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A convex approach for computing minimal partitions

Antonin Chambolle∗ Daniel Cremers† Thomas Pock‡

November 26, 2008

Abstract

We describe a convex relaxation for a family of problems of minimal
perimeter partitions. The minimization of the relaxed problem can be
tackled numerically, we describe an algorithm and show some results. In
most cases, our relaxed problem finds a correct (approximate) solution:
we give some arguments to explain why it should be so, and also discuss
some situation where it fails.

1 Introduction

1.1 Contribution

In this paper, we describe a possible approach for numerically computing mini-
mal partitions, and a few related problems. This problems arises in many fields,
in particular, motivated by image analysis applications (segmentation), it has
been the subject of extensive study in the beginning of the 90s [35, 5, 31, 41],
in connection to the celebrated Mumford-Shah [36] segmentation problem.

The problem of (numerically) finding a partition of a set Ω ⊂ Rd, which
minimizes the (d − 1)-dimensional measure of the total interface, plus either
boundary conditions, or some external field particular to each set, is a hard
task. Its discrete version, known as the “Potts’ model” (an extension of Ising’s
model), is described by an energy whose minimization is NP-hard. What we
propose here is to derive some convexification of the problem, which is close
enough to the convex envelope (in fact, it is the closest in a quite general class),
but, also, seems to be numerically tractable (at least when the number of labels
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is not too high). Then, minimizing numerically this envelope, we experience
that in general, at least when d = 2, the minimizer is actually a minimal
partition. See Figure 1 for an example: here, our method is applied to solve a
piecewise constant Mumford-Shah model with 10 regions.

Figure 1: Minimal segmentation into 10 regions

Let us point out that this was a surprise for us and remains in part a mystery.
We also show a numerical counterexample (a situation where it does not work),
and try to explain as best as we can what we expect to be the general situation.
The goal of this paper is to describe our setting, and explain how we perform
the minimization. Then, we give some arguments to explain why it seems to
work in many cases, and why it shouldn’t in some other.

In some sense, our approach is related to similar relaxations in discrete opti-
mization (and in particular optimization of Markov Random Fields or MRFs),
such as LP-relaxation or roof duality relaxation. The point of view closest to
ours in the discrete literature seems to be roof duality [27], indeed, we also
look for a convex relaxation of our problem which is local in some sense, and
is obtained as the supremum of affine functions which satisfy local constraints.
Let us mention however that we also use a non-obvious representation of our
problem in which our relaxation is, in a precise sense, optimal. Then, we base
our analysis on the concept of “calibrations”, which may be seen as the con-
tinuous counterpart of roof duality, and was developed independently for the
study of minimal surfaces in the 70’s and 80’s (see Appendix B for more recent
applications in the calculus of variations).

Our extension to the continuous setting and the representation follow the
spirit of [37] where two of the authors of this paper were extending recent
approaches in MRFs optimization to the continuous setting. This is crucial,
in particular, if one wants to reproduce precisely specific surface energies (and
in particular isotropic interfacial energies). On the other hand, the price to
pay is that algorithms for minimizing discretization of quite arbitrary convex
functionals are less developed than discrete optimization of linear problems. In
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particular, our optimization scheme (chosen for its relative simplicity, which is
important, since we aim to work on high dimensional problems) is approximate,
and not even guaranteed to converge, while purely discrete relaxations can
usually be solved exactly by quite efficient algorithms [13, 40].

Another point of view similar to ours is found in a recent paper of C. Zach et
al. [44], which is also written in a continuous setting although, there again, the
interaction potentials are eventually chosen anisotropic. See also [30] for a
variant. In fact, with the anisotropy chosen in [44], both approaches boil down
to the same representation, while in general, we claim ours is better (meaning,
a higher relaxation, closer to the original problem), as shown in Appendix A,
both theoretically and experimentally (Fig. 12 and Proposition A.1). Moreover,
it is not clear at all how to extend the point of view of [44] to problems with
more general interaction energies, except, of course, in the way we propose.

Eventually, we must point out that what we propose is quite different
from approaches based on phase-field approximations or level-sets (see for in-
stance [17]) which do not aim at computing a global minimizer of the problem
(and, for the latter mentioned, cannot approximate very general interfacial en-
ergies, or even uniform ones).

1.2 A convex formulation for multi-label problems

In a recent paper [37], which is inspired by the seminal works of Ishikawa and
Geiger [29, 28], the second and third authors of the present paper propose (with
co-authors) an approach for minimizing the energy (defined for u ∈ L1(Ω))

E(u) =
∫

Ω
|Du| +

∫
Ω
W (x, u(x)) dx (1)

where here, the first term is the total variation of u, and W some potential (say,
measurable in x and continuous in u, but not necessarily convex).

Let us recall that a function u ∈ L1(Ω) has bounded variation (and hence-
forth is in BV (Ω)) if and only if its total variation, defined by

sup
{
−
∫

Ω
u div ξ : ξ ∈ C1

c (Ω; Rd) , |ξ(x)| ≤ 1 ∀x ∈ Ω
}
, (2)

is finite. It is equivalent to say that its distributional derivative Du is a bounded
Radon measure, and the finite value of (2) is then the total mass

∫
Ω |Du|, called

the total variation of u. It is shown, then, that the measure Du is decomposed
as follows:

Du = ∇u dx + Cu + (u+ − u−)νuHd−1 Ju . (3)

Here, ∇u dx is the absolutely continuous part of Du with respect the Lebesgue
measure dx, Cu is the “Cantor part,” which has the characteristic to be singular
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with respect to the Lebesgue measure, but vanish also on (d − 1)-dimensional
sets of finite measure, and the last term is the “jump part,” carried on the jump
set Ju of u. This set, which is shown to be a (d− 1)-dimensional, rectifiable set
(in the sense of Federer, see [2]), may be defined as the set of points x ∈ Ω such
that the blowup functions u(x+εy), defined for |y| ≤ 1 and ε > 0 small enough,
converge in L1, as ε→ 0, to a function which takes exactly two values u−(x) <
u+(x), the value u−(x) in {y : νu(x) · y < 0} and u+(x) in {y : νu(x) · y > 0}.
It turns out that νu defines Hd−1-a.e. in Ju a unit normal vector. See [26, 2, 22]
and section 2.1 for more details.

The kind of energy E in (1) appears in many practical problems: in [37],
the application was to image processing, and more precisely the computation
of the disparity in stereo pairs (see Fig. 10 and 11). The approach suggested
in [37] consists in discretizing the variable u on k + 1 levels (to simplify, the
levels 0, . . . , k) and trying to solve

min
u∈BV (Ω;{0,...,k})

E(u). (4)

using the following representation: we introduce k “labels” ui ∈ BV (Ω; {0, 1})
defined by:

ui =

1 if u ≥ i

0 else,

so that in particular 0 ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ 1 and u =
∑k

i=1 ui a.e. in Ω.
Then, the co-area for BV functions∫

Ω
|Du| =

∫ +∞

−∞
Per({u > s}; Ω) ds (5)

(where Per(E,Ω) =
∫

Ω |DχE | is the perimeter in Ω of the finite-perimeter set
E, see [26]) becomes, if u ∈ {0, . . . , k},∫

Ω
|Du| =

k∑
i=1

∫ i

i−1
Per({u ≥ i}; Ω) ds =

k∑
i=1

∫
Ω
|Dui| ,

so that problem (4) can be rewritten

min
0≤uk≤uk−1≤···≤u1≤1

k∑
i=1

∫
Ω
|Dui| +

∫
Ω

(1− u1(x))W (x, 0) dx

+
k−1∑
i=1

∫
Ω

(ui(x)− ui+1(x))W (x, i) dx +
∫

Ω
uk(x)W (x, k) dx . (6)

The idea in [37] is to relax (6) by considering now functions which can
take all values in [0, 1], that is, ui ∈ BV (Ω; [0, 1]). It is easy to check that
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this convexification will work: indeed, the energy in (6) can be written (up to
constant factors which play no role in the minimization)

k∑
i=1

(∫
Ω
|Dui| +

∫
Ω

(W (x, i)−W (x, i− 1))ui(x) dx
)

which, using (5) and the fact that
∫

Ω ug dx =
∫ 1

0 (
∫
{u>s} g dx) ds for any function

u with values in [0, 1] and any integrable g, becomes∫ 1

0

k∑
i=1

(∫
Ω
|Dχ{ui>s}| +

∫
Ω

(W (x, i)−W (x, i− 1))χ{ui>s}(x) dx
)
ds.

We deduce that if the functions ui ∈ BV (Ω; [0, 1]), i = 1, . . . , k, minimize (6)
with 0 ≤ uk ≤ · · · ≤ u1 ≤ 1, then for any s ∈ (0, 1], the functions usi = χ{ui>s},
which take values in {0, 1} only, still minimize (6), and us =

∑k
i=1 u

s
i is then a

global minimizer of (4). (One can show even that, “in general”, this minimizer
will be unique and not depend on s, but this needs not be always the case.)

Then, practically, the problem has been turned into a convex problem. Var-
ious approaches can be proposed to minimize (6), in [28], a fully discrete ap-
proach is represented on a graph and the optimization is based on max-flow
algorithms, while [37] propose a more faithful discretization of (6) (written in
a slightly different way) and an optimization scheme based on a primal-dual
gradient flow, the same which we will be using in this paper.

It is remarkable that this will work for very general potentials W , on the
other hand, it is less surprising if one considers that this is done at the expense
of quantizing the values and introducing as many functions as labels (in other
words, adding a dimension to the problem1), so that the computational cost
can become very high. As a matter of fact, the popularity of this kind of
methods has grown with the development of computers and microprocessors,
and the most recent programs are implemented on graphic cards processors
(GPUs) which can perform highly parallel (simple) tasks at a very high speed,
and whose cost is quite low.

1.3 Extension to nonconvex neighborhood potentials and the

partition problem

For the applications in view in [37] (as well as many other), energy (1) is not
optimal: indeed, one would like to penalize the amplitude of the jump between
two values whenever these are close, but, after some threshold, to penalize

1Think of the (not so simple) problem of minimizing a possibly “arbitrary” nonconvex

function f(x) over x ∈ R, and of how simple it becomes if replaced with minx∈{0,...,k} f(x) for

reasonable values of k...
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just the fact that the values are different. In other words, one would rather
replace in (4), for u ∈ {0, . . . , k}, the interaction potential (which, by (3), is∫

Ω |Du| =
∫
Ju
|u+ − u−| dHd−1), with something like∫

Ju

min(|u+(x)− u−(x)|, T ) dHd−1(x) (7)

for some threshold T > 0 (“truncated TV ”). This is the kind of issue we
address in this paper: we propose an approach to extend this framework to the
minimization of problems where also the interaction potential is not convex.

Another important typical example is the following variant of (4):

min
u∈BV (Ω;{0,...,k})

Hd−1(Ju) +
∫

Ω
W (x, u(x)) dx : (8)

that is, we just penalize s the total surface Hd−1(Ju) of the discontinuity. This
is very important, for instance, in the situations where there is no natural
ordering between the sets {u = i} that we want to recover, and can be seen as
the natural extension in the continuous setting of the Potts’ model in statistical
physics. Minimizing of (8), here, is equivalent to finding a minimal partition of
Ω into (k + 1) sets Ei = {u = i}, i = 0, . . . , k (with the external field W (x, i)
weighing each set Ei).

Linear (TV) Potts Truncated TV

Figure 2: Various popular interaction potentials

The idea to address (8), or the “truncated TV ,” is to convexify it in the same
way as before. We introduce, again, the k ordered functions ui ∈ {0, 1} such
that u =

∑k
i=1 ui. We denote by u the vector-valued function (in BV (Ω; Rk))

with components (ui)ki=1. (Observe in particular that Ju = Ju.) The defini-
tion (2), by duality, of the total variation states that∫

Ω
|Du| =

k∑
i=1

∫
Ω
|Dui| = sup

{
−

k∑
i=1

∫
Ω
ui div ξi :

(ξi)ki=1 ∈ C1
c (Ω; Rd)k , |ξi(x)| ≤ 1 ∀x ∈ Ω, i = 1, . . . , k

}
. (9)

Using (3), we have, if ui ∈ {0, 1} a.e.,

−
k∑
i=1

∫
Ω
ui div ξi =

k∑
i=1

∫
Jui

ξi(x) · νui(x) dHd−1(x) . (10)
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The difference between (8) and (4) is that now, when x ∈ Ju is a point where
u jumps from u−(x) = i to u+(x) = j (0 ≤ i < j ≤ k), so that the labels
ui+1, ui+2, . . . , uj jump simultaneously (while the labels ul, l ≤ i or l > j,
stay equal respectively to 1 and 0), we want to count only once the jump, and
not j − i times. This is the case if, in addition to the constraints |ξi(x)| ≤ 1
for all i and x, one considers the constraint |

∑
i<l≤j ξl| ≤ 1. Indeed, in this

case, since all vectors νul(x) are equal at this particular point x, we will have∑
i<l≤j ξl · νul(x) = (

∑
i<l≤j ξl) · νui+1 ≤ 1, and the supremum 1 will be reached

provided one can take
∑

i<l≤j ξl arbitrarily close to νui+1(x). Defining the
convex

K =
{

(ξ1, . . . , ξk) : ξi ∈ Rd for all i,∣∣∣∑i1≤i≤i2 ξi

∣∣∣ ≤ 1 ∀ (i1, i2) with 1 ≤ i1 ≤ i2 ≤ k
}

(11)

we will have that, provided ui ∈ {0, 1} for all i and a.e. x, and u =
∑k

i=1 ui,

J(u) := sup
{
−

k∑
i=1

∫
Ω
ui(x)div ξi(x) dx : (ξi)ki=1 ∈ C1

c (Ω;K)
}

= Hd−1(Ju) .

(12)
Then, our convexification of (8) consists simply in replacing Hd−1(Ju) by the
left-hand side expression of (12), and then, as before, taking the functions
ui ∈ BV (Ω; [0, 1]) instead of binary. We can then minimize the energy (after
an appropriate discretization), which is now convex (and defined on the convex
set of the constraints 0 ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ 1). Let us observe that:

• if the minimizer we compute is actually binary, then it is clearly a mini-
mizer of the original problem (8);

• we do not have, however, a simple representation of J(u) as a convex com-
bination, of the form

∫ 1
0 J(us)ds with binary us (such that u =

∫ 1
0 usds),

so that there is no guarantee that the minimizer of our relaxed problem
is binary-valued (that is u ∈ {0, 1}k, with moreover ui+1 ≤ ui for each
i < k). In fact, we can provide examples where it does not seem to be
true;

• we also have arguments to show that in many useful situations, the solu-
tion should be binary.

