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Abstract. In this paper, we propose a variational framework for com-
puting a superresolved image of a scene from an arbitrary input video.
To this end, we employ a recently proposed quadratic relaxation scheme
for high accuracy optic flow estimation. Subsequently we estimate a high
resolution image using a variational approach that models the image for-
mation process and imposes a total variation regularity of the estimated
intensity map. Minimization of this variational approach by gradient de-
scent gives rise to a deblurring process with a nonlinear diffusion. In
contrast to many alternative approaches, the proposed algorithm does
not make assumptions regarding the motion of objects. We demonstrate
good experimental performance on a variety of real-world examples. In
particular we show that the computed super resolution images are indeed
sharper than the individual input images.

1 Introduction

Increasing the resolution of images. In many applications of Computer
Vision it is important to determine a scene model of high spatial resolution
as this may help – for example – to identify a car licence plate in surveillance
images or to more accurately localize a tumor in medical images. Fig. 1 shows
a super resolution result computed on a real-world surveillance video using the
algorithm proposed in this paper. Clearly, the licence plate is better visible in
the computed superresolved image than in the original input image.

The resolution of an acquired image depends on the acquisition device. In-
creasing the resolution of the acquisition device sensor is one way to increase the
resolution of acquired images. Unfortunately, this option is not always desirable
as it leads to substantially increased cost of the device sensor. Moreover, the
noise increases when reducing the pixel size.

Alternatively, one can exploit the fact that even with a lower-resolution video
camera running at 30 frames per second, one observes projections of the same
image structure around 30 times a second. The algorithmic estimation of a high
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Fig. 1. In contrast to the upscaled input image [21] (left) the super resolution image
computed with the proposed algorithm (right) allows to better identify the licence plate
of the car observed in this surveillance video.

resolution image from a set of low resolution input images is referred to as Super
Resolution.

General model of super resolution. The challenge in super resolution is to
invert the image formation process which is typically modeled by series of linear
transformations that are performed on the high resolution image, presented in
Fig. 2.

Given N low resolution images {IkL}Nk=1 of size L1×L2. Find a high resolution
image IH of size H1 ×H2 with H1 > L1 and H2 > L2 which minimizes the cost
function:

E(IH) =
N∑
k=1

∥∥∥Pk(IH)− I(k)
L

∥∥∥ (1)

where Pk(IH) is the projection of IH onto coordinate system and sampling grid
of image IkL. ‖·‖ - can be any norm, but usually it is L1 or L2-norm. Pk is usually
modeled by four linear transformations, that subject the high resolution image
IH to motion, camera blur, down sampling operations and finally add additive
noise to the resulted low resolution image. Fig. 2 illustrates this projection. This
projection connecting the kth low resolution image to the high resolution image
can be formulated using matrix-vector notation. [10]:

IkL = DkBkWkIH + ek (2)

where Dk is a down sampling matrix, Bk blurring matrix, Wk warping matrix
and ek a noise vector.

We use matrix-vector notation only for the analysis, the implementation will
be realized by standard operations such as convolution, warping, sampling [10].

Fig. 2. The inversion of this image formation process is referred to as Superresolution.



3

Related Work. Super resolution is a well known problem and extensively
treated in the literature. Tsai and Huang [9] were first who addressed the prob-
lem of recovering a super resolution image from a set of low resolution images.
They proposed a frequency domain approach, that works for band limited and
noise-free images. Kim et al. [8] extended this work to noisy and blurred im-
ages. Approaches in frequency domain are computationally cheap, but they are
sensitive to model deviations and can only be used for sequences with pure
global translational motion [7]. Ur and Gross proposed a method based on multi
channel sampling theorem in spatial domain [6]. They perform a non-uniform
interpolation of an ensemble of spatially shifted low resolution pictures, followed
by deblurring. The method is restricted to global 2D translation in the input im-
ages. A different approach was suggested by Irani and Peleg [5]. Their approach
is based on the iterative back projection method frequently used in computer
aided tomography. This method has no limits regarding motion and handles non-
uniform blur function, but assumes motion and blurring to be known precisely.
Elad and Feuer proposed an unified methodology that combines the three main
estimation tools in the single image restoration theory (ML) estimator, (MAP)
estimator and the set theoretic approach using POCS [4]. The proposed method
is general but assumes explicit knowledge of the blur and the smooth motion
constraints.

