as shown in Figure 1, for the case
of two light sources), li(x, y) is the light direction that changes at each image point (x, y) as follows:

li(x, y) = Pi −M(x, y) , (3)

before being normalized. With the triple (ξ, η, ζ) we indicate the real-world coordinates and by (x, y, z) by the
perspective or image coordinates.

The setup we take into account exploits the pinhole camera model shown in Figure 1, where the optical and
focal planes are respectively as follows:

ζ = 0 and ζ = −f . (4)

The final model considered in1 comes from taking the ratio of a couple of irradiance equations like (1). In the
following, we derive more in detail the model according to different surface parametrizations, i.e. different M.

Since both n and li depend directly on M, the way the surface is parametrized plays a fundamental role.
The preliminary parametrization we consider is not new in the field of SfS and PS. It is based on projecting the
surface on the lower half-sphere of radius f . We extend such derivation under the same procedure of projection
onto general auxiliary convex surfaces. In other terms, we generalize the parametrization introduced in2 (and
derived more in detail in7) where the lower half-sphere is taken as a specific choice of auxiliary convex function,
see Figure 2.

2.1 Projected parametrization on the half-sphere

The aim of the perspective model presented in2 is to parametrize the surface by using a point projected through
the lower half-sphere

ζ = −
√
f2 − ξ2 − η2 (5)

onto the focal plane, as shown in Figure 2. Let us consider the equations of the segment connecting the optical
center (0, 0, 0) to a generic point in the focal plane (x, y,−f). The parametric and cartesian equations for that
segment are

r :

 ξ = xt
η = yt
ζ = −ft

→ r :


ξ = −x ζ

f

η = −y ζ
f

(6)
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Figure 2. Two different colors for the parametrizations of Σ using the lower half sphere ζ(ξ, η) = −
√
f2 − ξ2 − η2 in green

and the second by the paraboloid ζ(ξ, η) = ξ2 + η2 − f in blue.



The point of intersection between this straight line and the lower half-sphere is given by substitution of (6)
into (5), that is

ζ̃s(x, y) = − f2√
f2 + x2 + y2

. (7)

Substituting (7) into (6) we get the following functions for the projection onto the lower half sphere:

ξ̃s(x, y) =
fx√

f2 + x2 + y2
and η̃s(x, y) =

fy√
f2 + x2 + y2

. (8)

The perspective surface is then easily obtained as follows:

Ms(x, y) = msus(x, y) = (ξ̃s(x, y), η̃s(x, y), ζ̃s(x, y))us(x, y) =

(
fx

ds(x, y)
,

fy

ds(x, y)
,− f2

ds(x, y)

)
us(x, y) (9)

where ds(x, y) =
√
f2 + x2 + y2, and us(x, y) is the unknown function that parametrizes this perspective

representation of the surface.

From here, the computation of the outgoing normal to the surface is straightforward and comes from the cross
product of the partial derivatives of (9) with respect to x and y:

∂Ms

∂x
× ∂Ms

∂y
= ns(x, y) =

(
f

(
∂us
∂x
− xus

d2s

)
, f

(
∂us
∂y
− yus

d2s

)
,
usf

2

d2s
+ x

∂us
∂x

+ y
∂us
∂y

)
. (10)

Given this parametrization and according to (3), we derive the following light direction

li(x, y) =

(
ξi − x

fus
ds

, ηi − y
fus
ds

, ζi +
f2us
ds

)
(11)

and considering the light sources attached to the optical plane (i.e. ζi = 0), after some algebraic manipulation of
the image ratio I1

I2
, we get the following quasi-linear PDE:

∂us
∂x

ds
us

[
a1(x, y)I1(x, y)|l1(x, y)|ξ2 − a2(x, y)I2(x, y)|l2(x, y)|ξ1

]
+

∂us
∂y

ds
us

[
a1(x, y)I1(x, y)|l1(x, y)|η2 − a2(x, y)I2(x, y)|l2(x, y)|η1

]
=

fus

[
a2(x, y)I2(x, y)|l2(x, y)| − a1(x, y)I1(x, y)|l2(x, y)|

]
+

1

ds

[
a1(x, y)I1(x, y)|l1(x, y)|(ξ2x+ η2y)− a2(x, y)I2(x, y)|l2(x, y)|(ξ1x+ η1y)

]
. (12)

2.2 Projected parametrization on a paraboloid

According to the previous section, the generalization of a projection on a generic convex surface is easy to extend
since it is based on a different choice of the convex function (5). For example, let us consider the projection onto
the paraboloid

ζ = −f + ξ2 + η2 , (13)

as shown in Figure 2.