Actually, we were surprised to observe that in almost all our numerical experi-
ments, the minimizers we computed were functions ui taking mostly the values
0 and 1 (up to quite sharp transitions, which are expected as a byproduct of
the discretization).
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1.4 Outline

The paper is organized as follows: a preliminary section gives the definition and
some basic facts about functions with bounded variation and finite-perimeter
partitions. then, we recall how standard relaxation deals with the minimal in-
terface problem (finding a partition in just two sets), and describe our approach
for three labels. We propose a numerical approach to solve the problem and
show some experiments. Then we detail, in Section 4, the approach in a very
general setting. To simplify, we only deal with isotropic interfacial energies,
although most of what we do could be easily extended to non-isotropic ener-
gies, or nonuniform (spatially). On the other hand, we consider quite general
interaction potentials (between the labels).

In Appendix A, we compare our approach to the convexification proposed
in the recent paper [44] by C. Zach et al. We claim ours is, in general, strictly
higher, nevertheless, the latter is simpler and boils down to ours in some sit-
uations. Appendix B relates our approach with standard convexification tech-
niques for studying minimization problems in the calculus of variation. A few
technical appendices follow.
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2 Preliminaries

2.1 Functions with bounded variation

We recall here some results on functions with bounded variations, see [2, 26,
22, 46] for more details.

Let d, k ≥ 1, and Ω be an open subset of Rd. Given a function u =
(u1, . . . , uk) ∈ L1(Ω; Rk), we define its total variation as

sup
{
−
∫

Ω

k∑
i=1

ui div ξi : ξ ∈ C1
c (Ω; Rd)k , |ξ(x)|2 =

k∑
i=1

|ξi|2 ≤ 1 ∀x ∈ Ω
}
. (13)
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We say that u has bounded variation whenever the value of (13) is finite. In this
case, one shows (using Riesz’ representation theorem) that the distributional
derivative Du is a bounded (Rd×k-valued) Radon measure, whose total mass∫

Ω |Du| is precisely the value of (13).
We denote by BV (Ω; Rk) the space of (k-dimensional vector valued) func-

tions with bounded variation. Endowed with the norm ‖u‖BV = ‖u‖L1(Ω;Rk) +∫
Ω |Du|, it is a Banach space. We use the notation BV (Ω) whenever k = 1,

and BV (Ω;K) for functions u such that u(x) ∈ K a.e., where K is a closed,
convex subset of Rk.

The distributional derivative Du has the decomposition [23, 43]:

Du = ∇u dx + Cu + (u+ − u−)⊗ νuHd−1 Ju . (14)

Here, ∇u dx is the part of Du which is absolutely continuous with respect to
the Lebesgue measure. The approximate gradient ∇u(x) is a L1 vector field,
which corresponds to the weak gradient whenever u ∈ W 1,1. The jump set
Ju is the sets of points x ∈ Ω where there exist u−(x) 6= u+(x) ∈ Rk and
νu(x) ∈ Sd−1 such that

(y 7→ u(x+ εy))
L1(B(0,1);Rk)−→

(
y 7→ χ{y·νu(x)>0}u+(x) + χ{y·νu(x)>0}u−(x)

)
as ε → 0. Of course, here, we could replace the triplet (u+,u−, νu) with
(u−,u+,−νu): when k = 1, the convention is to choose u+ > u−, if k > 1, we
can for instance choose that the component with the lowest index i such that
(u+)i 6= (u−)i satisfies (u+)i > (u−)i. Then, the tensor product (u+−u−)⊗νu
is the k×d matrix ((u+−u−)i(νu)j)i=1,...,k,j=1,...,d. The set Ju is shown to be a
(d−1)-dimensional set which is rectifiable in the sense of Federer (that is, can be
covered by countably many C1 hypersurfaces, up to a set which is negligible for
the (d− 1)-dimensional Hausdorff measure, Hd−1). In particular, νu coincides
Hd−1-a.e. with a normal to Ju. Eventually, the cantor part Cu is the part of
the measure which, essentially, has dimension between d and d−1: it is singular
with respect to the Lebesgue measure, but also satisfies |Cu|(A) = 0 for any
set A with Hd−1(A) < +∞.

Given a convex, continuous function Ψ : Rd×k → [0,+∞), one can define
the integral

∫
Ω Ψ(Du) as follows: one introduces the recession function

Ψ(p) = lim
t→0

tΨ(p/t)

which is a convex, one-homogeneous function (possibly taking the value +∞).
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Then, [12, 38]∫
Ω

Ψ(Du) =
∫

Ω
Ψ(∇u(x)) dx

+
∫

Ω
Ψ
(
Cu
|Cu|

)
d|Cu| +

∫
Ju

Ψ((u+(x)− u−(x))⊗ νu(x)) dHd−1(x). (15)

Moreover, if Ψ∗ is the Legendre-Fenchel conjugate [21, 39] of Ψ, one also have
the dual representation∫

Ω
Ψ(Du) = sup

{∫
Ω

u(x) · div ξ(x) − Ψ∗(ξ(x)) dx : ξ ∈ C∞c (Ω; Rd×k)
}
(16)

(here div ξ is the vector (
∑d

j=1(∂(ξi)j/∂xj))ki=1).
We have the following approximation result, whose proof follows Meyers-

Serrin’s classical proof for Sobolev functions and is found for instance in [26]:

Theorem 2.1. For any u ∈ BV (Ω; Rk), there exists a sequence (un)n≥1 of
functions in C∞(Ω; Rk) such that un → u in L1(Ω; Rk) and

lim
n→∞

∫
Ω
|∇un(x)| dx = |Du|(Ω). (17)

Combining this result with a celebrated theorem of Reshetnyak [2, Theorem
2.39], we get in addition that, if Ψ is a convex, continuous and one-homogeneous
function over Rd×k,

lim
n→∞

∫
Ω

Ψ(∇un(x)) dx =
∫

Ω
Ψ(Du) . (18)

2.2 Caccioppoli sets

If E ⊂ Ω is a measurable set, then its perimeter in Ω is defined as the total
variation (2) of χE . A Caccioppoli set, or set with finite perimeter, is a set
such that χE ∈ BV (Ω): then we let Per(E,Ω) :=

∫
Ω |DχE |. In this case, the

jump set JχE is also called the “reduced boundary” of E, denoted by ∂∗E, and
is equal, up to a set of Hd−1 measure zero, to Ω \ (E1 ∪ E0), where E1, resp.,
E0, are the points where E has Lebesgue density 1, resp., 0.

A Caccioppoli partition of Ω is a (finite or countable) sequence of subsets
of Ω, (Ei)i≥1 such that |Ei ∩ Ej | = 0 if i 6= j, |Ω \

⋃
iEi| = 0 (equivalently,∑

i χEi = 1 a.e. in Ω), and
∑

i Per(Ei,Ω) < +∞. The total perimeter of the
partition is half the sum of the perimeters of the sets, since in the latter sum
each interface between two sets Ei and Ej is counted twice.

We recall eventually that if u ∈ BV (Ω) is a scalar-valued BV function, it
enjoys the co-area formula (5) which we have mentioned in the introduction.

In the next section, we introduce a class of variational problem whose un-
known is a Caccioppoli partition, with a maximal number of sets k + 1.
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3 Minimal partitions

3.1 Representation in the framework of [37]

Let us first, to simplify, focus on the problem of computing a minimal partition
of Ω, bounded open subset of Rd. We will generalize the problem afterwards.
We assume we want to find a partition of a set Ω into (k + 1) (at most) sets
E0, . . . , Ek, which solves the following problem:

min

{
1
2

k∑
i=0

Per(Ei,Ω) +
k∑
i=0

∫
Ei

gi(x) dx :
k∑
i=0

χEi(x) = 1 a.e. in Ω

}
(19)

where here Per(Ei,Ω) is the perimeter of Ei in Ω (defined below) and gi are
nonnegative weight functions.

The first term in energy (19) is the total length of the boundaries of the
partition. The weight 1/2 is there to take into account that each interface
between to sets Ei and Ej is contained twice in the sum, as the boundary of
each set. If we introduce the function u : Ω→ {0, . . . , k} defined by u(x) = i if
and only if x ∈ Ei, then u ∈ BV (Ω),

∑k
i=0 Per(Ei,Ω) = 2Hd−1(Ju), and (19)

can be rewritten as the following variant of (8):

min
u∈BV (Ω;{0,...,k})

Hd−1(Ju) +
k∑
i=0

∫
{u=i}

gi(x) dx

As in the introduction, or in [37], we then introduce the functions (ui)ki=1

defined by ui = χ{u≥i}, so that:

• ui ∈ {0, 1} a.e. in Ω, for each i = 1, . . . , k;

• 0 ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ 1;

• u =
∑k

i=1 ui, and: χEk = uk, χEi = ui − ui+1 for i = 1, . . . , k − 1,
χE0 = 1− u1.

The problem, then, can be written in terms of the vector u = (ui)ki=1 ∈
BV (Ω; {0, 1}k) as the minimization of:

Hd−1(Ju)

+
∫

Ω
(1− u0(x))g0(x) dx +

k−1∑
i=1

(ui(x)− ui+1(x))gi(x) dx +
∫

Ω
uk(x)gk(x) dx

= Hd−1(Ju) +
k∑
i=1

ui(x)(gi(x)− gi−1(x)) dx + a constant , (20)

over all u, with the constraint ui ≥ ui+1 for i = 1, . . . , k − 1.
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3.2 The case k = 1

3.2.1 Convex formulation of the problem

If k = 1, that is, we want to partition Ω into two regions, it is clear that we
just need one set E = E1, while E0 will simply be the complement of E. This
case is standard and quite straightforward. It is written

min
E

Per(E,Ω) +
∫

Ω
g1(x)χE(x) + g0(x)(1− χE(x)) dx. (21)

In this case, the representation above in terms of levels ui is just u = u1 = χE ,
and since Per(E,Ω) = Hd−1(Ju) =

∫
Ω |Du|, the problem boils down to

min
u∈BV (Ω)

∫
Ω
|Du| +

∫
Ω

(g1(x)− g0(x))u(x) dx +
∫

Ω
g0(x) dx (22)

with the constraint u ∈ {0, 1} a.e. in Ω. (the last term here is constant and can
be dropped). This problem admits an obvious convexification: we replace the
constraint u ∈ {0, 1} with u ∈ [0, 1].

Then, using the co-area formula for BV functions (5), we have that the
energy in (22) is also∫ 1

0

(
Per({u > s},Ω) +

∫
{u>s}

(g1(x)− g0(x)) dx

)
ds

from which we deduce that if u is a minimizer of (22), each set Es = {u > s},
s > 0, is a minimizer of (21).

This type of convexification is classical in optimization (and known as LP-
relaxation), as well as in the calculus of variations. It is a standard tool for the
study of minimal surfaces which was developed in the end of the 50’s [23, 26].
In numerical analysis, it was probably first used in [6] for minimal perimeter
problems.

3.2.2 Numerical Analysis

There are many ways to numerically tackle problem (22). We present a simple
approach which is quite efficient, in the framework of finite differences.

Approximation To simplify we consider only the 2D case (d = 2), and we
assume that Ω = (0, 1)2. Let N > 1 and h = 1/N > 0 be a discretization step.
If uh = (uhi,j)0≤i,j≤N−1 ∈ Xh ∼ RN×N is a discrete function, which is identified
with the function in L1(Ω)

uh(x) =
∑

0≤i,j<N
uhi,jχ(ih,jh)+[0,h)2(x) , (23)
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we define its discrete total variation by

Jh(uh) = h2
∑

0≤i,j<N

∣∣∣(∇huh)i,j
∣∣∣ (24)

where | · | is the standard Euclidean norm and ∇h : Xh → Xh ×Xh is defined
by

(∇huh)i,j =
1
h


(uhi+1,j − uhi,j , uhi,j+1 − uhi,j)T if 0 ≤ i, j < N − 1 ,

(uhi+1,j − uhi,j , 0)T if 0 ≤ i < N − 1, j = N − 1 ,

(0, uhi,j+1 − uhi,j)T if i = N − 1, 0 ≤ j < N − 1 ,

(0, 0)T if (i, j) = (N − 1, N − 1)

Then, assuming that Jh is extended to L1(Ω) by letting Jh(u) = +∞ when-
ever u is not of the form (23), we have the following elementary result. For the
definition and properties of Γ-convergence, see [15, 18], and Remark 3.2.

Proposition 3.1. Jh Γ-converges to the total variation
∫

Ω |Du| as h→ 0.

Proof. Let just quickly sketch a proof of this result. By definition of the Γ-
convergence we need to show that [15] for any u ∈ BV (Ω):

(i) If uh → u, then
∫

Ω |Du| ≤ lim infh→0 J
h(uh);

(ii) There exists uh → u with
∫

Ω |Du| ≥ lim suph→0 J
h(uh).

The proof of (ii) is standard and based on the fact that any u ∈ BV (Ω) can be
approximated with smooth functions un ∈ C∞(Ω) with

∫
Ω |∇un| dx→

∫
Ω |Du|,

see Theorem 2.1. Then, it is easy to show that if un ∈ C∞(Ω), by simply
defining un,hi,j = un(ih, jh) we have limh→0 J

h(un,h) =
∫

Ω |∇u
n| dx (with, in this

case, an error bound depending on D2un). Point (ii) follows from a standard
diagonal argument.

The proof of (i) is based on the dual formulation of the total variation.
We consider (uh)h, a sequence of discrete functions at scale h, h = 1/N → 0,
which converges to u in L1(Ω). To show (i), it is enough to show that for any
ξ ∈ C∞c (Ω; R2) with |ξ| ≤ 1 in Ω, we have

−
∫

Ω
u(x)div ξ(x) dx ≤ lim inf

h→0
Jh(uh). (25)

Then, taking the supremum over all such ξ’s will yield (i). We have

−
∫

Ω
u(x)div ξ(x) dx = lim

h→0
−
∫

Ω
uh(x)div ξ(x) dx

= lim
h→0

∑
i,j

∫ h

0
ξ1((i+ 1)h, jh+ s)(uhi+1,j − uhi,j) ds

+
∫ h

0
ξ2(ih+ s, (j + 1)h)(uhi,j+1 − uhi,j) ds . (26)

13



Now, if s ∈ (0, h), |((i+1)h, jh+s)− (ih+s, (j+1)h)| = |(h−s, s−h)| ≤
√

2h,
so that√

ξ1((i+ 1)h, jh+ s)2 + ξ2(ih+ s, (j + 1)h)2

≤ |ξ((i+ 1)h, jh+ s)| +
√

2‖∇ξ‖L∞(Ω)h ≤ 1 + Ch

and it follows that

ξ1((i+ 1)h, jh+ s)(uhi+1,j − uhi,j) + ξ2(ih+ s, (j + 1)h)(uhi,j+1 − uhi,j)

≤ (1 + Ch)h
∣∣∣(∇huh)i,j

∣∣∣
We deduce from (26) that (25) holds, hence (i).

