
Spacetime-coherent Geometry Reconstruction from Multiple Video Streams

Marcus Magnor and Bastian Goldlücke
MPI Informatik

Saarbrücken, Germany
magnor@mpi-sb.mpg.de

Abstract

By reconstructing time-varying geometry one frame at a
time, one ignores the continuity of natural motion, wast-
ing useful information about the underlying video-image
formation process and taking into account temporally dis-
continuous reconstruction results. In 4D spacetime, the
surface of a dynamic object describes a continuous 3D
hyper-surface. This hyper-surface can be implicitly defined
as the minimum of an energy functional designed to opti-
mize photo-consistency. Based on an Euler-Lagrange re-
formulation of the problem, we find this hyper-surface from
a handful of synchronized video recordings. The result-
ing object geometry varies smoothly over time, and inter-
mittently invisible object regions are correctly interpolated
from previously and/or future frames.

1. Introduction

How can the time-varying geometry of a dynamic nat-
ural scene be captured ? Currently, multi-video footage is
the only financially and logistically feasible way of record-
ing dynamic events by which shape information is (at least
implicitly) recorded. To recover the time-varying shape
from multi-video recordings, however, is a challenging task.
The traditional approach is to regard the video frames se-
quentially, reconstructing one 3D geometry model per time
step. However, this procedure potentially introduces tem-
poral discontinuities in the evolving geometry which may
show up annoyingly during playback.

Real-world objects vary continuously over time. By in-
corporating this inherent trait into the reconstruction algo-
rithm, object geometry is recovered more robustly, and tem-
porarily occluded regions can be correctly interpolated. To
do so, the video image sequences must be processed glob-
ally, regarding 3D scene evolution in 4D spacetime. In
this paper, we describe a mathematically sound approach to
reconstruct such temporally continuous object shape from
only a handful of video cameras distributed around the

scene.
In the following Section, we review previous work on

dynamic 3D reconstruction. In Sect. 3, we introduce the
mathematical foundations of the algorithm and give a rig-
orous definition of our method in terms of an energy min-
imization problem. Sect. 4 demonstrates how the minimal
hyper-surface can be found by surface evolution. Imple-
mentation details are discussed in Sect. 5 where we describe
a parallelized scheme which computes the surface evolution
equation using a narrow-band level-set method. Results ob-
tained from real-world video data are shown in Sect. 6 be-
fore we wrap up the our presentation in Sect. 7.

2. Related Work

For static scenes, a number of approaches have
been devised for reconstructing 3D geometry from pho-
tographs [17]. The visual hull has been widely used as a
geometry proxy because it can be computed efficiently and
represents an approximate, conservative model of object ge-
ometry [12, 13]. More refined voxel models can be obtained
using space-carving [11] and space coloring [18] which take
local photo-consistency into account. Vedula et al. [21] ex-
tend the space-carving approach by additionally estimating
the scene flow to determine local motion for each voxel.

Level set models are a useful alternative to voxel repre-
sentations. The boolean function defined on the voxel grid
marking a voxel as occupied or empty may be viewed as
a {0, 1}-valued function whose 0.5 level set is the surface
enclosing the occupied voxels. In this sense, level sets are a
true generalization of voxel models. Techniques which nat-
urally employ level set models are those based on weighted
minimal surfaces, which minimize an energy functional
given as a surface integral of a scalar-valued weight func-
tion. The variation-al formulation of these kinds of prob-
lems leads to a surface evolution-PDE which can be imple-
mented using level set techniques. Faugeras and Keriven [6]
analyzed how minimal surfaces can be employed for 3D
reconstruction of static scenes from multiple views. This
technique was recently extended to simultaneously esti-

mate geometry and surface reflectance [9]. Another well-
known technique which utilizes minimal surfaces is known
as Geodesic Active Contours [3]. Originally designed for
segmentation in 2D [10], it can be generalized to three di-
mensions [4] and is particularly attractive for modeling sur-
faces from point clouds [25, 24]. Geodesic contours have
also been employed for 2D detection and tracking of mov-
ing objects [16].

