
Combinatorial Preconditioners for Proximal Algorithms on Graphs

Thomas Möllenhoff Zhenzhang Ye Tao Wu Daniel Cremers
Department of Computer Science, Technical University of Munich, Germany

{thomas.moellenhoff, zhenzhang.ye, tao.wu, cremers}@ tum.de

Abstract

We present a novel preconditioning technique
for proximal optimization methods that relies on
graph algorithms to construct effective precon-
ditioners. Such combinatorial preconditioners
arise from partitioning the graph into forests. We
prove that certain decompositions lead to a the-
oretically optimal condition number. We also
show how ideal decompositions can be realized
using matroid partitioning and propose efficient
greedy variants thereof for large-scale problems.
Coupled with specialized solvers for the resulting
scaled proximal subproblems, the preconditioned
algorithm achieves competitive performance in
machine learning and vision applications.

1 Introduction

Many applications in statistics [48], learning [27], and
imaging [11] rely on efficiently solving convex-concave
saddle-point problems:

max
p∈RE

min
u∈RV

G(u)− F ∗(p) + 〈Ku, p〉 . (1)

Here the model is formulated on an undirected weighted
graph G = (V, E , ω), whose edges are weighted by a given
function ω : E → R+. The extended real-valued functions
F : RE → R ∪ {+∞} and G : RV → R ∪ {+∞} are
assumed to be proper, lower semi-continuous and convex.
The notation F ∗ refers to the convex conjugate of F . The
(linear) vertex-to-edge map K : RV → RE is defined by

K = diag(ω)∇,

where∇ is the (transposed) incidence matrix of G, i.e.

(∇u)e = ui − uj , ∀e = (i, j) ∈ E ,

Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics (AISTATS) 2018, Lanzarote, Spain.
JMLR: W&CP volume 7X. Copyright 2018 by the author(s).

with arbitrarily fixed orientation. For F being the `1-norm,
i.e. F (·) = ‖ · ‖1, this choice yields the total-variation
semi-norm of functions on a weighted graph. In addition
to its ubiquitous applications in image processing and com-
puter vision, this semi-norm has recently gained consider-
able attention in unsupervised learning [27, 28, 8], semi-
supervised learning [22], collaborative filtering [6], clus-
tering [22] and statistical inference [52].

Among other proximal algorithms (see [41, 13] and the ref-
erences therein for an overview), the primal-dual hybrid
gradient (PDHG) algorithm [2, 55, 43, 19, 11] is a popu-
lar solver for the problem in (1). A general formulation of
PDHG iterations [13] appears as follows:

uk+1 = arg min
u∈RV

G(u) + 〈pk,Ku〉+
s

2
‖u− uk‖2S , (2)

pk+1 = arg min
p∈RE

F ∗(p)−
〈
K(2uk+1 − uk), p

〉
+
t

2
‖p− pk‖2T . (3)

Here S ∈ R|V|×|V| and T ∈ R|E|×|E| are symmetric
positive definite matrices, such that ‖ · ‖S is a scaled
norm defined by ‖u‖2S = 〈u, u〉S = u>Su and analo-
gously for ‖ · ‖T . For given S and T , the convergence of
PDHG is guaranteed if the (inverse) step sizes s, t satisfy
st > ‖T−1/2KS−1/2‖2, cf. [42, Lemma 1]. Interestingly,
as pointed out by [19, 11, 13], the formulation in (2)–(3)
provides a flexible framework for deriving various types
of proximal splitting algorithms, e.g. the proximal gradi-
ent method, Douglas-Rachford splitting, and (linearized)
ADMM. Proximal algorithms in form of (2)–(3) are partic-
ularly efficient when F , G admit separable structures and
S, T are diagonal. In this scenario, solutions of the sub-
problems in (2) and (3) refer to pointwise proximal evalu-
ations. Nonetheless, many research efforts have been de-
voted to further accelerating the convergence speed.

To this end, two categories of acceleration strategies are
envisaged: multi-step acceleration and preconditioning.
Classical (optimal) multi-step gradient descent methods are
attributed to [44, 38]. In the context of proximal algo-
rithms, the FISTA algorithm [4] was proposed as an accel-
erated proximal gradient method, and in [12] a multi-step
PDHG was devised.