In our approach we don’t constrain to any motion model and don’t assume
the motion as to be known.

In recently published super resolution algorithms [17] and [16] the authors
describe a super-resolution approach with no explicit motion estimation that is
based on the Nonlocal-Means denoising algorithm. The method is practically
limited since it requires very high computational power.

Contribution of this work In this paper we will present an robust variational
approach for super resolution using L1 error norm for data and regularization
term. Rather than restricting ourselves to a specific motion model, we will employ
a recently proposed high accuracy optic flow method which is based on quadratic
relaxation [13]. We assume blur as space invariant and constant for all measured
images, which is justified since the same camera was used for taking the video
sequence.

This paper is organized as follows. In Section 2 we briefly review the optic
flow estimation scheme introduced in [13]. In Section 3 we present super res-
olution approaches using L2 and L1 error norms for data and regularization
terms. Subsequently, we present experimental results achieved with respective
approaches. We conclude with a summary and outlook.

2 Optical Flow

The major difficulty in applying the above super resolution approach Eq. (2)
is that the warping function Wk is generally not known. Rather than trying to
simultaneously estimate warping and a super resolved image (which is compu-
tationally difficult and prone to local minima), we first separately estimate the
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warping using the optic flow algorithm recently introduced in [13] and in the
second step we use the motion to compute the inverse problem (2).

In this section we will shortly describe the optical flow algorithm as posed in
[13]. An extension of this approach [2] was recently shown to provide excellent
flow field estimates on the well-known Middlebury benchmark.

Formal Definition. Given two consecutive frames I1 and I2 : (Ω ⊂ IR2 → IR)
of an image sequence. Find displacement vector field u : Ω → IR2 that maps
all points of the first frame onto their new location in the second frame and
minimizes following error criterion:

E(u(x )) =
∫
Ω

λ |I1(x )− I2(x + u(x ))|+ (|∇u1(x )|+ |∇u2(x )|)dx (3)

where the first term (data term) is known as the optical flow constraint. It
assumes that the grey values of pixels do not change by the motion, I1(x ) =
I2(x +u(x )). The second term (regularization term) penalizes high variations in
u to obtain smooth displacement fields. λ weights between the both assumption.

At first we use the first order Taylor approximation for I2 i.e.: I2(x + u) =
I2(x + u0) + 〈(u − u0),∇I2〉 where u0 is a fix given disparity field. Since we
linearized I2, we will use multi-level Coarse-to-Fine warping techniques in order
to allow large displacements between the images and to avoid trapping in local
minima. Inserting the linearized I2 in the functional (3) results in:

E(u) =
∫
Ω

[
λ |I2(x + u0) + 〈(u − u0),∇I2〉 − I1(x )|+

2∑
d=1

|∇ud(x )|

]
dx (4)

In the next step we label I2(x + u0) + 〈(u − u0),∇I2〉 − I1(x ) as ρ(u). We
introduce additionally an auxiliary variable v , that is a close approximation of
u in order to convexify the functional and propose to minimize the following
convex approximation of the functional (4):

E(u , v) =
∫
Ω

[
2∑
d=1

|∇ud|+
1
2θ

(ud − vd)2 + λ|ρ(v)|

]
dx (5)

where θ is a small constant, such that vd is a close approximation of ud. This
convex functional can be minimized alternately by holding u or v fix.

For a fix v1 and d = 1 solve

min
u1

∫
Ω

1
2θ

(u1 − v1)2 + |∇u1| dx (6)

This is the denoising model that was presented by Rudin, Osher and Fatemi
in [11]. An efficient solution for this functional was proposed in [1], which uses
a dual formulation of (6) to derive an efficient and globally convergent scheme
as shown in Theorem 1.

Theorem 1. [1, 13] The solution for Eq. (6) is given by u1 = v1 +θ divp where
p fulfils ∇ (v1 + θ divp) = p |∇(v1 + θ divp)| that can be solved by using semi-
implicit gradient descent algorithm that was proposed by Chambolle [1]:

pn+1 =
pn + τ

θ (∇(v + θ div pn))
1 + τ

θ |∇(v + θ div pn)|
(7)
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(a) Dimetrodon (b) Grove2 (c) Hydrangea

(d) AAE 6.8◦ (e) AAE 6, 2◦ (f) AAE 5.5◦

Fig. 3. Performance evaluation of the test data from [3]. The first row shows a image
from the input sequence. The second row shows the results obtained by implementation
of the above algorithm by setting the parameters as follows λ = 80.0 , θ = 0.4 and
τ = 0.249.

where τ
θ is the time step, p0 = 0 and τ ≤ 1/4 .