Our reconstruction approach is based on finding a 3D
hyper-surface in 4D spacetime that minimizes an energy
functional. In [8], we give a mathematical analysis of
weighted minimal hyper-surfaces in arbitrary dimension
and for a general class of weight functions. We derive the
Euler-Lagrange equation yielding a necessary minimality
condition. This analysis also covers all of the the variational
methods mentioned above. Here, we present a specific ap-
plication of this theoretical work [7]. To recover smoothly
varying geometry, we introduce a fourth dimension which
represents the flow of time of the 3D scene. Our goal
is to reconstruct a smooth three-dimensional hyper-surface
embedded in spacetime. The intersections of this hyper-
surface with planes of constant time are two-dimensional
surfaces, which represent the geometry of the scene in a
single time instant. The hyper-surface is found by mini-
mizing the integral of an energy functional which weights
photo-consistency as well as temporal smoothness over the
hyper-surface.

3. 3D Reconstruction in Spacetime

In this section, we present the mathematical foundations
of our 3D reconstruction algorithm. We assume that we
have a set of fully calibrated, fixed, and synchronized video
cameras. The input to our algorithm are the projection ma-
trices for the set of cameras, as well as a video stream for
each camera. We wish to obtain a smooth surface Σt for
each time instant t representing the geometry of the scene
at that point in time. The surfaces shall be as consistent as
possible with the given video data. Furthermore, as in re-
ality, all resulting surfaces should vary continuously over
time.

3.1 Mathematical Foundations

To achieve these properties, we cannot consider each
time step individually. Instead, we regard the two-
dimensional object surface Σt at each time step as subsets
of one smooth, three-dimensional hyper-surface H embed-
ded in four-dimensional spacetime. From this viewpoint,
the reconstructed object surfaces

Σt = H ∩
(

R
3, t
)

⊂ R
3

are the intersections of H with planes of constant time. Be-
cause we reconstruct one hyper-surface for all frames, tem-
poral smoothness is implicitly guaranteed.

To take photo-consistency of the reconstructed geometry
into account, we set up an energy functional

A (H) :=

∫

H
Φ dA. (1)

defined as an integral of the scalar-valued weight function
Φ over the whole hyper-surface. Φ = Φ(s,n) measures the
photo-consistency error density and depends on the surface
point s and the normal n at any point. The larger the value
of Φ, the higher the photo-consistency error. The surface
which matches the given input data best is a minimum of
this energy functional. In [8], we make use of a mathemat-
ical tool known as the method of the moving frame in order
to prove the following theorem which is valid in arbitrary
dimension.

Theorem. A k-dimensional surface H ⊂ R
k+1 which

minimizes the functional A (H) :=
∫

Σ
Φ(s,n(s)) dA(s)

satisfies the Euler-Lagrange equation

〈Φs,n〉 − Tr (S) Φ + divH(Φn) = 0, (2)

where S is the shape operator of the surface, also known
as the Weingarten map or second fundamental tensor. In
Sect. 4, we review how this Euler-Lagrange equation (2)
can be solved in practice using a surface evolution equation
implemented using level sets. In the remainder of this sec-
tion, we present suitable choices for the error measure Φ.

3.2 Spacetime Continuity

We need some additional notation for color and visibil-
ity of points in spacetime. Let t denote a time instant. A
video image It

k is then associated with each camera k. The
camera projects the scene onto the image plane via a fixed
projection πk : R

3 → R
2. We can compute the color ct

k of
every point (s, t) on the hyper-surface by

ct
k(s) = It

k ◦ πk(s).

For the 2D object surface Σt, let νt
k(s) denote whether point

s is visible in camera k at time t. νt
k(s) is defined to be unity

if s is visible, and zero otherwise. A photo-consistency er-
ror measure can then be defined as

ΦS(s, t) :=
1

Vs,t

l
∑

i,j=1

νt
i (s)ν

t
j(s) ·

∥

∥ct
i(s) − ct

j(s)
∥

∥ . (3)

Vs,t is used to normalize the function and denotes the num-
ber of camera pairs which are able to see the point s at time
t. This functional for regular surfaces in R

3 was introduced

by Faugeras and Keriven [6] for static scene reconstruc-
tion. If the error function ΦS is used for reconstructing a
2D surface in 3D space, the resulting algorithm is essen-
tially equivalent to space carving, where each time step is
regarded separately: In [11], voxels in a discrete voxel grid
are carved away if ΦS lies above a certain threshold value
when averaged over the voxel. By using a surface evolution
scheme for reconstruction, a continuous surface is obtained,
instead.

To reconstruct smoothly varying geometry over time, we
increase the dimensionality of the problem by one and re-
gard a 3D hyper-surface in 4D spacetime, while the photo-
consistency error measure (3) remains the same.

3.3 Normal Optimization

Because theorem (2) also encompasses error functions
that depend on surface normal orientation, we are able to
additionally optimize surface normal orientation. A simi-
lar idea was presented in [6]. However, we give a slightly
modified version and work in spacetime to enforce temporal
smoothness.