Combinatorial Preconditioners for Proximal Algorithms on Graphs

On the other hand, a preconditioning technique aims to ac-
celerate convergence, typically through reducing the num-
ber of outer iterations, by choosing proper scaling matri-
ces S and T (also called the preconditioners in this con-
text). In contrast to their counterparts for solving linear sys-
tems, preconditioning techniques for proximal algorithms
are much less developed. Diagonal preconditioners for
PDHG were explored in [42]; Preconditioners for other
types of proximal algorithms [5, 23, 24, 35, 54, 7, 25, 20]
also appeared recently in the literature.

A consensus among all existing preconditioning ap-
proaches appears that, while favorably reducing the number
of outer iterations, preconditioning could explode the over-
all computational load by expensive inner proximal evalu-
ations. For example, for proximal gradient method in min-
imizing a sum of smooth and nonsmooth functions, using
the (approximate) Hessian of the smooth function as pre-
conditioner may attain superlinear convergence in the outer
iteration but also lead to very expensive proximal (or back-
ward) steps; see [35]. This is the reason why diagonal pre-
conditioners remain a popular choice in many recent works,
and non-diagonal preconditioners designed in [5, 54, 21] do
not deviate far from the diagonal ones.

In this work, we propose combinatorial preconditioners for
proximal algorithms based on a partitioning of the original
graph into forests. This leads to a class of block diagonal
preconditioners, and the resulting PDHG updates refer to
solving parallel subproblems on forests. We show how to
construct such preconditioners guided by theoretical esti-
mates of the condition number. Coupled with fast direct
solvers for proximal evaluation on forests, we achieve sig-
nificant performance boost for the PDHG algorithm across
a series of numerical tests.

2 Preconditioner and Condition Number

The choice of S and T can significantly influence the con-
vergence speed of the (generalized) PDHG scheme, (2)–
(3), in practice. In [42], Pock and Chambolle showed that
utilization of diagonal preconditioners S and T yields a vis-
ible performance boost in comparison with PDHG without
preconditioning (i.e. S = I, T = I). In a slightly different
context, Boyd et al. [16, 20, 23, 24, 25] also considered di-
agonal preconditioning strategies for other closely related
proximal algorithms. In particular, they suggested based
on extensive numerical experiments that an ideal choice of
S and T ought to minimize the (finite) condition number
κ(T−1/2KS−1/2) defined by

κ(·) :=
σmax(·)
σmin>0(·)

, (4)

i.e. the ratio between largest and smallest non-zero singular
value. This rule of thumb was computationally pursued by
so called matrix equilibration [16, 25, 1].

A more quantified connection between the convergence
rate of (2)–(3) and κ(T−1/2KS−1/2) can be drawn in a
more specific setting, e.g. G(u) = 1

2‖u − f‖2 for some
given f ∈ RV . By choosing s = 1, S = I in (2)–(3), one
comes up with the following proximal gradient iteration:

pk+1 = arg min
p∈RE

F ∗(p)

+
t

2
‖p−

(
pk − (tT)−1K(K>pk − f)

)
‖2T . (5)

When F ∗ = δQ is the indicator function of a polyhedral
set Q := {p ∈ RE : Ap ≤ b} it can be shown that
iteration (5) converges linearly [37]. More precisely, with
step size choice t = σmax(T−1/2K) the linear convergence
rate r ∈ [0, 1) can be derived (cf. [37, Theorem 11]) as:

r =
κ2 − 1

κ2 + 1
, κ = θ(T−1/2A, T−1/2K)σmax(T−1/2K),

where θ(·, ·) denotes Hoffman’s bound [29, 50]. In the ex-
treme case where F ∗ ≈ 0 (e.g., for strong regularizations),
Hoffman’s bound reduces to σmin>0(T−1/2K)−1 and κ
matches the condition number κ(T−1/2K).

In a general setting, a strong correlation between the con-
vergence speed and the condition number is supported by
the numerical evidences in Section 4.1 and Table 1.