The minimization for fix v2 and d = 2 can be done in analogical.
For u being fixed, our functional (5) reduces to

E(v) =
∫
Ω

[
1
2θ

2∑
d=1

(ud − vd) + λ|ρ(v)|

]
dΩ (8)

Theorem 2. [1, 13] The solution for the optimization problem (8) is given by
the following threshold scheme:

v = u +

λθ∇I2 if ρ(u) < −λθ|∇I1|2
−λθ∇I2 if ρ(u) > λθ|∇I2|2
−ρ(u)∇I2/|∇I2|2 if |ρ(u)| ≤ λθ|∇I2|2

(9)

Theorem 2 can easily be shown by analyzing the cases ρ(v) < 0, ρ(v) > 0 and
ρ(v) = 0 – see [1, 13] for details.

Implementation. We implement the complete algorithm on the GPU by using
CUDA framework and reached a high performance compared to the implemen-
tation on the CPU. Precise initialization of parameters u , v and pd and further
details can be found in [13]. Results that we could obtain with this approach are
presented in Fig. 3.

3 Super Resolution

In this section we present variational formulations for motion-based super-resolution
using first an L2 norm and subsequently a more robust L1 approach.
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Variational Superresolution

In the first step we extend the data term which imposes similarity of the desired
high-resolution image IH (after warping W , blurring B and downsampling D)
with the N observed images {IkL}Nk=1 shown in Eq. (2) by a regularization term
which imposes spatial smoothness of the estimated image IH . To this end we
start by penalizing the L2 norm of its gradient [20]:

E(IH) =
1
2

N∑
k=1

∫
Ω

∣∣∣DkBkWkIH − I(k)
L

∣∣∣2 + λ |∇IH |2 dx (10)

The regularization term is necessary since without it the inverse problem is typi-
cally ill-posed, i.e., does not possess a unique solution that depends continuously
on the measurements. The parameter λ allows to weight the relative importance
of the regularizer.

For finding the solution IH , we minimize the energy function (10) by solving
the corresponding Euler-Lagrange equation:

dE

dIH
=

N∑
k=1

W>
k B

>
k D

>
k (DkBkWkIH − I(k)

L )− λ4IH = 0 (11)

The linear operators D>K , W>
k and B>k denote the inverse operations associated

with the down-sampling, warping and blurring in the image formation process.
Specifically, D>k is implemented as a simple up-sampling without interpolation.
B>k can be implemented by using the conjugate of the kernel: If h(i, j) is the blur
kernel then the conjugate kernel h̃ satisfies for all i, j: h̃(i, j) = h(−i,−j). In our
approach we model blurring through a convolution with an isotropic Gaussian
kernel. Since the Gaussian kernel h is symmetric , the adjoint kernel h̃ coincides
with h. In addition, we will assume that blurring and downsampling is identical
for all observed images such that we can drop the index k in the operators B
and D. The operator W>

k is implemented by forward warping.
We solve the Euler-Lagrange equation in (11) by a steepest descent (SD)

solved by an explicit Euler scheme:

In+1
H = InH + τ

(
N∑
k=1

WT
k BD

T (I(k)
L −DBWkI

(n)
H ) + λ4InH

)
(12)

where τ is the time step. The two terms in the evolution of the high resolution
image IH induce a driving force that aims to match IH (after warping, blurring
and down-sampling) to all observations while imposing a linear diffusion of the
intensities weighted by λ.

The whole algorithm including the accurate motion estimation (which is a
very important aspect of super resolution) is summarized below.

Algorithm 1
Goal: Given a sequence of N - low resolution images {IkL}Nk=1 estimate the in-
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Fig. 4. Motion estimation between the frames

Fig. 5. Motion computation between the reference image and the frames.

terframe motion and infer a high resolution image IH of the depicted scene.