In order to set up an appropriate error functional, we
have to analyze how well a surface point at position s with a
given normal n corresponds to the images at time t. To this
end, we assign to each hyper-surface point a small patch
�s,n within the plane orthogonal to n, Fig. 1. In our imple-
mentation, we choose rectangular patches rotated into the
target plane by a well-defined rotation. How exactly this
patch is chosen does not matter. However, the choice should
be consistent over time and space.

We define a measure how well the patch �s,n matches
the images at time t by employing the normalized cross-
correlation of corresponding pixels in the images, a well-
established matching criterion in computer vision. Mathe-
matically, the resulting functional for a point x = (s, t) ∈
R

4 with normal direction n is defined as follows:

ΦG(x,n) := −
1

Vs,t

l
∑

i,j=1

νt
i (s)ν

t
j(s) ·

χt
i,j(s,n)

A (�s,n)

with the zero-mean cross-correlation

χt
i,j(s,n

t) :=

∫

�
s,nt

(

ct
i − I

x,n

i

)(

ct
j − I

x,n

j

)

dA,

and the mean color value of the projected patch in the im-
ages computed according to

I
x,n

i :=
1

A (�s,n)

∫

ct
i dA.

The correlation measure χt
i,j for a pair of cameras is nor-

malized using the area A (�s,n) of the patch. It is clear that

Figure 1. Practical computation of the cross-
correlation error term ΦG: A small region in the tan-
gent plane is projected into both camera images, and
the normalized cross-correlation is computed.

we need to choose �s,n sufficiently large so that it is pro-
jected onto several pixels. On the other hand, it should not
be too large, otherwise only parts of it are visible in the im-
ages. As a compromise, we set its diameter to be equal to
the cell diameter of the underlying computation grid, as de-
fined in Sect. 5. The integration of ΦG in the energy func-
tional involves the normals of H in 4D space, while n is
supposed to lie in R

3. Therefore, we project normals of H

into the tangent space of Σt in order to obtain n.
By minimizing this functional, two constraints are opti-

mized simultaneously: Each surface Σt, together with its
normals, is selected to best match the images at that time
instant. Furthermore, a smooth change of the surfaces Σt

with time is encouraged because of the curvature term in the
Euler-Lagrange equation (2). To numerically find the min-
imum of the error functional, a surface evolution approach
is used, implemented via level sets.

4. Level Set Evolution Equation

In order to minimize the energy functional, we need to
find a solution to (2). An efficient way to do so is to re-
phrase the problem in form of a surface evolution which can
be implemented using level sets [15, 5]. This technique is
well-established for a wide range of applications [20]. For
the remainder of the text, let

Ψ := 〈Φs,n〉 − Tr (S) Φ + divΣ(Φn).

A surface H, which is a solution to the Euler-Lagrange
equation Ψ = 0, is likewise a stationary solution to a sur-
face evolution equation, where Ψ describes a force in the
normal direction:

∂

∂τ
Hτ = Ψn. (4)

If we start with an initial surface H0 and let the surface
evolve using this equation, it will eventually converge to
a local minimum of A. Instead of implementing the surface
evolution directly, we make use of the notion of level sets.
We express the surfaces Hτ for each parameter value τ ≥ 0
as the zero level sets of a regular function

u : R
4 × R

≥0 → R, u(x, τ) = 0 ⇔ x ∈ Hτ . (5)

We require u(·, τ) to be positive inside the volume enclosed
by Hτ , and negative on the outside. An immediate conse-
quence is this
Lemma. Let ∇ be the gradient operator for the spatial co-
ordinates of u. Then we can compute the outer normal and
the trace of the shape operator for Hτ using

n = −
∇u

|∇u|
and Tr (S) = div

(

∇u

|∇u|

)

.

Proof. The relationship for the normal is obvious. By defi-
nition, the shape operator is given by S := −Dn and maps
the tangential space TH into itself. It follows that

Tr (S) = Tr (−Dn) = div(−n) = div

(

∇u

|∇u|

)

.

Note that we consider the normal to be defined on all level
sets of u. �

Taking the derivative of (5) with respect to τ and insert-
ing the result in the above relationships, we arrive at the
final reformulation of (4) in terms of a level-set evolution:

∂

∂τ
u =

[

− div

(

Φ ·
∇u

|∇u|

)

+ divΣ(Φn)

]

|∇u| . (6)

In the next section, we analyze in detail how this evo-
lution equation can be implemented efficiently in a multi-
processor environment.