3 Combinatorial Preconditioners

Following the discussion in the previous section, reducing
κ(T−1/2KS−1/2) provides a reasonable guideline for the
choice of preconditioners. As K is the weighted incidence
matrix of G, this boils down to constructing “good” ap-
proximations of the graph. Meanwhile, as discussed in the
introduction, the non-diagonal S or T could possibly ex-
plode the computational cost of the proximal evaluation in
(2)–(3). Hence, an ideal choice of preconditioners would
strike a balance between reduced (outer) iteration number
and costlier proximal evaluations per iteration.

Bearing this in mind, in this section we propose our combi-
natorial preconditioners based on graph partitioning. This
leads to a family of block diagonal preconditioners for T .
For simplicity we fix S = I in our development, and re-
mark that T can be adapted to work properly with any diag-
onal preconditioner S (e.g. the one used in [42]). In terms
of the update scheme (3), such preconditioning yields prox-
imal evaluation on respective partitioned subgraphs, which
can be efficiently carried out by using the state-of-the-art
direct solver on trees [34].

As a remark, there is a connection between our combina-
torial preconditioners and the subgraph preconditioners for
solving linear systems in graph Laplacians; see, e.g., [46]
and the references therein. Pioneered by Vaidya and his
coworkers in the early 1990s [49, 32], a series of works

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

are done in finding a subgraph preconditioner. An ideal
subgraph preconditioner uses a graph Laplacian on some
(low-stretch) spanning tree which best preserves connectiv-
ity between vertices in the original graph. In some sense,
our proposed combinatorial preconditioners are dual ana-
logues of the subgraph preconditioners.

In Section 3.1, we show how to construct T via graph parti-
tioning and under which sufficient conditions the condition
number κ(T−1/2K) can be (optimally) reduced. In Section
3.2, such sufficient conditions are algorithmically realized
by: (1) chains on regular grid; (2) nested forests on general
graph. In Section 3.3, we detail the message passing based
implementation of efficient proximal evaluation on forests.

3.1 Preconditioning via Graph Partitioning

Let the edge set E be partitioned into L mutually dis-
joint subsets, i.e. E =

⊔L
l=1 El, such that each subgraph

Gl = (V, El, ω|El) is a forest, i.e. Gl has no cycle. Corre-
spondingly, we define Pl as the canonical projection from
RE to REl , i.e. Plp = p|El for each p ∈ RE . Thus, the ma-
trixK can be decomposed into submatrices {Kl}Ll=1 where
each Kl = PlK ∈ R|El|×|V|. Analogously let ∇l = Pl∇
and ωl = ω|El . Note that each∇>l has full column rank.

We then define our preconditioners as follows

Tl := KlK
>
l ∀l ∈ {1, ..., L},

T :=

L∑
l=1

P>l TlPl.

It follows from (4) that

κ(T−1/2K) =

√
λmax(Π)

λmin>0(Π)
, (6)

Π := K>T−1K =

L∑
l=1

Πl, Πl := ∇>l (∇l∇>l)−1∇l. (7)

Indeed, each Πl is the orthogonal projection onto the sub-
space ran∇>l , and hence ran Πl = ran∇>l and ker Πl =
ker∇l. It follows immediately from (7) that

λmax(Π) ≤ L, (8)

and therefore it suffices for the sake of convergence to
choose step sizes s, t such that st > L.

In the remainder of Section 3.1, we show analytically how
certain graph partitions can attain optimal condition num-
ber κ(T−1/2K) in a two-partition scenario, i.e. L = 2.
The two-partition scenario is motivated from many applica-
tions where G is a 2D regular grid (whose maximum degree
equals 4). In this case, it is guaranteed by Nash-Williams’
theorem [36] that G can be covered by two disjoint forests.
Our theory suggests that either a chain decomposition or a

nested-forest decomposition makes a good preconditioner
on the 2D regular grid. Furthermore, the nested-forest pre-
conditioners further extend to any general weighted graph,
with aid of either the matroid partition algorithm [18] or
some greedy algorithm; see Section 3.2.2.