Computing the intersection between the paraboloid and the line (6), we have

ζ̃p(x, y) = − 2f2

f +
√
f2 + 4f(x2 + y2)

, (14)
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Figure 3. Reconstruction of the “pierrot” shape using different projective models. At low noise levels (σ = 0.1%) all
parametrizations behave comparably well, with the parabolic model showing slightly larger MSE than the others. When
noise increases (σ = 3%) the situation turns in favor of the former, which yields more stable reconstructions by a good
margin. The error scale here is in mm2.

which brings us to the following projection functions:

ξ̃p(x, y) =
2fx

f +
√
f2 + 4f(x2 + y2)

and η̃p(x, y) =
2fy

f +
√
f2 + 4f(x2 + y2)

. (15)

Finally, we get surface Σ parametrized as follows:

Mp(x, y) = mpup(x, y) = (ξ̃p(x, y), η̃p(x, y), ζ̃p(x, y))up(x, y) =

(
2fx

dp(x, y)
,

2fy

dp(x, y)
,− 2f2

dp(x, y)

)
up(x, y) (16)

where dp(x, y) = f +
√
f2 + 4f(x2 + y2).

Let us write now the irradiance equation by computing the outgoing normal from the previous formula for the
projected surface. The usual procedure is to compute the normal as a perpendicular vector of the tangent plane
to the surface. So we start computing the tangent plane as follows:

∂Mp

∂x
=

((
up + x

∂up
∂x

)
dp −

4f2upx
2

dp − f
, y
∂up
∂x

dp −
4f2upxy

dp − f
,−f ∂up

∂x
dp +

4f2upx

dp − f

)
(17)

and
∂Mp

∂y
=

(
x
∂up
∂y

dp −
4f2upxy

dp − f
,

(
up + y

∂up
∂y

)
dp −

4f2upy
2

dp − f
,−f ∂up

∂y
dp +

4f2upy

dp − f

)
. (18)

The (not unit) outgoing normal is easily computed by the cross product

∂Mp

∂x
× ∂Mp

∂y
= np(x, y)

=

(
f
(
dp
∂up
∂x
− 4fx

dp − f
up

)
,

f
(
dp
∂up
∂y
− 4fy

dp − f
up

)
,

d2p(up + x
∂up

∂x + y
∂up

∂y )− dpf(up + x
∂up

∂x + y
∂up

∂y )− 4fup(x
2 + y2)

dp − f

)
.

(19)

Following equation (3), we parametrize the light source as

li(x, y) =

(
ξi − x

2fup
dp

, ηi − y
2fup
dp

, ζi +
2f2up
dp

)
, (20)
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Figure 4. Sensitivity experiments of the three parametrization models under different values of light attenuation (µ) and
pixel noise (σ, expressed in percentage of grey levels). The left-most curves show results in the noise-free case, whereas in
the middle column we set σ = 0.1%. Notice how, in the first row, the parabolic parametrization degrades more gracefully
under such moderate noise levels. This behavior is made more evident at fixed µ = 2 (right-most plots), where the MSE is
even shown to fall down at increasing noise levels. Further explanation of this phenomenon is given in Fig. 5.

and considering two irradiance equations as modeled in (1), namely I1 and I2, the ratio I1
I2

yields the following
equation:

∂up
∂x

(
dpf

(
a2
|l2|

l12I1 −
a1
|l1|

l11I2

)
+ xdp

(
a2
|l2|

l32I1 −
a1
|l1|

l31I2

))
+

∂up
∂y

(
dpf

(
a2
|l2|

l22I1 −
a1
|l1|

l21I2

)
+ ydp

(
a2
|l2|

l32I1 −
a1
|l1|

l31I2

))
=

4f2x

dp − f
up

(
a2
|l2|

l12I1−
a1
|l1|

l11I2

)
+

4f2y

dp − f
up

(
a2
|l2|

l22I1−
a1
|l1|

l21I2

)
+
dpfup + 4fup(x

2 + y2)− d2pup
dp − f

(
a2
|l2|

l32I1−
a1
|l1|

l31I2

))
.