5. Parallel Implementation

In order to implement the level-set evolution equation,
the volume surrounding the hyper-surface H has to be dis-
cretized. We use a regular four-dimensional grid of evenly
distributed cells with variable spatial resolution of either
643 or 1283 cells. The temporal resolution is equal to the
number of frames in the input video sequences. If the se-
quence is of any reasonable length, this signifies a massive

Figure 2. Evaluation of the differential operator. In
the first step, the values of ui in the light cells are used
to compute the level set normal n ∈ R

4 in the dark
cells using central differences. For the second step,
we compute the values for the central cell, also using
finite differences.

amount of data and computation time. In fact, it is not pos-
sible to store the full data set for each grid cell together with
all images of all video sequences within the main memory
of a standard PC. A parallel implementation is inevitable,
distributing the workload and data over several computers.

We choose to use the narrow-band level-set method [20]
for implementing the evolution equation because it is
straight-forward to parallelize. We start with an initial sur-
face H0 and the values u

xyzt
0 of the corresponding level set

function u0 in the centers of the grid cells. A suitable initial
surface for our case is suggested at the end of this section.
The values of the level set function are updated iteratively
using the upwind scheme. At iteration step i + 1, the new
values u

xyzt
i+1 are obtained from the values u

xyzt
i of the pre-

vious iteration step by a discrete version of (6) using an ex-
plicit time step:

u
xyzt
i+1 = u

xyzt
i + Ψ

(

u
xyzt
i

)

|∇ui| · ∆τ. (7)

Ψ
(

u
xyzt
i

)

is the value of the discretized version of the
differential operator Ψ acting on ui, evaluated in the cell
(x, y, z, t). Central differences on the four-dimensional grid
are used to compute the derivatives involved in (6), Fig. 2.
The norm of the discretized gradient |∇ui| is calculated ac-
cording to the upwind scheme [20]. To ensure stability, the
step size ∆τ must be chosen such that the level sets of ui

cannot cross more than one cell at a time, i.e. satisfy the
CFL-condition

∆τ ≤ max
(x,y,z,t)∈Γ

(

diam cell(x, y, z, t)
∣

∣Ψ
(

u
xyzt
i

)

· ∇u
∣

∣

)

. (8)

The differential operator must be evaluated for each grid
cell near the zero level set, so the computations necessary
for each cell depend only on a local neighborhood, and
the computation of individual cells can easily be distributed

Figure 3. Data transmission of process Pi before an iteration. Each process stores five slices of constant time and is
responsible for the computation of the center slice. Pi computed its slice in the last iteration and now transmits it over
the network. On the other hand, it receives the other slices from its neighbors for the next iteration. In the figure, slices
of the same color contain the same information after the communication.

over several processes. In our implementation, each process
is responsible for the computation of one single slice of the
grid of constant time ti. This slice corresponds to the geom-
etry of the ith frame of the video sequence. Fig. 2 illustrates
how the value Ψ

(

u
xyzt
i

)

is numerically evaluated from the
values of ui in the grid cells. We need the values of grid
cells up to two cells apart from (x, y, z, t) in order to evalu-
ate the operator. As a consequence, each process Pi also has
to access the slices of the four other processes Pi±1, Pi±2.
These have to be communicated over the network. In addi-
tion, each process needs to store the image data of its own
video frame and the two adjacent frames.

To summarize, one full iteration consists of the following
four steps:

• Each process transmits its own slice Si to the adjacent
processes and receives the other necessary slices from
its four neighbors according to Fig. 3.

• Then, each process computes Ψ
(

u
xyzt
i

)

for all cells in
its slice near the zero level set of ui, using the scheme
presented in Fig. 2.

• The maximum value of the operator for each process
is transmitted to a special server process. From the
maxima, the server calculates the optimal step size ∆τ

according to (8).

• The server broadcasts the step size to all processes
which compute the evolution on their slice according
to (7).

After each iteration, the server process may poll the current
geometry from any of the other processes in order to give
the user feedback about the current state of the iteration.
The iteration stops when the flow field is zero, or may be
terminated by the user.

Figure 4. Input image data: eight segmented video
frames per time step represent the input to our algo-
rithm.