Remark 3.2. By standard properties of the Γ-convergence [15], it follows that
if uh is a minimizer of

Jh(uh) +
∫

Ω
(g1(x)− g0(x))uh(x) dx , (27)

then as h → 0, uh converges to a solution of (22) (up to subsequences if this
solution is non unique). Hence, to solve our problem, we will minimize (27).

Numerical Scheme We propose here a primal-dual Arrow-Hurwicz [4, 21]
type algorithm for minimizing (27). The advantage of this algorithm is that
it extends easily to the problems we will address in the next sections. It has
been recently suggested in this framework (more precisely, total variation mini-
mization for image denoising and reconstruction), first by H. Talbot and B. Ap-
pleton [3] (who, in fact, suggested a primal-dual flow in a continuous setting,
which was then discretized using classical methods for hyperbolic schemes) and
more recently, in a setting closer to ours, by M. Zhu and T. Chan [45].

We fix a scale h = 1/N > 0, and first discretize the external field by letting

W h
i,j =

1
h2

∫
(ih,jh)+[0,h)2

(g1(x)− g0(x)) dx

(if not already given in a discrete form). Then, we introduce a primal variable
U = (Ui,j) ∈ Xh and a dual Ξ = (Ξi,j) ∈ Xh ×Xh. The problem we want to
optimize may be written as

min
0≤Ui,j≤1

max
Ξi,j∈B(0,1)

h2
∑
i,j

Ξi,j · (∇hU)i,j + h2
∑
i,j

Ui,jW
h
i,j . (28)

We implement a Arrow-Hurwicz type algorithm, which corresponds to follow
simultaneously a gradient descent in U and ascent in Ξ, until (hopefully) con-
vergence to the saddle-point.
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First we initialize with U0 = 0, Ξ0 = 0. Then, we fix two “time steps”
τ, τ ′ > 0 and we update Un, Ξn by letting

Un+1
i,j = Π[0,1]

(
Uni,j + τ

(
(div hΞn)i,j −W h

i,j

))
for all i, j

Ξn+1
i,j = ΠB(0,1)

(
Ξni,j + τ ′(∇hUn+1)i,j

)
for all i, j

(29)

where here, the discrete divergence div h = −(∇h)∗ is the opposite of the adjoint
of the discrete gradient. The projections Π[0,1] and ΠB(0,1) are respectively the
projections on the segment [0, 1] (hence the truncation x 7→ max{0,min{x, 1}}),
and on the unit ball in R2. Experimentally, the scheme is stable and seems to
converge if ττ ′ ≤ 1/2 (for h = 1), although we did not find any convincing proof
of this fact. Nevertheless, even if this approach might not be the best for this
problem, it turns out that for the extensions we present later on, it seems to be
one of the most convenient since it does not require too much space for storing
the variables (most variables need be stored just once).

An advantage of this approach is that the primal-dual gap, given by

max
Ξi,j∈B(0,1)

h2
∑
i,j

Ξi,j · (∇hUn)i,j + h2
∑
i,j

Uni,jW
h
i,j

− min
0≤Ui,j≤1

h2
∑
i,j

(−div hΞni,j)Ui,j + h2
∑
i,j

Ui,jW
h
i,j

= Jh(Un) + h2
∑
i,j

W h
i,jU

n
i,j + h2

∑
i,j

((div hΞn)i,j −W h
i,j)

+ ≥ 0 (30)

(where x+ := max{x, 0}), may be computed at each step and goes to zero at
convergence, hence it may be taken as a criterion for convergence.

3.3 The case k = 2: minimal partitions into three subsets

Assume now we want to find the minimizer of (19) with three phases, that is,
for k = 2. Hence, we are given three sets E0, E1, E2, forming a partition of
Ω, and we represent these as above with now two functions, u1 = 1 − χE0 ,
and u2 = 1 − χE1∪E0 = χE2 . The functions satisfy 0 ≤ u2 ≤ u1 ≤ 1, and we
recover the sets by letting χE0 = 1− u1, χE1 = u1 − u2, χE2 = u2. The vector
u = (u1, u2) is in BV (Ω; {0, 1}2) and the energy to be minimized is

E(u) = Hd−1(Ju) +
∫

Ω
(g1(x)− g0(x))u1(x) + (g2(x)− g1(x))u2(x) dx .

Define E(u) = +∞ whenever u 6∈ BV (Ω; {0, 1}2) with u2 ≤ u1. Now, in
view of the numerical minimization of E , we look for a reasonable convexifica-
tion. The best would be to use the convex lower semicontinous envelope of E
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in L1(Ω; R2), which is

E(u) = inf
{

lim infj
∑nj

l=1 θ
j,lE(uj,l) : nj ≥ 1, θj,l ∈ [0, 1] ,∑nj

l=1 θ
j,l = 1 , limj→∞

∥∥u−∑nj
l=1 θ

j,luj,l
∥∥
L1(Ω)

= 0
}
. (31)

Its domain (that is, the set where it is finite) are the functions u ∈ BV (Ω; R2)
such that 0 ≤ u2 ≤ u1 ≤ 1 a.e. in Ω. Then, one can show that for a binary
u ∈ {0, 1} a.e., E(u) = E(u). This is true because binary vectors u are extremal
points in the domain of E , and hence cannot be approximated by convex com-
binations of elements which do not all converge to u (and E is l.s.c.) See [16,
Prop. 1] for a proof in a different, but similar context.

Hence, any minimizer of E is a minimizer of E while, in some sense, min-
imizers of E are convex combinations of minimizers of E (and in case E has a
unique minimizer, which cannot be asserted in general but is likely to be often
true, it is also the unique minimizer of E).

Unfortunately, we do not know a general approach to compute (31). The
standard way to compute this envelope is through the Legendre-Fenchel conju-
gate, see [21]. For v ∈ L∞(Ω; R2), the Legendre-Fenchel transform of E is:

E∗(v) = sup
u∈BV (Ω;{0,1}2)

∫
Ω

v(x) · u(x) dx − E(u)

and, then, again, the transform of E∗ is

E∗∗(u) = sup
v∈L∞(Ω;R2)

∫
Ω

v(x) · u(x) dx − E∗(v)

and it happens to be equal to E(u).
What we propose is to try to guess a reasonable envelope, as close as possible

to E∗∗ = E but with an explicit expression. First of all, since the term involving
the external fields (g0, g1, g2) is linear in u, it is clearly enough to focus on the
convex envelope of the interaction term Hd−1(Ju). Let us therefore define

J0(u) =

Hd−1(Ju) if u ∈ BV (Ω; {0, 1}2) , u2 ≤ u1 a.e. ,

+∞ else.
(32)

We have, as before, that any minimizer of E is also a minimizer of the
problem

min
u=(u1,u2)

(J0)∗∗(u) +
∫

Ω
(g1(x)− g0(x))u1(x) + (g2(x)− g1(x))u2(x) dx .

We have the following elementary estimate:
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Lemma 3.3. For p = (p1, p2) ∈ Rd×2, let

Ψ1(p) := |p1|+ |p2| and Ψ∞(p) := max{|p1|, |p2|} .

Then for any u ∈ C0 := {u ∈ BV (Ω; [0, 1]2) : u2 ≤ u1 a.e.}, we have:∫
Ω

Ψ∞(Du) ≤ (J0)∗∗(u) ≤
∫

Ω
Ψ1(Du) (33)

whereas if u ∈ L1(Ω; R2) \ C0, (J0)∗∗(u) = +∞.

Proof. The fact that the domain of (J0)∗∗ is contained in C0 is obvious, as one
can show that C0 is the closed convex envelope of {u ∈ BV (Ω; {0, 1}2) : u2 ≤
u1 a.e.}. We therefore just need to show the estimate (33), for u ∈ C0.

We recall that if u ∈ BV (Ω; R2), then Du has the decomposition (14) and
for any Ψ : Rd → [0,+∞) which is convex, one-homogeneous,

∫
Ω Ψ(Du) is given

by (15), with Ψ = Ψ.
The first inequality in (33),

∫
Ω Ψ∞(Du) ≤ (J0)∗∗(u), simply comes from

the fact that
∫

Ω Ψ∞(Du) ≤ J0(u) for any u (and the left-hand side is already
convex, l.s.c.).

A sketch of proof of the second inequality is as follows: using the co-area
formula (5), we have for any u ∈ BV (Ω; [0, 1]2) with u2 ≤ u1 a.e.:∫

Ω
Ψ1(Du) =

∫ 1

0

(∫
Ω
|Dχ{u1>s}|+ |Dχ{u2>s}|

)
ds

≥
∫ 1

0
J0(χ{u1>s}, χ{u2>s}) ds ≥ (J0)∗∗(u) ,

where we have used u = (u1, u2) =
∫ 1

0 (χ{u1>s}, χ{u2>s}) ds. (A rigorous proof
would require an extra approximation procedure.)

Now, we do not believe that (J0)∗∗ has a simple representation. Instead, we
propose to try to find a (possibly lower) convex envelope which is local, in the
sense that it can be written J(u) =

∫
Ω Ψ(x,Du) for a function Ψ which is to be

determined. Assume Ψ : Ω×Rd×k → [0,+∞) is a nonnegative function which is
continuous, and convex in its second variable. Then, we have the generalization
of (15)∫

Ω
Ψ(x,Du) =

∫
Ω

Ψ(x,∇u(x)) dx

+
∫

Ω
Ψ
(
x, Cu
|Cu|

)
d|Cu| +

∫
Ju

Ψ(x, (u+(x)− u−(x))⊗ νu(x)) dHd−1(x), (34)

where Ψ(x,p) = limt→0 tΨ(x,p/t) is the recession function of Ψ(x, ·). In fact,
a convex local functional may have a more general form, as detailed in [11],
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however, we believe that considering such a form would make necessary much
more complex notation to get, in the end, essentially the same result.

Let us first restrict our research to convex functions Ψ : Rd×k → [0,+∞)
which do not depend on x: we are thus looking for the maximal functional below
J0 of the form (15). We denote J(u) =

∫
Ω Ψ(Du). We will have J(u) ≤ J0(u)

for any u, if and only if Ψ(0, 0) ≤ 0, while the three values Ψ(ν, 0), Ψ(ν, ν),
Ψ(0, ν) are less than, or equal to 1, for any ν ∈ Rd with norm one. Of course,
the “best choice” is to take these values equal to one.

On the other hand, if J is the largest functional of this form below J0, we
must have by (33) that Ψ ≥ Ψ∞ ≥ 0. It follows that Ψ ≤ Ψ, but then, if Ψ < Ψ
somewhere, substituting Ψ with Ψ in the definition of J results in a functional
which remains below J0 and is higher, in contradiction with the maximality of
J . Hence, we must have Ψ = Ψ, that is, Ψ must be one-homogeneous.

We see that the largest possible Ψ, therefore, is the convex envelope of

Ψ0 : p 7→

|p| if p = (p, p) or p = (p, 0) or p = (0, p) , p ∈ Rd

+∞ else.

Now, we can compute, for q ∈ Rd×2,

(Ψ0)∗(q) = sup
p

p · q − Ψ0(p)

= sup
p∈Rd

(max{p · (q1 + q2), p · q1, p · q2} − |p|)

=

0 if |q1| ≤ 1 , |q2| ≤ 1 , |q1 + q2| ≤ 1 ,

+∞ else.

This function is usually known as the “characteristic function” of the convex
set

K =
{
q = (q1, q2) ∈ Rd×2 : |q1| ≤ 1, |q2| ≤ 1, |q1 + q2| ≤ 1

}
.

We can now compute

Ψ(p) = (Ψ0)∗∗(p) = sup
q∈K

q · p ,

and we have:

Lemma 3.4. The function Ψ is given as the inf-convolution:

Ψ(p) = min
q∈Rd
|q| + |p1 − q| + |p2 − q|. (35)

Proof. It follows from the fact that given any two convex, l.s.c. functions, (g +
f)∗(x) = miny+z=x g

∗(y) + f∗(z). In this case, Ψ is the Legendre-Fenchel con-
jugate of sum of the three characteristic functions of the convex sets {(q1, q2) :
|q1| ≤ 1}, {(q1, q2) : |q2| ≤ 1}, and {(q1, q2) : |q1 + q2| ≤ 1}.
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We can now show the following:

Proposition 3.5. The largest local convex, l.s.c. functional below J0, of the
form (34), is given by, for u ∈ L1(Ω; R2),

J(u) =


∫

Ω Ψ(Du) if u ∈ BV (Ω; R2),

+∞ else

where Ψ is given by (35). In particular, we have that J = J0 on the domain of
J0 (that is, whenever it is finite).

Proof. The proposition has been proved for functionals of the form (15), with Ψ
not depending on x. We need to show that we cannot to better by considering an
integrand Ψ(x,p) (continuous in x) as in (34). Let us denote by J the functional∫

Ω Ψ(Du) found so far, with Ψ given by (35), and let J ′(u) =
∫

Ω Ψ′(x,Du) a
possibly larger convex, local functional below J0.

Observe that, as before, the best choice is to take Ψ′(x, ·) = Ψ′(x, ·) for all
x ∈ Ω (hence Ψ′ one-homogeneous). Indeed, we always have for any x and p:
Ψ′(x,p) ≤ tΨ′(x,p/t) + (1− t)Ψ′(x, 0) if t < 1, and sending t to zero we deduce
Ψ′(x,p) ≤ Ψ′(x,p) + Ψ′(x, 0). Now, it follows, for any u

J ′(u) ≤
∫

Ω
Ψ′(x,Du) +

∫
Ω

Ψ′(x, 0) ≤
∫

Ω
Ψ′(x,Du)

since
∫

Ω Ψ′(x, 0) = J ′(0) ≤ J0(0) = 0. Hence the functional
∫

Ω Ψ′(x,Du)
(which is obviously below J0, since it coincides with J ′ on the domain of J0),
is larger than J ′, hence must be equal. It follows that Ψ′ is one-homogeneous.