(21)

For the next section we solved numerically the quasi-linear PDEs we get, comparing the accuracy by showing
quantitative results for realistic synthetic cases.

3. EXPERIMENTAL RESULTS

We conducted a series of experiments in order to comparatively evaluate the projection models described in the
previous sections. For these experiments we employed two synthetic surfaces: a square and perfectly planar object
with no features, and the frontal view of a “pierrot” figure (see Fig. 4). Each 3D model was captured with a
virtual perspective pinhole camera placed at ∼45cm from the object, and each object was rescaled to a diameter
of ∼30cm. Camera resolution was fixed at 640 × 480, and four virtual point light sources were displaced in a
radial arrangement on the camera plane.

For comparison purposes, in all experiments we initialized the reconstruction process (an order-one fast
marching scheme adapted from1) with the ground-truth depth value of the central pixel. As error measures, we
provide the angular error between the reconstructed and ground-truth normals (degrees), and the point-to-point
mean square error (MSE) between the recovered and ground-truth surface (mm2).

In Fig. 4 we plot the MSE attained by the three parametrizations under different settings. In this and the
following figures, we refer to the three compared projection models as Paraboloid (Sec. 2.2), Half sphere (Sec.
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Figure 5. Reconstruction of a planar surface using a parabolic parametrization. The noise-free reconstruction deviates
from the true surface in a radial fashion; as more noise is introduced (σ = 1 − 20%), the reconstruction error distributes
more evenly over the whole surface, which regains a flat appearance (with lower MSE). The right-most plot shows the
angular error (in degrees) of the reconstructed normals at increasing levels of noise. Notice how this error measure reflects
more closely the higher frequency deviations, rather than the global geometry (compare with bottom-right plot of Fig. 4).

2.1), and Plane (straight projection onto the focal plane1) respectively. The first plot shows MSE curves in a
noiseless setting, under increasingly strong light attenuation. The parabolic model seems to be the least stable by
a large margin, quickly diverging as µ increases towards more realistic attenuation values, while the remaining
two models remain fairly stable in both the depicted cases. However, as a small amount of pixel noise (σ = 0.1%)
is introduced into the source images, the spherical and planar models deviate significantly while the parabolic
parametrization gains in resilience (middle column). This is especially evident with the “pierrot” shape, where at
µ = 25 the relative ranking subverts and the parabolic model starts outperforming the other models (a depiction
of this is given in Fig. 3). Evidence of this surprising behavior is further given in the following experiment
(right-most curves), where the parabolic model takes the lead as the amount of pixel noise grows into more
realistic values. The bottom-right plot additionally shows a counter-intuitive phenomenon: the mean square error
seems to decrease for the paraboloid case as noise increases, only to grow again after a certain noise threshold.
We visualize this scenario more closely in Fig. 5. For numerical reasons, the reconstruction obtained with the
paraboloid model in the noise-free (σ = 0%) case does not approximate the plane well, and rather shows a curved
profile. The introduction of noise has a ”flattening” effect on the recovered geometry, thus reducing the MSE; as
noise is furthermore increased, the global geometry deforms more severely and the reconstruction error grows
again.

4. CONCLUSIONS

In this work we analyze three different parametrizations of 3D surfaces employed to a modern and realistic PS
approach1 based on partial differential irradiance equation ratios. After explicitly showing the general derivation
for such parametrizations, we implemented them working on synthetic tests. The experimental evaluation
reveals an unexpected robustness of the parametrization where the paraboloid was considered as auxiliary convex
projection function. This opens to new works mainly focused on choosing the more suitable parametrization for
the PS reconstruction process based on sigle step fast marching methods.
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