To define an initial surface suitable H0 for starting the
iteration process, we use the visual hull which by defini-
tion is a superset of the correct scene geometry. To find the
level-set representation of the visual hull, we have to choose
suitable values u0 for each grid cell. We fix a grid cell
c and select a number of evenly distributed sample points
x0, . . . , xk inside it. These points are projected into each
source image. We compute the percentage p ∈ [0, 1] of the
projections which fall into the silhouettes of the object to be
reconstructed. The value 2p− 1 at cell c is then assigned to
the initial level set function u0. Since we only have to com-
pute an approximate starting surface, this straight-forward
method gives good results in practice. In particular, the pro-
jection of the zero level set of u0 into the source images
very closely resembles the silhouettes of the object.

6. Results

In order to test our algorithm, we use real-world 320 ×
240 RGB video sequences of a ballet dancer recorded at

(a) Visual hull (b) Final result

Figure 5. Reconstruction: The object’s visual hull
is used as the initial surface to start the PDE evolu-
tion. On the right, the final result is depicted after
running the complete algorithm including normal op-
timization.

15 fps, Fig. 4. All input images are automatically seg-
mented into foreground and background [1]. A level-set
representation of the visual hull is computed to initialize
the volume for the PDE evolution, Fig. 5.

For our test runs, we selected a sequence with inter-
mittently completely occluded object regions, Fig. 6. The
recording cameras are arranged along the perimeter of the
scene , so no camera can capture the area between arms and
chest of the dancer in the depicted frame. When we run
the space-carving algorithm on this frame, little improve-
ment can be observed. Only when we employ spacetime-
coherent reconstruction do we obtain a satisfactory result,
Fig. 6: The invisible region is interpolated from previous
and future frames automatically by the algorithm’s implicit
temporal smoothness constraint.

In Fig. 7, we illustrate more geometry results for dif-
ferent times and from different viewpoints. When textured
with an image-based rendering algorithm using the source
images, it can be observed that photo-consistency is indeed
excellent.

Tab. 1 states the computation times and memory require-
ments of each of the slave processes for a single iteration.
Our tests were performed on a Sun Fire 15K with 75 Ultra-
SPARC III+ processors at 900 MHz, featuring 176 GBytes
of main memory. It can be observed that normal optimiza-
tion requires a lot of computation time when compared to
the standard version of our algorithm. For this reason, we

Grid res. # procs. Time per iteration [s] Memory
without n.o. with n.o. per proc.

32
3 60 0.9 25 80 MB

40 1.4 38
20 2.5 60

64
3 60 7 140 180 MB

40 11 210
20 17 360

128
3 60 30 510 535 MB

40 55 840
20 102 1200

Table 1. Time required for a single iteration, depend-
ing on the resolution of the computation grid and the
number of processors (procs.). Both timings with and
without the normal optimization (n.o.) are stated.

first reconstruct geometry by itself before we turn on normal
optimization which is chiefly improves the reconstruction of
small surface details. On average, we need around one hun-
dred iterations of the initial evolution and twenty more for
normal optimization until the surface converges to the final
result.

In order to speed up surface evolution, one further term
can be included in (6), as suggested in [6]. We subtract a
multiple ε of the curvature Tr (S), with ε being a small, user-
defined constant factor. This forces the resulting hyper-
surface to become smoother, so larger steps ∆τ can be taken
to evolve the PDE.

7. Summary and Conclusions

We have presented a novel reconstruction algorithm for
dynamic objects which takes into account all frames of a
multi-video sequence. The underlying idea is to optimize
photo-consistency as well as temporal smoothness simulta-
neously. Our method is formulated as a weighted minimal
surface problem to find a 3D hyper-surface in 4D space-
time. Intersecting this hyper-surface with planes of con-
stant time gives the 2D surface geometry at any time in-
stant. The energy functional is minimized by implement-
ing a surface evolution PDE using the narrow-band level-set
method. Significant quality improvements can be observed
when compared to photo-consistency approaches which do
not take temporal coherence into account.

More results, publications and demo videos on
spacetime-coherent reconstruction can be found on our web
site www.grovis.de.

References

[1] M. Bichsel. Segmenting simply connected moving objects
in a static scene. IEEE Trans. Pattern Analysis and Machine
Intelligence, 16(11):1138–1142, 1994.

[2] J. Carranza, C. Theobalt, M. Magnor, and H.-P. Seidel. Free-
viewpoint video of human actors. ACM Trans. on Computer
Graphics, 22(3):569–577, July 2003.

[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active
contours. In Proc. International Conference on Computer
Vision, pages 694–699, 1995.

[4] V. Caselles, R. Kimmel, G. Sapiro, and C. Sbert. Three di-
mensional object modeling via minimal surfaces. In Proc.
European Conference on Computer Vision, volume 1, pages
97–106. Springer, Apr. 1996.