Then, since J(u) = J0(u) whenever J0(u) is finite, we also must have
J ′(u) = J0(u) in this case. Let x0 ∈ Ω and ρ > 0 such that B(x0, ρ) ⊂ Ω,
choose ν ∈ Sd−1 a direction and let

Γ+ = ∂B(x0, ρ) ∩ {x : (x− x0) · ν > 0},
Γ− = ∂B(x0, ρ) ∩ {x : (x− x0) · ν < 0},
∆ = B(x0, ρ) ∩ {x : (x− x0) · ν = 0}

For a,b ∈ {(0, 0), (1, 0), (1, 1)} with a 6= b, we let

λ±a,b =
∫

Γ±
Ψ′(x, (a− b)⊗ ν(x)) dHd−1(x) ,

λa,b =
∫

∆
Ψ′(x, (a− b)⊗ ν) dHd−1(x)

where ν(x) = (x−x0)/|x−x0| denotes the outer normal to B(x0, ρ), and Ψ′(x, ·)
is the recession function of Ψ′(x, ·).
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Then, considering all possible u piecewise constant with Ju ⊆ Γ+ ∪ Γ− ∪
∆, and using the identity J ′(u) = J0(u) for such u, we have the following
relationships:

λ+
a,b + λ−a,c + λb,c = Hd−1(Γ+) + Hd−1(Γ+) + Hd−1(∆)
λ+
a,b + λ−a,b = Hd−1(Γ+) + Hd−1(Γ−)
λ+
a,b + λb,a = Hd−1(Γ+) + Hd−1(∆)
λ−a,b + λa,b = Hd−1(Γ−) + Hd−1(∆)

for all possible {a,b, c} = {(0, 0), (1, 0), (1, 1)}. Combining the three last equa-
tions, we deduce:

λa,b + λb,a = 2Hd−1(∆)

and letting ρ→ 0 this implies

Ψ′(x0, (a− b)⊗ ν)) + Ψ′(x0, (b− a)⊗ ν)) = 2 = 2Ψ0((a− b)⊗ ν)

for any x0, any ν ∈ Sd−1, and any a,b ∈ {(0, 0), (1, 0), (1, 1)}. It follows
(using also the homogeneity) Ψ′(x,p) + Ψ′(x,−p) = 2Ψ0(p) for any x, and
p ∈ {(p, 0), (0, p), (p, p) : p ∈ Rd}. Since Ψ′(x, ·) is convex and Ψ = (Ψ0)∗∗, we
deduce

1
2
(
Ψ′(x,p) + Ψ′(x,−p)

)
≤ Ψ(p) (36)

for any p.
Let now u = (u1, u2) ∈ C0. By definition of J and J ′ we must have J(u) ≤

J ′(u) ≤ (J0)∗∗(u) < +∞. We define u′ = (u′1, u
′
2) = ((1 + u1)/2, u2/2) and

u′′ = (u′′1, u
′′
2) = (1−u1/2, (1−u2)/2). We also have J(u′′) ≤ J ′(u′′) < +∞ and

J(u′′) ≤ J ′(u′′) < +∞. But as Du′ = −Du′′ = Du/2, it follows, using (36),

J ′(u′) + J ′(u′′) =
1
2

(∫
Ω

Ψ′(x,Du) +
∫

Ω
Ψ′(x,−Du)

)
≤
∫

Ω
Ψ(Du) = J(u) = 2J(u′) = 2J(u′′)

and we deduce J ′(u′) = J(u′) = J ′(u′′) = J(u′′), in other words, J ′(u) =∫
Ω Ψ′(x,Du) =

∫
Ω Ψ′(x,−Du) for any u in the domain C0 of (J0)∗∗. Hence, for

any such u, using (36) again:

J ′(u) =
1
2

(∫
Ω

Ψ′(x,Du) +
∫

Ω
Ψ′(x,−Du)

)
≤
∫

Ω
Ψ(Du) = J(u)

which shows the maximality of J .

It follows from the definition of Ψ that J has the dual representation given
in equation (16):

J(u) = sup
{
−
∫

Ω
u1div ξ1 + u2div ξ2 dx : (ξ1, ξ2) ∈ C∞c (Ω;K)

}
.
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Now, our method for finding a minimizer of E is simply the following: we
solve the convex problem

min
u∈C0

J(u) +
∫

Ω
(g1(x)− g0(x))u1(x) + (g2(x)− g1(x))u2(x) dx . (37)

Then, it is not clear that the solution u will be a binary vector (ui ∈ {0, 1}
a.e. for i = 1, 2). However, if it is, then u will also be a minimizer of E , hence
E0 = {u1 = 0}, E1 = {u2 − u1 = 1}, E2 = {u2 = 1} will be a minimizer
of (19) (for k = 2). In addition, it will follow from the analysis in Section 4
(Proposition 4.3) that it is equivalent to solve

min
u
J(u) +

∫
Ω
g0(x)|1−u1(x)| + g1(x)|u1(x)−u2(x)| + g2(x)|u2(x)| dx (38)

without any constraint on u. We discuss the implementation of these problems
in the following section.

3.4 Numerical analysis

Let us explain quickly how we solve (37) or (38). Both have a structure very
similar to (22), so that we will use the same techniques.

As before, we consider the 2D case, in Ω = (0, 1)2. At scale h = 1/N > 0, we
introduce the discrete version of J , defined for uh = ((uh1)i,j , (uh2)i,j)0≤i,j≤N−1 ∈
Xh ×Xh:

Jh(uh) = h2
∑

0≤i,j<N
Ψ((∇huh1)i,j , (∇huh2)i,j) (39)

where Ψ is given by (35). Then, Jh is considered as a functional in L1(Ω; R2),
uh being identified with the vectorial function

uh(x) =
∑

0≤i,j<N
uhi,jχ(ih,jh)+[0,h)2(x) , (40)

as previously in (40). The proof of the following result is then identical to the
proof of the similar scalar result in Proposition 3.1, provided we use in addition
to the approximation Theorem 2.1, the convergence (18):

Proposition 3.6. Jh Γ-converges to J(u) =
∫

Ω Ψ(Du) as h→ 0.

This means that, again, we can approximate the minimization of (37) with
the discrete minimization of

min
0≤uh2≤uh1≤1

Jh(uh) +
∫

Ω
(g1(x)− g0(x))uh1(x) + (g2(x)− g1(x))uh2(x) dx . (41)
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This has the same form as (27). We can introduce, therefore, a primal
variable Our unknown is now U = (U1, U2) ∈ (Xh)2 and a dual variable
(Ξ1,Ξ2) ∈ (Xh ×Xh)2, and rewrite the problem as

min
0≤(U2)i,j≤(U1)i,j≤1

max
((Ξ1)i,j ,(Ξ2)i,j)∈K

h2
∑
i,j

(Ξ1)i,j · (∇hU1)i,j + (Ξ2)i,j · (∇hU2)i,j

+ h2
∑
i,j

(U1)i,j(W h
1 )i,j + (U2)i,j(W h

2 )i,j , (42)

where now,

(W h
l )i,j =

1
h2

∫
(ih,jh)+[0,h)2

(gl(x)− gl−1(x)) dx

for l = 1, 2, and each (i, j). Then, we proceed as in (29), with Wh = (W h
1 ,W

h
2 ):

our Arrow-Hurwicz type iteration is

Un+1
i,j = ΠC0

(
Un
i,j + τ

(
(div h(Ξ1,Ξ2)n)i,j −Wh

i,j

))
for all i, j

(Ξ1,Ξ2)n+1
i,j = ΠK

(
(Ξ1,Ξ2)ni,j + τ ′(∇hUn+1)i,j

)
for all i, j

(43)

where here as in the forthcoming section 4.3, C0 is the simplex {u ∈ R2 : 0 ≤
u2 ≤ u1 ≤ 1}. Projecting onto this simplex is very easy in 2D, see Appendix D,
while projecting onto K is a bit more complicated and is done using Dykstra’s
iterarive algorithm, see Appendix C. The bound on ττ ′ is the same as in (29).

As before, the primal-dual gap may be computed at each step and used as
a stopping criterion. Its expression is

Jh(Un) + h2
∑
i,j

Wh
i,j ·Un

i,j + h2
∑
i,j

max {0, (Pn1 )i,j , (Pn1 + Pn2 )i,j} ≥ 0 (44)

where for l = 1, 2, 0 ≤ i, j < N , and n ≥ 0,

(Pnl )i,j = (div hΞnl )i,j − (W h
l )i,j .

Here, Ψ(p1, p2) in Jh is computed using expression (35): one just needs to com-
pute the minimal distance between three points 0, p1, p2 in R2, see Appendix E.
This step becomes quite impractical in with more labels (k ≥ 3), as it becomes
quite difficult to evaluate (quickly) the primal energy Jh(U).

It is suggested in [37], in order to avoid the projection step onto C0, to
replace problem (37) with (38). This is not so relevant in the problem with
three phases, but will be quite important when the number of functions gets
larger, in the next Section 4. In this case, the iterations are slightly changed.
We let

(Ghl )i,j =
1
h2

∫
(ih,jh)+[0,h)2

gl(x) dx
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for l = 0, 1, 2, and each (i, j). Then, we introduce an additional dual variable
(Vl)l=0,1,2, and write the problem as

min
U=(U1,U2)

max
((Ξ1)i,j ,(Ξ2)i,j∈K
|(Vl)i,j |≤(Ghl )i,j

h2
∑
i,j

(Ξ1)i,j · (∇hU1)i,j + (Ξ2)i,j · (∇hU2)i,j

+ h2
∑
i,j

(V0)i,j(1− (U1)i,j) + (V1)i,j(U1 − U2)i,j + (V2)i,j(U2)i,j (45)

and the iterations (43) are replaced with the following (where each step is, of
course, computed on all the grid 1 ≤ i, j < N):

(Un+1
l )i,j = (Unl )i,j + τ

(
(div hΞnl )i,j − (Vl − Vl−1)i,j

)
for l = 1, 2

(Ξ1,Ξ2)n+1
i,j = ΠK

(
(Ξ1,Ξ2)ni,j + τ ′(∇hUn+1)i,j

)
(V n+1
l )i,j = Π[−(Ghl )i,j ,(Ghl )i,j ]

(
(V n
l )i,j + τ ′(Un+1

l − Un+1
l+1 )i,j

)
(46)

where here, by convention, Un0 ≡ 1 and Unk+1 ≡ 0 for all n ≥ 0.
Then, we have convergence to the saddle point in (45), provided ττ ′ ≤ 1/3

(for h = 1).

3.5 Examples

To test this approach, we have implemented a very simple program where the
input is a color image and the weight on each set E0, E1, E2 is equal to minus
the level of red, green and blue respectively. The result is a kind of projection
to the closest of these three colors (of course, this gives terrible output for most
images). The example on Figure 3, right, is an output for an input image
with areas dominantly red, green or blue. The example corresponds to a value
of h = 1 (the discretization step in (41)), and the weight is (−2)× the level of
each channel, normalized between 0 and 1. The image has almost 120000 points
(412 × 291). The gap (44) at convergence is ≤ 1 (for an energy of −122355).

Figure 3: An example. Left: input image - Right: output
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The total length energy (Jh(u)) of the output is 5897. (Hence, “most” of the
energy is the external field term.) The output is “almost” binary (i.e., the fields
u1, u2 are most of the time 0 and 1). In fact, we can compute a “width” of the
interface, defined for instance as the ratio of the number of points where u1 and
u2 are between 0.1 and 0.9, over the total “length” Jh(u). In this example, we
found .75 pixel units, which is quite narrow. This is not expected to be zero,
because the discretization (39) of J requires a fuzzy interface to approximate
precisely the length (just as (24), this is clear if one thinks of how the Γ-limit
superior is established, point (ii) in the proof of Proposition 3.1).

Why it works so well. It is remarkable that in all the examples we tried,
the three interfaces (R-B, R-G, G-B) seem really to be treated equally. To
test this, we have tried an example where the output is driven to these three
values by a very strong external field (pure red, green or blue) except in a
grey area where no particular color (i.e., set Ei, i = 0, 1, 2) is favored. The
result is impressive: what is expected, that is, a sharp discontinuity set with a
triple point where all three interfaces meet with and angle of 120◦, is actually
computed by the program: see Figure 4. In this case, the weights gi are 1/20

Figure 4: Reconstruction of a triple point (left: input, right: output)

in the red, green, blue area and equal in the grey area. This makes the length
term quite important in the total energy, and actually the total length Jh(u)
which is computed is about 603 which is not much more of the “true” (isotropic)
length of the total interface, estimated between 599 and 600 pixels. The size of
the image is 376× 357.

In fact, in trying to understand why this seemed to work so well, we could
find both a reason which explains Figure 4 and a “counterexample,” that is, a
situation where we do not expect a binary solution (u1, u2 ∈ {0, 1} a.e.), but
rather a mixed one.

First of all, we can prove the following very easy proposition:
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Proposition 3.7. Let Ω ⊂ R2 be a Lipschitz, connected set. Let Ē1 = {x =
(x1, x2) ∈ Ω : x2 > 0 , x1 > −

√
3x2}, Ē2 = {x = (x1, x2) ∈ Ω : x2 < 0 , x1 <√

3x2}, Ē0 = Ω \ (Ē1 ∪ Ē2). Then

ū = (ū1, ū2) : x 7→


(0, 0) if x ∈ Ē0 ,

(1, 0) if x ∈ Ē1 ,

(1, 1) if x ∈ Ē2 ,

(47)

is a minimizer of J(u) with prescribed boundary conditions u = ū on ∂Ω.

This is of particular importance, if one considers that in 2D, this is the only
possible type of singularity in the boundary of the partition [5, 8], beyond a
regular interface between two different labels.

Proof. The proof is straightforward and relies on a “calibration” argument. Let
ξ1, ξ2 be the constant vector fields given by ξ1 ≡ (

√
3/2, 1/2) and ξ2 ≡ (0,−1)

in Ω (see Figure 5). Let u : Ω→ R2 be a BV vector-valued function with u = ū

(0, 0)

(1, 1)

ξ2

(1, 0)
ξ1

ξ1 + ξ2

Figure 5: The “calibration” for the triple point

on ∂Ω. Then, since |ξ1 + ξ2| = |(
√

3/2,−1/2)| = 1, (ξ1, ξ2) ∈ K everywhere in
Ω and we have

J(u) =
∫

Ω
Ψ(Du) ≥

∫
Ω
ξ1 ·Du1 + ξ2 ·Du2

≥
∫

Ω
ξ1 ·Dū1 + ξ2 ·Dū2 +

∫
Ω
ξ1 ·D(u1 − ū1) + ξ2 ·D(u2 − ū2)

Now, by construction,
∫

Ω ξ1 ·Dū1 + ξ2 ·Dū2 = J(ū) (indeed, ξ1 has norm one
and is orthogonal to the interface ∂Ē0∩∂Ē1, ξ2 has norm one and is orthogonal
to the interface ∂Ē1 ∩ ∂Ē2, and ξ1 + ξ2 has norm one and is orthogonal to the
interface ∂Ē0 ∩ ∂Ē2). On the other hand, since u = ū on ∂Ω,∫

Ω
ξ1 ·D(u1− ū1)+ξ2 ·D(u2− ū2) = −

∫
Ω

(u1− ū1)div ξ1 +(u2− ū2)div ξ2 dx = 0
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since both fields ξ1, ξ2 have vanishing divergence. We deduce J(u) ≥ J(ū).