The following theorem derives a lower bound for
κ(T−1/2K) for a wide range of two-partition cases. We
denote by rank∇> the column rank of ∇>. In terms of
graph theory, rank∇> identifies the maximum number of
the edges in G that are cycle-free. T−1 is understood as
the Moore-Penrose pseudoinverse when T is singular. The
two assumptions rule out pathological cases where G is ei-
ther too sparse (e.g. cycle-free) or too dense (e.g. fully con-
nected). In the proof, we shall use Weyl’s inequality [51]:

λi+j−1(Π1 + Π2) ≤ λi(Π1) + λj(Π2), (9)

where i, j ≥ 1, i+ j − 1 ≤ |V|, and λi(·) denotes the i-th
largest eigenvalue of a real symmetric matrix.

Theorem 1. Let G be partitioned into two nonempty sub-
graphs G1 and G2 (not necessarily forests) such that

1. ran∇>1 ∩ ran∇>2) {0}.

2. rank∇> > min(rank∇>1 , rank∇>2).

Then we have κ(T−1/2K) ≥
√

2.

Proof. By Weyl’s inequality (9), we have λ1(Π) ≤
λ1(Π1) + λ1(Π2) = 2. Moreover, condition 1 ensures that
there exists some nonzero v ∈ RV with Πv = Π1v+Π2v =
2v. Hence, we must have λ1(Π) = 2.

Let r = rank∇>. Without loss of generality, we assume
rank∇>1 ≥ rank∇>2 . Hence r > rank∇>2 due to condi-
tion 2. Again using (9), we have λmin>0(Π) = λr(Π) ≤
λ1(Π1) +λr(Π2) = 1 + 0 = 1. Altogether, the conclusion
follows in view of (6).

We proceed to propose sufficient conditions for graph par-
titioning (in particular when L = 2) which guarantee opti-
mal condition number κ(T−1/2K) =

√
2.

Theorem 2. Let G be partitioned into two forests G1 and
G2. If the following conditions are satisfied

1. Π1Π2 = Π2Π1,

2. ker(Π1Π2) \ ker Π 6= ∅,

3. ran Π1 ∩ ran Π2) {0},

then κ(T−1/2K) =
√

2.

Proof. The proof of λmax(Π) = 2 is identical to that for
Theorem 1.

Combinatorial Preconditioners for Proximal Algorithms on Graphs

On the other hand, we have

λmin>0(Π) = min{〈u,Πu〉 /‖u‖2 : u ∈ ran Π, u 6= 0},
= min{

〈
v,Π3v

〉
/‖Πv‖2 : Πv 6= 0},

where by commutativity (i.e. condition 1)〈
v,Π3v

〉
‖Πv‖2

=
〈v,Π1v〉+ 〈v,Π2v〉+ 6 〈v,Π1Π2v〉
〈v,Π1v〉+ 〈v,Π2v〉+ 2 〈v,Π1Π2v〉

= 1 +
4 〈v,Π1Π2v〉

〈v,Π1v〉+ 〈v,Π2v〉+ 2 〈v,Π1Π2v〉
.

Note that Π1Π2 is an orthogonal projection onto ran Π1 ∩
ran Π2, and hence 〈v,Π1Π2v〉 ≥ 0 for all v. Meanwhile,
condition 2 asserts that Πv 6= 0 and 〈v,Π1Π2v〉 = 0 for
some v. Altogether, λmin>0(Π) = 1 and the conclusion
follows.

Theorem 3. Let G be partitioned into L (nonempty) nested
forests, namely {Gl}Ll=1, in the sense that

ran Π1 = ... = ran Πl̂) ran Πl̂+1 ⊇ ... ⊇ ran ΠL.

Then we have κ(T−1/2K) =

√
L/l̂.

Proof. Recall (8) that λmax(Π) ≤ L. Indeed, we have
λmax(Π) = L since Πv = Lv for any nonzero v ∈ ran ΠL.
On the other hand, note that ran Π = ran Π1 = ... =
ran Πl̂. Therefore, for all v ∈ ran Π, we have〈v,Πv〉 ≥∑l̂
l=1 〈v,Πlv〉 = l̂‖v‖2 and the equality holds when v ∈

ran Π \ ran Πl̂+1. This gives λmin>0(Π) = l̂, which con-
cludes the proof.