[5] D. Chop. Computing minimal surfaces via level set curva-
ture flow. Journal of Computational Physics, 106:77–91,
1993.

[6] O. Faugeras and R. Keriven. Variational principles, surface
evolution, PDE’s, level set methods and the stereo prob-
lem. IEEE Transactions on Image Processing, 3(7):336–
344, Mar. 1998.

[7] B. Goldlücke and M. Magnor. Space-time isosurface evo-
lution for temporally coherent 3D reconstruction. In IEEE
Proc.Computer Vision and Pattern Recognition (CVPR’04),
Washington, USA, 2004. accepted.

[8] B. Goldlücke and M. Magnor. Weighted minimal hypersur-
faces and their applications in computer vision. Proc. Euro-
pean Conference on Computer Vision (ECCV’04), Prague,
Czech Republic, May 2004. accepted.

[9] H. Jin, S. Soatto, and A. J. Yezzi. Multi-view stereo beyond
Lambert. In IEEE Conference on Computer Vision and Pat-
tern Recognition, volume I, pages 171–178, Madison, Wis-
consin, USA, June 2003.

[10] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: active
contour models. International Journal of Computer Vision,
1:321–331, 1988.

[11] K. N. Kutukalos and S. M. Seitz. A theory of shape by
space carving. International Journal of Computer Vision,
38(3):197–216, July 2000.

[12] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Transactions on Pattern Analy-
sis and Machine Recognition, 16(2):150–162, Feb. 1994.

[13] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler,
and L. McMillan. Image-based 3D photography using opac-
ity hulls. In Proceedings of ACM SIGGRAPH, pages 427–
436, 2002.

[14] P. J. Olver, G. Sapiro, and A. Tannenbaum. Invariant
geometric evolutions of surfaces and volumetric smooth-
ing. SIAM Journal on Applied Mathematics, 57(1):176–194,
1997.

[15] S. Osher and J. Sethian. Fronts propagating with curvature
dependent speed: Algorithms based on the Hamilton-Jacobi
formulation. Journal of Computational Physics, 79:12–49,
1988.

[16] N. Paragios and R. Deriche. Geodesic active contours and
level sets for the detection and tracking of moving objects.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 22(3):266–280, 2000.

[17] M. Pollefeys and L. V. Gool. From images to 3D models.
Communications of the ACM, 45(7):50–55, 2002.

[18] S. Seitz and C. Dyer. Photorealistic scene reconstruction by
voxel coloring. International Journal of Computer Vision,
35(2):151–173, 1999.

[19] S. Seitz and C. Dyer. Photorealistic scene reconstruction by
voxel coloring. International Journal of Computer Vision,
35(2):1–23, Nov. 1999.

[20] J. A. Sethian. Level Set Methods and Fast Marching Meth-
ods. Monographs on Applied and Computational Mathemat-
ics. Cambridge University Press, 2nd edition, 1999.

[21] S. Vedula, S. Baker, S. Seitz, and T. Kanade. Shape and
motion carving in 6D. In Proc. Computer Vision and Pattern
Recognition (CVPR’00), volume 2, pages 592–598, 2000.

[22] S. Würmlin, E. Lamboray, O. Staadt, and M. Gross. 3D
video recorder. In Proceedings of Pacific Graphics, pages
10–22, 2002.

[23] J. Xu and H. Zhao. An Eulerian formulation for solving par-
tial differential equations along a moving interface. Journal
of Scientific Computing, 19(1-3):573–594, 2003.

[24] H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruc-
tion using the level set method. 1st IEEE Workshop on Vari-
ational and Level Set Methods, 8th ICCV, 80(3):194–202,
2001.

[25] H. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit
and non-parametric shape reconstruction from unorganized
points using variational level set method. In Computer Vi-
sion and Image Understanding, pages 295–319, 2000.

(a) Visual hull (b) Space carving result (c) Our result

Figure 6. Comparison of different reconstruction algorithms (grid resolution 1283). (a) The visual hull, as seen from
above. Since there is no camera to capture the scene from above, most voxels in the area between the arms remain
occupied. (b) The result obtained by static space carving. The invisible regions between the arms can still not be
resolved. (c) Our algorithm uses temporal information to interpolate the currently invisible region between the arms.

Figure 7. Reconstructed geometry for time instants of the sequence. All depicted viewpoints are far away from the
viewpoints of the cameras.