Remark 3.8. Although we still have not performed simulations in three di-
mensions, it seems that the structure of minimal surfaces in 3D and their sin-
gularities, as described by J. Taylor [42], is such that for all three types of
singular minimal cones which she describes, there should exist a calibration
made of constant vector fields as in the 2D situation. We mention that two of
these minimal cones only can appear in the three phases problem (a plane and
three planes meeting on one line, that is the 2D triple point extended by trans-
lation in the orthogonal direction), while the third one (built upon a regular
tetraedron) involves at least four phases, however, it still has the property that
the normal to any interface is just the sum of vectors which are normal to two
or three other interfaces.

And why, sometimes, it does not. Now, let us consider the same geometry,
but instead of a boundary datum, a weight g0, g1, g2 such that on each Ēi,
gi = 1 while gj = 0 for j 6= i, except on a disk centered at the triple point
where we choose g0 = g1 = g2. Equivalently, we run our program with as
input, Ē0 colored pure cyan ((R,G,B) = (0, 1, 1)), Ē1 pure yellow (1, 1, 0), Ē2

pure magenta (1, 0, 1), except a grey area in the middle (see Figure 6, left).
Then, we find that the grey circle is completed with a perfect triple point, but
this time with mixed colors, that is, cyan ((R,G,B) = (0, .5, .5)) in Ē0, yellow
(.5, .5, 0) in Ē1, magenta (.5, 0, .5) in Ē2, or more precisely, u = (1, 1/2) in
Ē0, (1/2, 1/2) in Ē1, (1/2, 0) in Ē2. In other words, the optimal solution is a
mixture of half Ej and half Ek in Ēi, for {i, j, k} = {0, 1, 2}. The issue is that,
now, the opposite of the “calibration” (ξ1, ξ2) in Figure 5 can show that this is
actually a local minimizer inside the grey circle, as before (with the same proof
as Proposition 3.7, replacing ū with the solution above and ξi with −ξi). In
particular, the length energy Jh(u) which is computed now is 306, about half
the true length, thus strictly below the length of any binary solution with the
same pattern of discontinuity (and, actually, any reasonable binary solution for
this input data). We must add that convergence of our scheme is very slow
(and poor) for this particular example.

In fact, it really seems that the example in Figure 6 corresponds to a sit-
uation where J(u) < (J0)∗∗(u), were we recall that (J0)∗∗ is the convex, l.s.c.
envelope of J0 defined in (32). Consider indeed in Ω = B(0, 1) and the functions
u1,u2 : Ω → [0, 1]2 given by u1 = (0, 0) in Ω ∩ Ē1, u1 = (1, 0) in Ω \ Ē1, and
u2 = (0, 0) in Ω∩ Ē2, u2 = (1, 1) in Ω \ Ē2. Then, J(ul) = J0(ul) = 2, l = 1, 2.
Letting u = (u1 + u2)/2, we find the function u computed above and we have
J(u) =

∫
Ju

Ψ((u+−u−)⊗νu) dH1 = 3/2 since the total length of the jump is 3,
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Figure 6: A nonbinary solution (left: input, right: output)

while the amplitude is 1/2. We believe that, on the other hand, (J0)∗∗(u) = 2.
Actually, a way to define the convex l.s.c. envelope (J0)∗∗ of J0 is through for-
mula (31) (with E replaced with J0), and we conjecture that in this formula,
u = (u1 + u2)/2 is the optimal decomposition of u as a convex combination of
functions in the domain of J0, so that (J0)∗∗(u) = (J(u1) + J(u2))/2 = 2 >
J(u).

More generally, a standard strategy to prove that J = (J0)∗∗ in C0 = {u ∈
BV (Ω; R2) : 0 ≤ u2 ≤ u1 ≤ 1 a.e.} could be, using definition (31) of the convex
envelope, as follows: first, using the approximation Theorem 2.1 and (18), and
standard finite elements theory, we can show that it is enough to establish the
equality for piecewise affine u. Then, one first shows that for affine u (of the
form x 7→ a+pTx, and with 0 ≤ u2 ≤ u1 ≤ 1 a.e.), there actually exist ul, θl ≥ 0
with

∑
l θ
l = 1,

∑
l θ
lul arbitrarily close to u in L1, and

∑
l θ
lJ0(ul) arbitrarily

close to J(u) = |Ω|Ψ(p). The construction is based on the expression (35) of
Ψ(p) which yields the existence of q ∈ Rd, with Ψ(p) = |q|+ |p1− q|+ |p2− q|.
Then, the functions (q · x, q · x), (p1 · x, p2 · x) are approximated by piecewise
constant functions.

The next step would be to “glue” together the approximations of affine
pieces of u to approximate a piecewise affine u. It seems that this can not be
done, in general, in dimension d > 1.

Hence, a natural question is: why does the numerical method seem to work,
most of the time? We have no real answer. First of all, when the data term
dominates, then clearly binary solutions are favored. Indeed, u is constrained
to stay in the simplex {0 ≤ u2 ≤ u1 ≤ 1}, whose vertices are (0, 0), (1, 0) and
(1, 1) and except in degenerate cases (as in Figure 6), optimal values of the
term ∫

Ω
(g1(x)− g0(x))uh1(x) + (g2(x)− g1(x))uh2(x) dx .
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in (41) are reached at the vertices.
On the other hand, when the data term gets smaller (in all our computa-

tions, a parameter λ > 0 is introduces and the input (gi)2
i=0 is first divided by

λ), then the perimeter term Jh becomes more important and situations such
as illustrated in Figure 6 should appear more often. It seems, though, that it
is not the case. The reason could be that J , minimized with binary boundary
conditions as in Proposition 3.7, produces solutions which take inside the do-
main only (binary) boundary values? We do not know whether this is true, but
it is far from excluded and is the subject of future study.

In the next section, we discuss our approach with more labels and more
general interaction energies. Further experiments are then shown in Section 4.5.

4 Extension to more general partition problems

4.1 A convex, local envelope of the general partition problem

Now, we explain how our setting is generalized to higher dimension and an
arbitrary number of labels, and possibly to more complex interaction energies
(including, for instance, the “truncated TV ” (7). Let d ≥ 1 be the space
dimension, and k + 1 ≥ 2 the number of labels. Let Ω be a bounded open
subset of Rd. We need k functions u1, . . . , uk to represent the k + 1 labels (as
before, χEi ∼ ui − ui+1, 1 ≤ i < k, χE0 ∼ 1− u1, χEk ∼ uk).

For u ∈ BV (Ω; {0, . . . , k}), the interfacial energy we consider is of the fol-
lowing type:

J (u) =
∫
Ju

σ(u+(x)− u−(x)) dHd−1(x)

where σ : (0,+∞) → (0,+∞) is a nondecreasing, positive concave function
(hence subbaditive: σ(a) + σ(b) ≤ σ(a+ b) for any a, b > 0). We are interested
in solving

min
u∈BV (Ω;{0,...,k})

J (u) +
∫

Ω
W (x, u(x)) dx (48)

for some potential W such that W (x, i) ∈ L∞(Ω; R+) for each i = 0, . . . , k.
If σ ≡ 1 and W (x, i) = gi(x), this boils down to (19). The interaction (7)
corresponds to σ(t) = t if t < T , and T else.

Introducing the same representation as before, that is a vector valued map
u ∈ BV (Ω; {0, 1}k), with ui+1 ≤ ui for 1 ≤ i < k, and u(x) =

∑k
i=1 ui(x) (in

other words, ui = χ{u≥i}), we recast our variational problem as

min J0(u) +
k∑
i=1

∫
Ω

(W (x, i)−W (x, i− 1))ui(x) dx (49)
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where now,

J0(u) = J (u) =
∑

1≤i1≤i2≤k
σ(i2−(i1−1))Hd−1

 ⋂
i1≤i≤i2

Jui \ (Jui1−1 ∪ Jui2 )

 ,

that is: we pay σ(i2 − (i1 − 1)) when all functions ui between i1 and i2 jump
simultaneously from 0 to 1, while the other do not jump. (Remember that the
constraints 0 ≤ uk ≤ uk−1 ≤ · · · ≤ 1, and ui ∈ {0, 1} a.e., yield that at each
jump point a maximal group of functions (ui)i1≤i≤i2 jump simultaneously.)

The interaction potential may be rewritten

J0(u) =
∫

Ω
Ψ0(Du)

where Ψ0(0) = 0, and Ψ(p) = σ(i2 − (i1 − 1))|p| when there exists p ∈ Rd

such that p = (p1, . . . , pk) is given by pi = p when i1 ≤ i ≤ i2, and pi = 0 if
i < i1 or i > i2. We let Ψ0(p) = +∞ for vectors not of these forms. As in
the previous section, we introduce the convexification (J0)∗∗, and, the maximal
local functional of the form

∫
Ω Ψ(Du) below J0. Then, the following results,

which generalize Lemma 3.3 and Proposition 3.5 in the previous section, are
true again, with the same proofs:

Lemma 4.1. For p ∈ Rd×k, let

Ψ1(p) :=
k∑
i=1

|pi| and Ψ∞(p) := max
i=1,...,k

|pi| .

Then for any u ∈ C0 := {u ∈ BV (Ω; [0, 1]k) : uk ≤ uk−1 ≤ · · · ≤ u1 a.e.} we
have:

σ(1)
∫

Ω
Ψ∞(Du) ≤ (J0)∗∗(u) ≤ σ(k)

∫
Ω

Ψ1(Du) , (50)

while if u ∈ L1(Ω; Rk) \ C0, (J0)∗∗(u) = +∞.

Proposition 4.2. Let Ψ = (Ψ0)∗∗: then, the largest convex, l.s.c. and local
functional, of the form (34), below J0 is given, for u ∈ L1(Ω; Rk), by

J(u) =


∫

Ω Ψ(Du) if u ∈ BV (Ω; Rk)

+∞ else.

We now compute Ψ. As before,

(Ψ0)∗(q) = sup
p

p · q − Ψ0(p)

= sup
p∈Rd

max
1≤i1≤i2≤k

((
p ·

∑
i1≤i≤i2

qi
)
− σ(i2 − (i1 − 1))|p|

)

=

0 if
∣∣∣∑i1≤i≤i2 qi

∣∣∣ ≤ σ(i2 − (i1 − 1)) ∀1 ≤ i1 ≤ i2 ≤ k ,

+∞ else.
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Hence, it is the characteristic function of the convex set K ⊂ Rd×k, defined as

K =
{
q = (q1, . . . , qk) ∈ Rd×k : for all i,∣∣∣∑i1≤i≤i2 qi

∣∣∣ ≤ σ(i2 − (i1 − 1)) ∀ (i1, i2) with 1 ≤ i1 ≤ i2 ≤ k
}

(51)

Thus,
Ψ(p) = sup

q∈K
q · p

and the functional J(u) =
∫

Ω Ψ(Du) is given, for any u ∈ L1(Ω; Rk), by

J(u) = sup
{
−
∫

Ω

k∑
i=1

uidiv ξi dx : (ξ1, . . . ξk) ∈ C∞c (Ω;K)
}
.

It is clear that this defines a convex, one-homogeneous and lower-semicontinuous
functional on L1(Ω; Rk). It clearly also satisfies (50), just as (J0)∗∗.

Again, to solve (49), we will solve numerically

min
{
J(u) +

k∑
i=1

∫
Ω

(W (x, i)−W (x, i−1))ui(x) dx,u = (u1, . . . , uk) ∈ C0

}
(52)

and: if the solution is “binary”, that is if ui ∈ {0, 1} a.e. for all i, then it will
be a solution of the original problem.

It is proposed in [37], where a similar problem is solved with σ(t) = t, to
replace (52) by the following, unconstrained problem:

min
u∈BV (Ω;Rk)

J(u) +
∫

Ω
W (x, 0)|1− u1(x)| dx

+
k−1∑
i=1

∫
Ω
W (x, i)|ui(x)− ui+1(x)| dx +

∫
Ω
W (x, k)|uk(x)| dx (53)

Indeed, we can show the following proposition:

Proposition 4.3. Assume W (x, i) > 0 a.e, and for each i. Then, any solution
of (53) satisfies 0 ≤ uk ≤ uk−1 ≤ · · · ≤ u1 ≤ 1 a.e. in Ω, and hence is a
solution of (52)

Remark 4.4. There is no loss of generality in assuming that the W (x, i)
are positive, as soon as they are bounded from below (even, in fact, by a
given L1 function which does not depend on the label i): indeed, given any
V ∈ L1(Ω), any solution of (52) is clearly a solution of the same problem with
the potentials W (x, i) replaced with W ′(x, i) = W (x, i) − V (x) + 1 which is
positive if W (·, i) ≥ V a.e., for each i.

The proof of Proposition 4.3 relies on some truncation properties of the
functional J and will be a consequence of the Lemmas 4.5 and 4.6 which are
proved in the following sections 4.2 and 4.3: we postpone it to section 4.4.
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4.2 Ordering of the vector u

Let us denote by C ⊂ Rk the convex C = {z ∈ Rk : z1 ≥ z2 ≥ · · · ≥ zk}.
For u ∈ Rk, we denote by ΠC(u) the orthogonal projection of u onto C. The
projection u′ = ΠC(u) is a vector of the following form: there exist 1 = k1 ≤
k2 ≤ · · · ≤ kl+1 = k + 1 such that for each n = 1, . . . , l and each i with
kn ≤ i < kn+1,

u′i =
1

kn+1 − kn

kn+1−1∑
j=kn

uj (54)

Indeed, the sets {kn, . . . , kn+1 − 1}, when containing more than one index, are
just the maximal clusters of indices whose associated coefficients become equal
in the projection, and u′ is then simply the projection of u onto {z ∈ Rk : zi =
zj if ∃n , kn ≤ i ≤ j < kn+1}.

In addition, we claim that the projection u′ must satisfy, for each n =
1, . . . , l,

ukn ≤ u′kn = u′kn+1−1 ≤ ukn+1−1 (55)

Indeed, if for instance ukn > u′kn for some n, we define a vector u′′ ∈ C by
u′′i = u′i if i 6= kn, and u′′kn = min{u′kn−1

, ukn} > u′kn : then, since clearly
(ukn−u′′kn)2 < (ukn−u′kn)2, the vector u′′ is closer to u than u′, a contradiction.