3.2 Two Classes of Forest Preconditioners

Given the abstract conditions from Theorem 2 and 3 under
which graph partitioning achieves optimal condition num-
ber, the question remains whether such partitions exist and
how they can be constructed in practice. In the following
section we propose optimal partitioning approaches, de-
pending on the topology of the underlying graph. We first
focus on regular grid graphs, which are ubiquitous in signal
processing and computer vision applications.

3.2.1 Chains on Regular Grid

Formally, d-dimensional grid graphs are given as the d-
fold Cartesian product G = P1 � . . . �Pd between path
graphs {Pl}dl=1, Pl = ({1, . . . , nl}, {(i, i + 1)}nl−1

i=1).
For ease of presentation we will focus mostly on two
dimensional grids. Recall that the Cartesian product
(V1, E1)� (V2, E2) yields a graph with vertex set V1 × V2.
In that graph, two vertices (v1, v2) and (v′1, v

′
2) are adja-

cent if and only if v1 = v′1 and v2 is adjacent to v′2 or
v2 = v′2 and v1 is adjacent to v′1. Whether a given graph

is a grid graph can be tested in linear time [30]. The pro-
cedure described in [30] yields a natural decomposition of
the d-dimensional grid into d linear forests, i.e., a forest in
which every tree is a path graph. Moreover, in the afore-
mentioned decomposition, each forest consists of paths of
equal length. To be precise, in the case d = 2 the decom-
position is given by

G1 = In2
�P1, G2 = P2 � In1

, (10)

where In = ({1, . . . , n}, ∅). We refer to the connected
components of G1 as horizontal chains and G2 as vertical
chains. Such a natural splitting into chains enjoys a theo-
retically optimal condition number among the large class
of decompositions characterized by Theorem 1.

Theorem 4. Let G = P1 �P2 be a regular grid of dimen-
sion n1 × n2 (n1, n2 ≥ 3). The condition number in the
unpreconditioned case is bounded by

κ(K) ≥
√

2 max(n1, n2)/
√
π2/2. (11)

The natural partitioning of G into two linear forests (10)
achieves condition number

κ
(
T−1/2K

)
=
√

2. (12)

Proof. The bound (11) follows from elementary results in
spectral graph theory. The spectrum {λi} of a path graph
of dimension n is λi = 2−2 cos(πi/n), i ∈ {1, ..., n−1},
see [9, Section 1.4.4]. The spectrum of the Cartesian prod-
uct graph is given by the summing all pairs of eigenvalues
of the individual graphs, cf. [9, Section 1.4.6]. Using the
inequality 1− cos(x) ≤ x2/2 we have

κ(K)2 =
2−

∑2
l=1 cos

(
π(nl−1)

nl

)
1− cos

(
π

max(n1,n2)

) ≥ 2 max(n1, n2)2

π2/2
.

To show (12) it suffices to verify the three conditions in
Theorem 2. Denoting by 1n the ones-vector and by ⊗ the
Kronecker product, the projections are explicitly given by

Π1 = In2 ⊗
(
In1 −

1

n1
(1n11

>
n1

)

)
,

Π2 =

(
In2
− 1

n2
(1n2

1>n2
)

)
⊗ In1

.

Since (A ⊗ B)(C ⊗ D) = (AC ⊗ BD), the condition
Π1Π2 = Π2Π1 from Theorem 2 follows directly.

Now note that each projection Πi subtracts the mean on the
chains it contains. Conditions 2 and 3 can be verified by
counting dimensions. For condition 2, simply pick nonzero
u ∈ RV to be constant along chains in P1 but non-constant
along chains in P2. For condition 3, pick nonzero u ∈ RV
that is zero-mean on the chains in both P1 and P2.

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

No preconditioning
κ(K) = 6.41

Greedy linear forests
κ(T−1/2K) = 5.13

Greedy nested forests
κ(T−1/2K) =

√
3

Matroid partitioning
κ(T−1/2K) =

√
2

Figure 1: Overview of the proposed graph decompositions on an example graph (|V| = 96, |E| = 150). The decomposition
into linear forests does not satisfy the assumptions of Theorem 3 and does not lead to a significant reduction in condition
number. While the greedy nested forest decomposition satisfies the assumptions, it finds a partition into three spanning
forests leading to a suboptimal condition number. The matroid approach guarantees the best possible condition number.