1: Choose an image from the sequence as the reference image.
2: Estimate for each pair of consecutive frames the motion from one frame to

the next (see Fig. 4) using the algorithm presented in Section 2 .
3: Using the motion fields ufi and vfi compute the motion fields uri , v

r
i relative to

the reference image (Fig. 5), the indices f (motion between mutual frames)
and r (motion between reference frame and individual image) should indicate
the difference of the motion maps.

4: Interpolate the motion fields uri and vri to the size of the image IH .
5: Initialize IH , by setting all pixel values to 0.
6: for t = 1 to T do
7: sum := 0;
8: for k = 1 to N do
9: b := WkI

t
H (backward warping);

10: c := h(x, y) ∗ b (convolution with the Gaussian kernel);
11: c := Dc (down sampling to the size of IL);
12: d := (IkL − c);
13: b := DT d (up sampling without interpolation);
14: c := h(x, y) ∗ b
15: d := WT

k c (forward warping);
16: sum := sum+ d;
17: end for
18: It+1

H = ItH + τ(sum− λ4ItH);
19: end for

The complete algorithm was implemented on the GPU. In Fig. 6 you can find
the results, which were produced by Algorithm 1. As you can see there is a high
spatial resolution improvement compared to the upscaling of a single frame. All
characters on the licence plate are clearly identifiable. Nevertheless the resulting
high resolution image is somewhat blurred, because L2-regularizer does not allow
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Fig. 6. A comparison between L2-norm and one image from the sequence [21] upscaled
by factor 2 shows obvious spatial resolution improvement. High resolution image is the
result of Algorithm 1 using a sequence of 10 input images. The parameters were set as
λ = 0.4, time step τ = 0.01 and iteration number T = 150

Fig. 7. A comparison between L2-norm and L1-norm shows that the L1- norm allows
to better preserve sharp edges in the super resolved image.

for discontinuities in high resolution image and it does not handle outliers that
may arise from incorrectly estimated optical flow.

Robust Superresolution using L1 Data and Regularity

In order to account for outliers and allow discontinuities in the reconstructed
image, we replace data and regularity terms in (10) with respective L1 expres-
sions giving rise to the energy [20]:

E(IH) =
N∑
k=1

∫
Ω

∣∣∣DBWkIH − I(k)
L

∣∣∣+ λ |∇IH | dx (13)

This gives rise to a gradient descent of the form:

∂IH
∂t

=
N∑
k=1

W>
k B

>D>
I
(k)
L −DBWkIH

|I(k)
L −DBWkIH |

+ λ div
(
∇IH
|∇IH |

)
, (14)

which is also implemented using an explicit Euler scheme – see equation (12). The
robust regularizer gives rise to a nonlinear discontinuity preserving diffusion. For
the numerical implementation we use a regularized differentiable approximation
of the L1 norm given by:

|s|ε =
√
|s|2 + ε2.

The experimental results in (Fig. 7-9 ) demonstrate clearly that the L1-
formulation for motion-based super-resolution substantially improves the quality
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Fig. 8. While the L2-norm allows a restoration of the image which is visibly better
than the input images, the L1-norm preserves sharp discontinuities even better. As
input we used the book sequence from [15]

of the reconstructed image. Compared to the L2-norm, we can see sharper edges.
The numbers or letters that were not distinguishable in sequences are now clearly
recognizable. The quality of the reconstructed super-resolution image depends on
the accuracy of the estimated motion. In future research, we plan to investigate
the joint optimization of intensity and motion field.

4 Conclusion

In this paper, we proposed a variational approach to super resolution which can
handle arbitrary motion fields. In contrast to alternative super resolution ap-
proaches the motion field was not assumed as to be known. Instead we make use
of a recently proposed dual decoupling scheme for high accuracy optic flow esti-
mation. By minimizing a functional which depends on the input images and the
estimated flow field we propose to invert the image formation process in order
to compute a high resolution image of the filmed scene. We compared different
variational approaches using L2 and L1 error norms for data and regularization
term. This comparison shows that the L1- norm is more robust to errors in mo-
tion and blur estimation and results in sharper super resolution images. Future
work is focused on trying to simultaneously estimate the motion field and the
super resolved image.

Fig. 9. Closeups show that the L1-norm better preserves sharp edges in the restoration
of the high resolution image. As input we used the car sequence from [14]
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