Observe in particular that (55) yields that if u′i−1 > u′i (that is, the index
i is one of the kn, 2 ≤ n ≤ l), we must have ui−1 > ui, hence, conversely, if
ui−1 ≤ ui then u′i−1 = u′i. An recursive algorithm for computing the projection
ΠC(u) can be deduced from this remark, see Appendix D.

Now, let us show that the projection onto C decreases the energy J :

Lemma 4.5. For any u ∈ BV (Ω; Rk), J(ΠC(u)) ≤ J(u).

Here, ΠC(u) denotes (clearly) the function x 7→ ΠC(u(x)).

Proof. First, using Theorem 2.1 and the convergence (18), together with the
lower-semicontinuity of J , it is enough to show the lemma for a smooth u ∈
C∞(Ω; Rk). In particular, ΠC(u) is continuous: we even have (since ΠC is 1-
Lipschitz) |∇ΠC(u)(x)| ≤ |∇u(x)| for a.e. x ∈ Ω. (In particular, the projection
decreases the Euclidean total variation.)

As seen above, we can cover Ω by finitely many closed sets A associated
each to a particular partition of {1, . . . , k} into l clusters {kn, . . . , kn+1}, with
the same notation as above. Letting û be defined by

ûi =
1

kn+1 − kn

kn+1−1∑
j=kn

uj
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whenever kn ≤ i < kn+1, the set A is simply {x ∈ Ω : ΠC(u) = û}. This
implies ∇ΠC(u) = ∇û a.e. in A, hence∫

A
Ψ(∇û(x)) dx =

∫
A

Ψ(∇ΠC(u)(x)) dx . (56)

Hence to prove the lemma, it is enough to show that

Ψ(∇û(x)) ≤ Ψ(∇u(x)) (57)

a.e. in A. But in Ω we have:

∇ûi =
1

kn+1 − kn

kn+1−1∑
j=kn

∇uj

for kn ≤ i < kn+1. Now, if (ξi)ki=1 ∈ K, we have for any x ∈ Ω

k∑
i=1

ξi · ∇ûi(x) =
l∑

n=1

kn+1−1∑
i=kn

(∑kn+1−1
j=kn

ξj

)
kn+1 − kn

· ∇ui(x) =
k∑
i=1

ξ̂i · ∇ui(x) (58)

where for each i with kn ≤ i < kn+1, we have let

ξ̂i =
1

kn+1 − kn

kn+1−1∑
j=kn

ξj

 .

If we show that (ξ̂i)ki=1 ∈ K, it will follow from (58) that
∑

i ξi∇ûi(x) ≤
Ψ(∇u(x)), from which (57) will follow.

We let ξ0
i = ξi for each i, and for n = 1, . . . , l we let ξni = ξ̂i if i < kn+1,

and ξni = ξn−1
i = ξi if i ≥ kn+1. In other words, ξn is obtained from ξn−1

by averaging all components between kn and kn+1 − 1, and leaving the other
unchanged. Let us show by induction that (ξni )ki=1 ∈ K, for each n ≤ l: since
(ξ̂i)ki=1 = (ξli)

k
i=1, the thesis will follow.

This is true for n = 0, by assumption. Assume n ≥ 1 and (ξn−1
i )ki=1 ∈ K.

The only non-obvious conditions to check to prove that (ξni )ki=1 ∈ K are of the
kind ∣∣∣∑i1≤i≤i2 ξ

n
i

∣∣∣ ≤ σ(i2 − (i1 − 1)) ,

with either i1 < kn ≤ i2 < kn+1 or kn ≤ i1 < kn+1 ≤ i2. In the first case, for
instance, simple algebra shows that this sum is the convex combination(

1− 1 + i2 − kn
kn+1 − kn

) ∑
i1≤i<kn

ξn−1
i +

1 + i2 − kn
kn+1 − kn

∑
i1≤i<kn+1

ξn−1
i ,
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hence its norm is less than, using the concavity of σ:(
1− 1 + i2 − kn

kn+1 − kn

)
σ(kn − i1) +

1 + i2 − kn
kn+1 − kn

σ(kn+1 − i1)

≤ σ
((

1− 1+i2−kn
kn+1−kn

)
(kn − i1) + 1+i2−kn

kn+1−kn (kn+1 − i1)
)
.

Writing kn+1 − i1 = (kn+1 − kn) + (kn − i1) in the last term, we find that the
argument of σ is in fact equal to (kn − i1) + (1 + i2 − kn) = i2 − (i1 − 1), and
the thesis follows. The second case is treated in the same way.

This achieves the proof of the lemma.

4.3 Truncation of the coordinates

Now, we define C0 = C ∩ [0, 1]k. Observe that ΠC0 = Π[0,1]k ◦ ΠC : indeed, for
any u ∈ Rk and z ∈ C0,

(u−Π[0,1]kΠCu) · (z−Π[0,1]kΠCu)

= (u−ΠCu) · (z−Π[0,1]kΠCu) + (ΠCu−Π[0,1]kΠCu) · (z−Π[0,1]kΠCu)

≤ (u−ΠCu) · (z−ΠCu) + (u−ΠCu) · (ΠCu−Π[0,1]kΠCu)

≤ (u−ΠCu) · (ΠCu−Π[0,1]kΠCu) = 0

since the vector ΠCu − Π[0,1]kΠCu has constant coefficients on each cluster of
constants coefficients of ΠCu. Then, we have in addition:

Lemma 4.6. For any u ∈ BV (Ω; Rk), J(ΠC0(u)) ≤ J(u).

Here again, ΠC0(u) ∈ C0 is x 7→ ΠC0(u(x)).

Proof. Since J(ΠC(u)) ≤ J(u), we just need to show that J(Π[0,1]k(u)) ≤ J(u)
whenever u ∈ C a.e, moreover, as before, we may assume that u is smooth.
Then, the same arguments as in the proof of the previous lemma show that the
inequality is true provided we can show that for any i1, i2 with 1 ≤ i1 ≤ i1 ≤ k,
and any p ∈ Rd×k, if p̂ is defined by p̂i = pi when i1 ≤ i ≤ i2 and p̂i = 0 else,
Ψ(p̂) ≤ Ψ(p). But this is an obvious consequence of the fact that if (ξi)ki=1 ∈ K,
also (ξ̂i)ki=1, defined by ξ̂i = ξi whenever i1 ≤ i ≤ i2 and ξ̂i = 0 else, belongs to
K.

4.4 Proof of proposition 4.3

Proof. Let u solve (53). Let u′ = ΠC0u. By Lemma 4.6, we have J(u′) ≤ J(u).
Let us now consider the other terms in (53), that is,∫

Ω

(
W (x, 0)|1− u1(x)|+

k−1∑
i=1

W (x, i)|ui(x)− ui+1(x)|+W (x, k)|uk(x)|
)
dx
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We see that when we replace u with, first, u′′ = ΠCu in this expression, some
terms of the form |ui(x) − ui+1(x)| will vanish (hence decreasing the energy,
since W (·, i) > 0 a.e.), while, thanks to (55), if |u′′i (x) − u′′i+1(x)| 6= 0, we have
ui(x) ≥ u′′i (x) > u′′i+1(x) ≥ ui+1(x) so that |u′′i (x)−u′′i+1(x)| ≤ |ui(x)−ui+1(x)|.
On the other hand, the effect of projecting then u′′ onto [0, 1]k, to find u′, does
not alter most terms in the sum from i = 1 to k − 1, but strictly reduces the
first and last term (|1−u1(x)| and |uk(x)|) if u′′ was not already in [0, 1]k, while
it might also reduce some other terms of the form |ui(x) − ui+1(x)| whenever
ui(x) > ui+1(x). Hence, the energy is strictly reduced by replacing u with u′,
unless u = u′, that is, u ∈ C0.

4.5 Numerical analysis and results

We do not detail our implementation here: indeed, it follows the same lines
as in the three-labels case, in Section 3.4. The discrete approximation is the
same and the Γ-convergence result in Proposition 3.6 still holds. Then, we use
the same type of Arrow-Hurwicz’ iteration, as described in (46). (Also (43)
could be used, but then a reprojection onto C0 is necessary, as described in
Appendix D.)

Figure 7: Basic piecewise constant segmentation: Middle: 4 regions – Right:
10 regions

The slowest part in this method is the computation of the projection onto
K of the dual variable (Ξ1, . . . ,Ξk) ∈ Rd×k. This motivates the use of a GPU.
This step is done using Dykstra’s algorithm as described in Appendix C. The
set K is described as the intersection of k(k + 1)/2 “simple” convex sets and
an iterate of Dykstra’s algorithm must therefore involve as many projections
and dual variables. Also, the primal-dual gap, which has essentially the same
expression as in (44), is not as easy to compute than in the 2 or 3-labels cases
(since evaluating Ψ requires an iterative algorithm), so that we must choose a
more arbitrary stopping criterion for our iterations (like the variation between
two successive iterates).
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Figure 8: Completion of four regions

We first show an example of “basic” image segmentation (following a piece-
wise constant Mumford-Shah model, see [36, 17]). The idea is to solve alterna-
tively (for fixed k)

min
(Ei,ai)ki=0

min

{
λ

2

k∑
i=0

Per(Ei,Ω) +
k∑
i=0

∫
Ei

(I(x)− ai)2 dx

}

with respect to (Ei)ki=0 and then to (ai)ki=0. Here, I : Ω → [0, 1]3 is the color
information (intensity of red, green, blue channels) of the original image. The
initial values (ai)ki=0 (also vector-valued) are initialized using the k-means al-
gorithm, and then, once a new partition (Ei) is found, each ai is updated by
computing the average value of I in Ei. Figure 1 was computed in this way,
while Figure 7 shows another example, once with 4 and then with 10 labels.
Again, as for three labels, in almost all our experiment the solution was nearly
binary (up to a smoothing of the discontinuities due to the discretization).

Figure 9: Completion of four regions: in case of non uniqueness, the method
may find a combination of the solutions

It is interesting to check how, as in the experiments in Figure 4 for three-
labels segmentation, the method completes a boundary datum inside a given
area. Figure 8 shows the completion of four regions with equidistant labels Here
the values of (ai)3

i=0 are kept fixed, and span the four color intensity values
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(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1). The result is what is theoretically expected
(two triple junctions, with angles of 120◦). However, we must point out that the
solution which is found here is only one out of two. It seems that the program
selects this particular solution because the discretization makes it minimal. If
one rotates the original image by 45◦, then both solutions have the same energy
even for the discrete problem, and our program produces an output which is
not binary, but a convex combination of the two minimal binary solutions, as
shown in Figure 9. We insist that it does not correspond to a situation where

Figure 10: A stereo pair

the convexification is too low (as in Fig. 6), but just a case of non uniqueness,
where any convex combination of the binary solutions is also minimizing.

Figure 11: Stereo reconstruction. Top left, disparity (ground truth) for the pair
in Fig. 10 – Top right, reconstructed with TV regularization as in [37] – Bottom
left: with “Potts” energy – Bottom right: with Truncated TV

Let us eventually show an example of stereo reconstruction, as described
in [37]. We have implemented with 17 labels (k = 16) a disparity reconstruc-
tion algorithm, where the data term is made of absolute differences of the color
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channels between the left and right image, with a linear interpolation as de-
scribed in [7]. We show here the reconstruction with three different interaction
potentials: the total variation as in [37], a “Potts” energy (the length of the
discontinuity), and the “truncated TV” (7). Results are shown on Figure 11.
The best, and more precise results are obtained with the truncated TV. More
precisely, we can count the number of “wrong” pixels where the error in dispar-
ity is more than one: in this case, we have found 2.55% of wrong pixels in the
result with the TV interaction, 4.22% with the Potts model, and 1.88% with
the truncated TV.

A An alternate approach

A much more natural approach to the optimal partition problem (19), pre-
sented in [44], is the following: nonnegative labels v0, . . . , vk ∈ BV (Ω; [0, 1]) are
introduced, with a constraint

∑k
i=0 vi = 1. Then, the problem is simply relaxed

as

min
v

1
2

k∑
i=0

∫
Ω
|Dvi| +

k∑
i=0

∫
Ω
gi(x)vi(x) dx . (59)

Clearly, if vi ∈ {0, 1} a.e., this is just another formulation of the problem.
Now, we claim that this relaxation is below ours, and that it will therefore
fail more often. Let us also mention that, instead of the 1-norm of the vector
(Dv1, . . . , Dvk) used in (59), a 2-norm could be used as well (that is, a “stan-
dard” classical TV, this time normalized with 1/

√
2), see for instance [30].

Since the results we computed with this approach are even worse than with the
1-norm (see Figure 12), we limited our discussion to the study of (59).

The relationship between this representation using the labels (vi)ki=0, and
ours is very simple. The dual formulation of the energy in (59) is

sup
{
−
∫

Ω

k∑
i=0

vi(x)div ηi(x) dx +
k∑
i=0

∫
Ω
gi(x)vi(x) dx :

ηi ∈ C∞c (Ω; Rd), ‖ηi‖ ≤ 1/2 ∀x ∈ Ω, i = 0, . . . , k
}

By making the change of variable v0 = 1 − u1, vi = ui − ui+1 for i =
1, . . . , k − 1, vk = uk (that is, since

∑
j vj = 1, u1 = 1 − v0 =

∑k
j=1 vj ,

ui =
∑k

j=i vk for i = 1, . . . , k), it becomes

sup
{
−
∫

Ω

k∑
i=1

ui(x)div (ηi(x)−ηi−1(x)) dx+
k∑
i=1

∫
Ω

(gi(x)−gi−1(x))ui(x) dx :

ηi ∈ C∞c (Ω; Rd), ‖ηi‖ ≤ 1/2 ∀x ∈ Ω, i = 0, . . . , k
}
. (60)
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We see that minimizing (60) with the constraints 0 ≤ uk ≤ uk−1 ≤ · ≤ u1 ≤ 1
is equivalent to solving (52) (with gi = W (·, i)), with the interaction potential
J replaced with

I(u) =
∫

Ω
Φ(Du)

where Φ(p) = supq∈L q · p is the support function of the convex set L:

L =
{
q = (q1, . . . , qk) ∈ Rd×k :

∃(ηi)ki=0 ∈ (Rd)k+1 , |ηi| ≤ 1/2 , qi = ηi − ηi−1 ∀ i = 1, . . . , k
}

We clearly have |
∑

i1≤i≤i2 qi| = |ηi2 − ηi1−1| ≤ 1 so that L ⊂ K, where K
is defined in (51) (with σ = 1), so that I ≤ J . In dimension d = 1, L = K:
indeed, in this case, given any q ∈ K, we let η̂0 = 0 and η̂i =

∑i
j=1 qj . Then,

we have

|η̂i2 − η̂i1−1| =

∣∣∣∣∣∣
∑

i1≤i≤i2
qi

∣∣∣∣∣∣ ≤ 1

for any 1 ≤ i1 ≤ i2 ≤ k. Hence, letting M = max0≤i≤k η̂i and m = min0≤i≤k η̂i,
we deduce M −m ≤ 1. Letting now ηi = η̂i − (M −m)/2, we check easily that
|ηi| ≤ 1/2 for each i, and qi = ηi−ηi−1, so that q ∈ L. Hence: in dimension one,
this approach and ours boil down to the same convexification of the problem.
Let us mention that in this case, it can be shown (see [16] for a similar problem
and a proof) that it produces the actual convex envelope of the initial k-labels
problem (which is easily solved using dynamic programming anyway).