We remark that the above results can be general-
ized to the d-dimensional setting, yielding κ(K) ≥√
d(maxi ni)/

√
π2/2 and κ

(
T−1/2K

)
=
√
d. Remark-

ably the chains preconditioning mentioned above makes
the condition number independent of the grid size, while
for the unpreconditioned case, it exhibits linear growth with
respect to the largest grid dimension.

Furthermore, the splitting into chains leads to a particularly
efficient evaluation of the dual subproblem in PDHG as we
will see later on. Together with the theoretically optimal
condition number, this makes the chains the number one
choice of preconditioner for the regular d-dimensional grid.

3.2.2 Nested Forests on General Graphs

Matroid partitioning. The situation on general graphs is
more involved than on grid graphs. Inspired by Theorem
3, we seek to partition G into nested forests such that the
number of forests is minimal, i.e. equal to the arboricity of
the graph [36]. If G is connected, the arboricity of G can be
calculated as: max

{
d |EG′ ||VG′ |−1

e : VG′ ⊂ VG , EG′ ⊂ EG
}

.

It turns out that the classical matroid partitioning algorithm
by Edmonds [18] meets our requirements. In short, matroid
partitioning progressively inserts an idle edge into the for-
est partitions. To preserve all partitions cycle-free, it relies
on a primitive operation which detects a simple cycle (also
called circuit) whenever this occurs due to the insertion of
a new edge into a forest. By the nature of the algorithm, the
resulting partitions are guaranteed to be (a minimal number
of) nested forests, and hence realize the condition posed in
Theorem 3.

In spite of such favorable properties of matroid partition-
ing, its complexity grows like O(|E|3 + |E|2L), cf. [33],
making its application prohibitive for large graphs.

Greedy nested forests. As a remedy, we propose the fol-
lowing “greedy nested forests” heuristic: given the input
graph G we successively subtract a spanning forest until

Nested Forest
No Precond. Linear Forest Greedy Matroid

|E|
|V| κ2 it κ2 it κ2 it κ2 it

0.68 53.8 1624 24.9 789 1 36 1 36
1.11 257.0 6245 148.7 3782 2 80 2 80
2.36 82.2 2061 14.1 577 4 143 3 103
2.98 27.7 1010 12.4 484 5 194 4 137
4.25 24.9 800 10.1 419 7 254 5 166
6.48 7.7 367 5.6 176 10 362 1.75 59

Table 1: Comparison of condition number and PDHG iter-
ations for various forest strategies on small random graphs
(|V| = 512) with varying edge to vertex ratio m

n .

no edges remain. The individual subtracted forests form
the graph partitioning {Gl}Ll=1. While this greedy approach
does not guarantee a minimal number of forests L, the par-
tition still satisfies the assumption of Theorem 3. Indeed,
each edge in the forest Gl can be represented by a path in
Gl−1 since adding that edge from Gl to Gl−1 would form a
cycle due to the spanning forest property.

Greedy linear forests. Since the dual update can be com-
puted very efficiently for linear forests we modify the above
procedure to yield a linear forest decomposition. Before
subtracting the spanning forest from the residual graph, we
remove all edges which contain a vertex with degree larger
than 2. In addition, we check whether it is possible to add
any edges from the residual graph to the current linear for-
est without turning it into a general forest.

In Table 1 we show the condition number for the differ-
ent partitioning strategies on small random Erdős-Renyi
graphs of varying average degree. While the matroid par-
titioning strategy finds the lowest condition number, both
greedy heuristics also lead to a reduction in condition num-
ber for most cases. The greedy nested forest heuristic
works best for graphs with low edge-to-vertex ratio, while
the linear forest heuristic is preferable for dense graphs.

Combinatorial Preconditioners for Proximal Algorithms on Graphs

Algorithm 1 Total variation on a forest [34, Algorithm 2].