If d ≥ 2, this is not true anymore. A simple counterexample is as follows,
in dimension 2: let q be given by q1 = (1/2,

√
3/2), q2 = (1/2,−

√
3/2), qi = 0

if i ≥ 3. Then, q1 + q2 = (1, 0) and we check that q ∈ K. On the other
hand, if there existed (ηi)ki=0 ∈ B(0, 1/2)k+1 with qi = ηi−ηi−1, we should have
|η0| ≤ 1/2 and |η1| = |η0 + q1| ≤ 1/2, which is possible only if η0 = −q1/2.
But, then, |η2| = |η0 + q1 + q2| = |q2 + q1/2| =

√
3/2 > 1/2. Hence (ηi)ki=1 6∈ L.

In fact, this explains why the triple point in Figure 12 is not well recovered by
this technique, while it is with our approach (the input image and fields are
described in Section 3.5, see Figure 4 and comments). Indeed, it is shown that
the solution in the figure has an energy which is below the energy of a “binary”
solution with three regions and sharp interfaces. More precisely, there holds
the following result:

Proposition A.1. Let Ω, Ēi, i = 0, 1, 2 be as in Proposition 3.7. Define also
ū in the same way. Then ū is not a minimizer of I(u) =

∫
Ω Φ(Du) with

prescribed boundary condition u = ū on ∂Ω.
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Figure 12: Left: our approach – Middle: with energy (59) – Right: using the
vectorial TV as in [30]

In other words, letting for each i, v̄i = χĒi , we can find vi such that∑2
i=0 vi = 1 a.e., vi = v̄i on ∂Ω and (1/2)

∑2
i=0

∫
Ω |Dvi| < (1/2)

∑2
i=0

∫
Ω |Dv̄i|.

The proof is postponed to the end of this section.
On the other hand, the interfacial energy which is actually chosen in [44] is

anisotropic and, in fact, a sum of 1D energies in each direction. In this case,
one can show again that their approach is equivalent to (the anisotropic version
of) ours. We claim that the correct isotropic generalization of the approach
in [44] is what we presented in this paper, or, in terms of the variable v, what
we propose below.

In fact, we see that the “correct” constraint on the vector (ηi)ki=0, should be
that not on its norm but not its oscillation: the vector q given by qi = ηi−ηi−1

will belong to K if and only if |ηi2 − ηi1−1| ≤ 1 for each i1, i2 with 1 ≤ i1 ≤
i2 ≤ k. If we reintroduce the interfacial energy σ as in (51), we get a constraint
|ηi−ηj | ≤ σ(|i− j|) for all i, j ∈ {0, . . . , k}. It is then easy to show that letting,
for v ∈ BV (Ω; Rk+1),

Ĵ(v) =
∫

Ω
Ψ̂(Dv)

where now, for p ∈ Rd×(k+1), Ψ̂(p) = supq∈K̂ q · p is the support function of

K̂ =
{
q = (q0, . . . , qk) ∈ Rd×(k+1) : |qi− qj | ≤ σ(|i− j|) ∀ i, j = 0, . . . , k

}
(61)

then, problem (52) is equivalent (up to the change of variable ui =
∑k

j=i vj) to

min
v
Ĵ(v) +

k∑
i=0

∫
Ω
W (x, i)vi(x) dx , (62)

with the constraint 0 ≤ vi for each i, and
∑k

i=0 vk = 1. Moreover, the first
constraint can be relaxed, as in (53), provided the problem is replaced with

min∑k
i=0 vk=1

Ĵ(v) +
k∑
i=0

∫
Ω
W (x, i)|vi(x)| dx . (63)
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This alternate formulation can also be tackled numerically: it seems to be
about as complex as (53), but some details in the implementation might be a
bit simpler. Of course, it should produce essentially the same results.

Our choice to write the problem in terms of the variable u rather than v (u
is some kind of “primitive” of v) comes from related convexification approaches
for more general variational problems, that have been studied in the past decade
to address other problems in the calculus of variations. We mention this in the
next Appendix B. Before, let us prove Proposition A.1.

Proof of Proposition A.1. To simplify the notation, in this proof, let the sets
Ēi be defined in all R2 (and v̄i = χĒi∩Ω for each i).

Step 1 First, let us assume that Ω is a convex set and let us not worry
about the boundary condition. We choose a rotationally symmetric, smooth
mollifier ρ ∈ C∞c (B(0, 1); R+), with

∫
B(0,1) ρ dx = 1. As usual, for ε > 0, we let

ρε(x) = ρ(x/ε)/ε2. We then define, for i = 0, 1, 2, a smooth function vεi as the
restriction to Ω of ρε ∗ χĒi . By linearity, clearly, we still have

∑2
i=0 v

ε
i = 1. By

the co-area formula (5), the variation
∫

Ω |Dv
ε
i | is the average of the lengths of

the level lines {vεi = s} for s ∈ (0, 1).
Let us choose a coordinate system (y1, y2) such that Ē0 = {y2 < −|y1|/

√
3},

and the jump set ∂Ē0 is the graph y2 = w(y1) := −|y1|/
√

3. Assume for a while,
to simplify, that Ω, near this graph, coincides with the set |y1| < 2. First,
assume also ε = 1 and consider the function v1

0 = ρ ∗ χĒ0
. It is nondecreasing

with respect to y2, and even strictly nondecreasing at points (y1, y2) such that
the support of ρ(· − (y1, y2)) meets ∂Ē0, that is, as soon as 0 < v1

0 < 1.
Invoking the implicit functions theorem, we see that for any 0 < s < 1, the
level line {v1

0 = s} is the graph of a smooth, even function ws, defined by
v1

0(y1, ws(y1)) = s. In particular, w′s(y1) = −(∂1v
1
0)/(∂2v

1
0)(y1, ws(y1)).

Outside of B(0, 1) (hence, in particular, for |y1| > 1), we clearly have ws =
w + cs for a constant cs ∈ (−2/

√
3, 2/
√

3), and with cs = −c1−s for each
s ∈ (0, 1). For each s, hence, w′s(y1) = w′(y1) = ±1/

√
3 if |y1| > 1. We

check that 1/
√

3 is an upper bound for the derivative of w′s: indeed, since any
translate of Ē0 in a direction (t,−1) with |t| ≤

√
3 is included in Ē0, we also

have t∂1v
1
0 − ∂2v

1
0 ≥ 0: hence tw′s + 1 ≥ 0 for all t with |t| ≤

√
3, that is,

|w′s| ≤ 1/
√

3 = |w′|. Since, moreover, w′s(0) = 0 (ws is even), we deduce

H1({v1
0 = s}) =

∫ 2

−2

√
1 + |w′s|2 dy1 < 4× 2√

3
= H1(∂Ē0 ∩ Ω) .

Hence, from the co-area formula we deduce
∫

Ω |Dv
1
0| < H1(∂Ē0 ∩ Ω). A

simple scaling argument will then show that there exists c > 0 such that
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∫
Ω |Dv

ε
0| ≤ H1(∂Ē0 ∩ Ω) − cε for ε ≤ 1. Now, if the boundary of ∂Ω is made

of two straight lines (not necessarily vertical) in the neighborhood of its inter-
section with ∂Ē0, the same is still true, because the possible increase or loss
of length of {vε0 = s} at the boundary (with respect to the previous case) is
compensated exactly by the loss or increase of the symmetric line {vε0 = 1− s},
so that the average length remains the same as when ∂Ω is vertical. If Ω is a
generic convex set, then the length of the lines {vε0 = s} in Ω are even shorter
than if ∂Ω were replaced with two tangent straight lines at its intersection with
∂Ē0, so that the variation of vε0 is even lower.

Step 2 Now, we consider any open set Ω and η > 0 such that B(0, 2η) ⊂ Ω.
We choose ε << η and let as above, for each i ∈ {0, 1, 2}, vεi = ρε ∗ χĒi in
B(0, η), while vεi = v̄i = χĒi in Ω \ B(0, 2η). In B(0, 2η) \ B(0, η), we build
vεi by joining with straight lines the level lines of vεi inside B(0, η) and outside
B(0, 2η): one can check that the total variation of each vεi in the crown is
then of order at most 2η + ε2/η as ε → 0, while, using the first step, it is less
than 2η − cε inside the ball B(0, η). Hence, if ε is small enough, we find that∫

Ω |Dv
ε
i | <

∫
Ω |Dv̄i|, and this shows the proposition.

B Related representations in the calculus of varia-

tions

Let us explain some connections between the representation we have introduced
in this paper, and recent similar approaches in the calculus of variations. In
fact, our formulation belongs to a wide class of convexifications for possibly
non-convex scalar minimization problems, introduced in the past ten or twenty
years. The very general idea is as follows: assume you want to minimize a
function F : L1(Ω) → [0,+∞] which depends on a scalar function u. Then,
letting, for (x, t) ∈ Ω × R, 1u(x, t) = 1 if u(x) > t and 0 else, that is, 1u is
the characteristic function of the subgraph of u, you can define an energy on
measurable functions v : Ω× R→ R as

F(v) =

F (u) if v = 1u for some u ∈ L1(Ω) ,

+∞ else.

Then, the idea is to introduce the convex envelope F̄ of F , defined on the
functions v : Ω × R → [0, 1] which are non-increasing in the last variable (and
still having value +∞ elsewhere).

It is shown for instance in [16] that, provided F is l.s.c. in L1, and under a
few technical assumptions, F̄ is equal to F on subgraphs. Hence, the problem
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of minimizing F is essentially equivalent to the problem of minimizing a convex
functional.

However, this is useless if one does not have an explicit (and relatively
simple) expression of F̄ . In some cases, such as (1), such an expression exists and
is relatively easy to produce. A general framework is introduced in [25, 10, 1],
as follows: consider

F (u) =
∫

Ω
f(x, u(x),∇u(x)) dx

with a Lagrangian f(x, t, p) convex in the last variable p ∈ Rd (and with some
coercivity). Then, let us define a convex K of vector fields φ = (φx, φt) defined
on Ω × R, satisfying pointwise φt(x, t) ≥ f∗(x, t, φx(x, t)) (f∗ denotes here the
Legendre-Fenchel conjugate of f with respect to p, see [21, 39]). One can show
that:

F (u) = sup
φ∈K

∫
Ω×R

φ ·D1u. (64)

The reason for (64) is the following: the integrand in (64) represents the flux
of φ across the graph of u. After a change of variable, it can be written∫

Ω×R
φ ·D1u =

∫
Ω
φx(x, u(x)) · ∇u(x) − φt(x, u(x)) dx .

Then, when the supremum is taken, the best choice for φt(x, u(x)) is of course
the minimal value f∗(x, u(x), φx(x, t)), but then the integrand becomes

sup
φx

φx · ∇u(x)− f∗(x, u(x), φx) = f(x, u(x),∇u(x)) .

Now, it turns out that if one replaces in (64) the function 1u with a generic
function v ∈ BV (Ω× R), with 0 ≤ v ≤ 1, one obtains a function

F̄(v) = sup
φ∈K

∫
Ω×R

φ ·Dv (65)

which is nothing but the convex envelope F̄ introduced above. This can be
checked by showing that

• it coincides with F when v is binary (i.e., takes only the values 0 and 1):
this follows from (64);

• it satisfies a “generalized co-area formula:”

F̄(v) =
∫ 1

0
F̄(χ{v>s}) ds =

∫ 1

0
F(χ{v>s}) ds

which shows that it is larger than any convex function below F .
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It is interesting to point out that F needs not be convex in the variable u.
In the discrete setting, this approach corresponds exactly to the representations
which have been introduced by Ishikawa and Geiger [29, 28] about ten years
ago, and widely used in image processing (in particular in stereo reconstruction)
by many authors after these seminal papers. We refer also to [20] for a general
study, in the discrete setting, of the kind of energies which can be minimized
in this manner.

The convex set K above is defined by a local constraint: then, it was ob-
served by Alberti, Bouchitté and Dal Maso [1] that with a nonlocal constraint,
as we propose here in (11), more general (and more “nonconvex”) functionals
could be studied in the same way. They convex set K of vector fields (φx, φt)
that they introduce is defined by the relationships:

(i) φt(x, t) ≥ 1
4φ

x(x, t)2 for any (x, t) ∈ Ω× R

(ii)
∣∣∣∫ t2t1 φx(x, s) ds

∣∣∣ ≤ 1 for any x ∈ Ω and t1 < t2 .
(66)

Condition (i) corresponds to the previous condition φt ≥ f∗(x, t, φx), in the
particular case f(x, t, p) = p2 (hence f∗(x, t, q) = q2/4). To understand the
second condition, assume u is, away of a jump set Ju, a smooth function. If
x ∈ Ju, we assume u jumps from a lower value u−(x) to a higher value u+(x).
In particular, u is in the space “SBV (Ω)” of special functions with bounded
variation (which are BV functions such that the Cantor part Cu in (3) vanishes,
[2]), and its distributional derivative is the measure

Du = ∇u(x) dx + (u+(x)− u−(x))νu(x)Hd−1 Ju ,

where νu(x) is the normal vector to Ju at x, pointing towards the value u+.
Then, the boundary of the subgraph of u, ∂{t < u(x)}, has a “horizontal part”
(x, u(x)), x 6∈ Ju, with (inner) normal vector ν = (∇u,−1)/

√
1 + |∇u|2, and

a “vertical part” ∪x∈Ju{x} × [u−(x), u+(x)], with normal vector νu. Then, we
have∫

Ω×R
φ ·D1u =

∫
Ω
φx(x, u(x)) · ∇u(x)− φt(x, u(x)) dx

+
∫
Ju

(∫ u+(x)

u−(x)
φx(x, s) · νu(x) ds

)
dHd−1(x)

and we check easily that the supremum of this expression for φ ∈ K is the
celebrated Mumford-Shah functional

F (u) =
∫

Ω
|∇u(x)|2 dx + Hd−1(Ju)
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The idea of by Alberti, Bouchitté and Dal Maso in [1] was to provide,
through this framework, necessary conditions of optimality for minimizers of the
Mumford-Shah functional. The idea is simple: if you can find a free divergence
vector field φ such that

F (u) =
∫

Ω
|∇u(x)|2 dx + Hd−1(Ju) =

∫
Ω×R

φ ·D1u ,

then for any u′ with u′ = u on ∂Ω, one must have F (u′) ≥ F (u): indeed, one
always have

F (u′) ≥
∫

Ω×R
φ ·D1u′ =

∫
Ω×R

φ ·D1u −
∫

Ω×R
(1u′ − 1u)divφdxdt = F (u).

This approached proved very useful in a number of cases [33, 32, 34, 19]. It is still
unknown, though, whether for any minimizer of the Mumford Shah functional,
there exists such a field φ (called a “calibration”). Such existence is related
to the minimality of 1u for the convex functional F̄ defined in (65). What
remains unknown, in this case, is whether F̄ = F̄ , the convex envelope of F (in
which case it would have the same minimizers as F ). A positive answer would
for instance (up to regularity issues) imply the existence of a “calibration,”
for showing the minimality of the “crack-tip,” and provide a much shorter
proof than Bonnet and David’s [9], but the experiment illustrated in Figure 6,
although on a very simplified variant, seems to show that the answer is rather
negative.

C Algorithm for projecting onto K

Let us explain here how we implemented, in our practical computation, the
projection of a vector (ξi)ki=1 in Rd×k onto the convex K. This convex is de-
scribed as a finite intersection of simple sets, on which a projection is easily
computed. In this case, a converging algorithm was first proposed by Dykstra
in the 1980’s [14].

C.1 Dykstra’s algorithm

The idea is essentially as follows: we are given k convex sets in RN , K1, . . . ,Kk,
each on which has a simple algorithm for projecting onto it, and you want to
compute the projection of a vector x onto

⋂k
i=1Ki. Letting ψi(z) = 0 if z ∈ Ki,

and +∞ else, it means you want to solve

min
z∈RN

|x− z|
2

2

+
k∑
i=1

ψi(z) . (67)
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Then, a good idea is to consider the dual problem, which in this case can be
written [21, 39]

min
y∈RN

|x− y|
2

2

+

(
k∑
i=1

ψi

)∗
(y) , (68)

moreover, z̄ solves (67) if and only if ȳ = x − z̄ solves (68). Here, (
∑k

i=1 ψi)
∗

denotes the Legendre-Fenchel conjugate [21, 39] of
∑k

i=1 ψi, that is,(
k∑
i=1

ψi

)∗
(y) = sup

z∈RN
y · z −

k∑
i=1

ψi(z)

Now, it is known (and easy to check) that the Legendre-Fenchel conjugate of
a sum of convex, lower semicontinuous functions is given by the inf-convolution
of the Legendre-Fenchel conjugate of each function. In this case, that means:(

k∑
i=1

ψi

)∗
(y) = inf

{
k∑
i=1

ψ∗i (yi) :
k∑
i=1

yi = y

}
, (69)

so that another way to write (68) is:

inf
(yi)ki=1∈(RN )k

1
2

∣∣∣x−∑k
i=1 yi

∣∣∣2 +
k∑
i=1

ψ∗i (yi) , (70)

The idea behind Dykstra’s algorithm is to minimize now (70) alternatively
in each variable (yi), for i = 1, . . . , k, until convergence (this point of view was
is found for instance in Gaffke and Mathar [24]).

Hence, we start with y0
i = 0 for each i, and (yn+1

i )ki=1 is found from (yni )ki=1

by letting, for i = 1, . . . , k:

yn+1
i = arg min

y∈RN
1
2

∣∣∣(x−∑j<i y
n+1
j −

∑
j>i y

n
j

)
− y
∣∣∣2 + ψ∗i (y) . (71)

Now, let us set for each n ≥ 1, yn =
∑k

i=1 y
n
i , xn = x − yn (and x0 = x).

We also set xn0 = xn−1, xni = x − (
∑

j≤i y
n
j +

∑
j>i y

n−1
j ) (in particular xnk =

xn = xn+1
0 ).

The primal version of (71) is, for n ≥ 1 and i = 1, . . . , k:

xn+1
i = arg min

z∈RN
1
2

∣∣xni−1 + yni − z
∣∣2 + ψi(z) (72)

while yn+1
i is then given by yn+1

i = xni−1 + yni − x
n+1
i . But, as ψi is defined, it

means nothing else than{
xn+1
i = ΠKi(x

n
i−1 + yni )

yn+1
i = xni−1 + yni − x

n+1
i

(73)

This is the main iteration of Dykstra’s algorithm, as described in the original
work. Moreover, it is shown there that as n→∞, xn → ΠK(x) (strongly, if we
replace RN with a Hilbert space).
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C.2 The projection onto K

For solving problem (53), we need to project onto the convex set K ⊂ Rd×k

defined in (51), which may be written as the intersection of convex sets

⋂
1≤i1≤i2≤k

Ki1,i2 , with Ki1,i2 =

{
(qi)ki=1 ∈ Rd×k :

∣∣∣∣∣
i2∑
i=i1

qi

∣∣∣∣∣ ≤ σ(i2 − i1 + 1))

}
.

Given q = (qi)ki=1 ∈ Rd×k, the projection onto Ki1,i2 is given by

(ΠKi1,i2
(q))i =

qi if i < i1 or i > i2 ;

qi − qi1,i2 if i1 ≤ i ≤ i2

where, letting q̂ =
∑i2

i=i1
qi, the vector qi1,i2 ∈ Rd is given by qi1,i2 = (|q̂|−σ(i2−

i1 + 1))+/(i2 − i1 + 1)(q̂/|q̂|). Dykstra’s algorithm is now simple to implement:
we are given a vector q we want to project onto K. We fist let qi1,i2 = 0, and
recursively update as follows:

1. For 1 ≤ i1 ≤ i2 ≤ k:

(a) Compute q̂ =
∑i2

i=i1
(qi + qi1,i2);

(b) Let then ˆ̂q = (|q̂| − σ(i2 − i1 + 1))+/(i2 − i1 + 1)(q̂/|q̂|);

(c) For i1 ≤ i ≤ i2, replace qi with qi + qi1,i2 − ˆ̂q;

(d) Replace qi1,i2 with ˆ̂q

2. Test how much q = (qi)ki=1 has changed during the loop: if change is less
than some tolerance, end. Else: go back to step 1.

D Algorithm for projecting onto C

Let u ∈ Rk: we give here a simple algorithm for computing the projection ΠCu
of u onto C = {z ∈ Rk : z1 ≥ z2 ≥ · · · zk}. Of course, as in the previous section,
we could still use Dykstra’s algorithm: however, this will usually converge in
infinitely many iterations (although the error decreases very fast), whereas the
alternative solution we propose here needs at most k−1 iterates to produce the
exact solution.

Let us first modify slightly the problem, and consider the minimization:

min
z∈C

k∑
i=1

ωi(zi − ui)2 (74)

where ωi are positive weight. Then, the same analysis as in section 4.2 holds
true, and in particular (54): we hence know that if for some index i ∈ {1, . . . , k−
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1}, ui ≤ ui−1, the solution z of (74) satisfies zi = zi+1 (while if there is no such
index, u ∈ C and z = u is the solution).

In this case, (74) is obviously equivalent to the minimization of∑
j 6=i,i+1

ωj(zj − uj)2 +
(
ωi(zi − ui)2 + ωi+1(zi − ui+1)2

)
=

∑
j 6=i,i+1

ωj(zj − uj)2 + (ωi + ωi+1)
(
zi −

ωiui + ωi+1ui+1

ωi + ωi+1

)2

+ ωiu
2
i + ωi+1u

2
i+1 −

(ωiui + ωi+1ui+1)
ωi + ωi+1

2

(75)

over all z ∈ C with zi = zi+1, which (since the last line in (75) does not depend
on z) is a new problem of the form (74), but now in dimension (k−1), and with
the coordinates ui, ui+1 replaced with their average with respective weights ωi
and ωi+1, and their common weight in the new distance replaced with the sum
of the weights ωi + ωi+1.

Hence, a straightforward recursive algorithm for computing ΠCu is as fol-
lows:

1. Let first z = u, and define k “clusters” Ci = {i}, i = 1, . . . , k, of only one
element.

2. Identify two coordinates zi, zi+1 with zi < zi+1. If there are no such
coordinates, z ∈ C: the procedure ends and z = ΠCu.

3. Replace the clusters Cj , j ∈ Ci ∪ Ci+1, with the union Ci ∪ Ci+1. Replace

then zi and zi+1 with the average
(∑

j∈Ci zj

)
/(] Ci).

4. go back to 2.

E Evaluation of Ψ for three labels

Let us quickly mention how the value of Ψ(p), defined in (35), can be computed
in order to estimate the primal-dual gap (44). This is probably standard. The
formula is

Ψ(p) = min
q∈Rd
|q| + |p1 − q| + |p2 − q| ,

that is, q is the point whose total distance to 0, p1 and p2 in R2 is minimal.
Hence, the problem boils down to finding a simple way to compute, given

a, b, c ∈ R2, the point x ∈ R2 which minimizes |x− a|+ |x− b|+ |x− c|.
If a, b, c are aligned (in our case, if det(p1, p2) = 0), then x is optimal when

it is equal to a point which lies in between the two other (or is equal to one
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of the other). For instance, if b ∈ [a, c], x = b is optimal and the solution is
|a− b|+ |b− c|.

If the points are not on the same line, then they form a non-degenerate
triangle. It is shown, then, that if x is optimal, it must lie inside the triangle
formed by the three points. Then, from the optimality conditions, one checks
that either x is one of the points a, b, c (say, for instance, a), in which case
the angle b̂ac must be greater than, or equal to 120◦, or x 6∈ {a, b, c}, in which
case the angles âbc, b̂ac, âcb are all three smaller than 120◦. In this last non-
degenerate case, the three angles âxb, b̂xc, ĉxa must be exactly 120◦, so that x
lies at the intersection of three circles, which are the circles made of the points
which “see” two vertices of the triangle under an angle of 120◦. This is very
easy to compute. The centers of these circles are A,B,C: A is at distance
|bc|/(2

√
3) of the segment [b, c] and its projection on this segment is the middle

point (b + c)/2 (and a and A must be separated by (bc)). B is the same with
respect to a and c, and C with respect to a and b. Then, the circles of center A
and radius |bc|/

√
3 and of center B and radius |ac|/

√
3 have the two intersection

points c and x: x is then the symmetric of c with respect to the line (AB). See
Fig. 13.

a

b

c

A

B

C

|bc|
2
√

3

x

b+c
2

Figure 13: Construction of the optimal point x
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Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira
Januar 2006.

IAI-TR-2006-3 ‘AOSD.06 Industry Track Proceedings’
Fifth International Conference on Aspect-Oriented Software Development,
Bonn, Germany, March 20-24
Matt Chapman, Alexandre Vasseur, Günter Kniesel (Eds.)
März 2006.

IAI-TR-2006-4 Independent Evolution of Design Patterns and Application
Logic with Generic Aspects - A Case Study
Tobias Rho, Günter Kniesel
April 2006.

IAI-TR-2006-5 Nonparametric Density Estimation for Human Pose Tracking
Thomas Brox, Bodo Rosenhahn, Uwe Kersting, and Daniel Cremers
April 2006.

IAI-TR-2006-6 EWAS 2006
3rd European Workshop on Aspects in Software
Günter Kniesel (Ed.)
August 2006.

IAI-TR-2006-7 A Fixpoint Approach to State Generation for
Stratifiable Disjunctive Deductive Databases
Andreas Behrend
Dezember 2006.

IAI-TR-2006-8 Interaktive, plan-basierte Softwareagenten
im verteilten Supply Chain Management
Abschlussbericht im Rahmen des DFG-Schwerpunktprogramms
Intelligente Softwareagenten und betriebswirtschaftliche
Anwendungsszenarien
Michael Beetz, Armin B. Cremers, Axel Kuhn, Bernd Hellingrath,
Jürgen Schumacher, Andre Alberti
Dezember 2006.

IAI-TR-2006-9 “Zeitsynchronisation in TmoteSky Sensornetzen”
Serge Shumilov, Boris Iven, Oliver Mali, Roman Saul
Dezember 2006.

IAI-TR-2007-1 Introducing Curvature into Globally Optimal
Image Segmentation: Minimum Ratio Cycles
on Product Graphs
Thomas Schoenemann, Daniel Cremers
April 2007.



IAI-TR-2007-2 Globally Optimal Image Segmentation with
an Elastic Shape Prior
Thomas Schoenemann, Daniel Cremers
April 2007.

IAI-TR-2007-3 Dual-space Graph Cuts for Motion Layer Decomposition
Thomas Schoenemann and Daniel Cremers
April 2007.

IAI-TR-2007-4 Iterated and Efficient Nonlocal Means
for Denoising of Textural Patterns
Thomas Brox, Oliver Kleinschmidt, and Daniel Cremers
August 2007.

IAI-TR-2007-5 Design and Implementation of a Workflow Engine
Sebastian Bergmann
September 2007.

IAI-TR-2007-6 On Local Region Models and the Statistical Interpretation
of the Piecewise Smooth Mumford-Shah Functional
Thomas Brox and Daniel Cremers
September 2007.

IAI-TR-2007-7 Time-based Triggers for SQL:
A Lingering Issue Revisited
Andreas Behrend, Christian Dorau, and Rainer Manthey
November 2007.

IAI-TR-2007-8 High Resolution Motion Layer Decomposition
using Dual-space Graph Cuts
Thomas Schoenemann and Daniel Cremers
Dezember 2007.

IAI-TR-2007-9 Matching Non-rigidly Deformable Shapes Across Images:
A Globally Optimal Solution
(DFG-ProjekT CR 250/1-1)
Thomas Schoenemann and Daniel Cremers
Dezember 2007.

IAI-TR-2007-10 Globally Optimal Shape-based Tracking in Real-time
(DFG-ProjekT CR 250/1-1)
Thomas Schoenemann and Daniel Cremers
Dezember 2007.

IAI-TR-2008-1 Software Security Metrics for Malware Resilience
Hanno Langweg
Februar 2008.

IAI-TR-2008-2 Rule-Based Programming
Günter Kniesel, Jorge Sousa Pinto
Juni 2008.



IAI-TR-2008-3 Efficient Planar Graph Cuts with
Applications in Computer Vision
Frank R. Schmidt, Eno Töppe and Daniel Cremers
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