Input: Weighted forest Gl = (V, El, ωl), fl ∈ RV .
for each tree T = (V ′, E ′, ω′) in Gl do

// Message passing from leaves to the root.
for each (i, j) ∈ E ′ from leaves to root r ∈ V ′ do
m̂i(u) = u− fl,i +

∑
(j,i)∈E′ m̂j,i(u).

mi,j(u) = clip[−ω′i,j , ω′i,j]
(m̂i(u)).

find λ−i,j , λ
+
i,j which satisfy both

m̂i(λ
−
i,j) = −ω′i,j , m̂i(λ

+
i,j) = ω′i,j .

end for
// Compute solution on tree.
Solve m̂r(vl,r) = 0 for vl,r.
for each (i, j) ∈ E ′ from root toward leaves do
vl,i = clip[λ−i,j ,λ

+
i,j]

(vl,j).
end for

end for
Output: vl ∈ RV .

3.3 Proximal Evaluation on Forests

In this section we will discuss how the dual update (3) is
computed for our combinatorial preconditioner T . Assum-
ing that F ∗ is separable across the subgraphs {Gl}Ll=1,

F ∗(p) =

L∑
l=1

F ∗l (p|El),

the dual update (3) decomposes into parallel problems:

pk+1|El = arg min
p∈REl

t

2
‖p− pk|El‖2Tl

+ F ∗l (p)

−
〈
Kūk+1|El , p

〉
, ∀ 1 ≤ l ≤ L. (13)

Let us now further assume that the individual Gl are forests
and F (·) = ‖ · ‖1.

Expanding the norm ‖ · ‖2Tl
and completing the square in

(13) leads to the problem

pk+1|El = arg min
‖p‖∞≤1

1

2
‖K>l p+ fl‖2, (14)

with fl = −K>l (pk|El)− (2uk+1 − uk)/t. The dual prob-
lem to (14) is given by

vl = arg min
u∈RV

1

2
‖u− fl‖2 + ‖Klu‖1. (15)

This further parallelizes into weighted total variation prob-
lems on the individual trees in the forest Gl. These prob-
lems can be handled due to recent advances in direct total-
variation solvers; see [15, 17, 31, 14, 3, 34]. The original
taut-string algorithm [15, 17] solves the 1D total-variation
problem in O(n) iterations on a chain. Condat [14] pro-
posed an algorithm which has worst-case O(n2) complex-
ity but it achieves good performance in practice. Barbero

Algorithm 2 PDHG with combinatorial preconditioning
for total variation minimization on weighted graphs.

Input: u0 ∈ RV , p0 ∈ RE , G = (V, E , ω).
Compute decomposition of G into forests {Gl}Ll=1.
Pick s, t > 0 satisfying st > L.
for k ≥ 0 while not converged do

// primal update
uk+1 = arg minu

s
2‖u−u

k‖2 +
〈
K>pk, u

〉
+G(u).

ūk+1 = 2uk+1 − uk.
// dual update
for each forest l = 1 . . . L do
fl = −K>l (pk|El)− ūk+1/t.
Obtain vl through (15) on forest Gl.
Obtain pk+1|El by K>l p

k+1
l = vl − fl.

end for
end for

and Sra [3] proposed a generalization of the taut-string ap-
proach to the case of weighted total variation which runs in
O(n). The approach proposed by Johnson [31] also runs
in O(n) time, works for weighted total variation and has
good practical performance. Furthermore, a more mem-
ory efficient implementation of Johnson’s algorithm gener-
alization to trees was proposed by Kolmogorov et al. [34] –
which appears to be state-of-the-art. We use our implemen-
tation of the algorithm proposed by Kolmogorov et al. [34]
to find the exact minimizer on each tree. The algorithm
computes derivatives of messages M̂i : R → R and
Mi,j : R → R for (i, j) ∈ E and i, j ∈ V in the order
from leaves toward the root, which are defined as the fol-
lowing:

M̂i(u) =
1

2
(u− fl,i)2 +

∑
(k,i)∈E

Mk,i(u),

Mi,j(u) = min
u∈R

[
M̂i(u) + ωi,j |uj − u|

]
.

The derivatives are denoted as m̂i := M̂ ′i , and mi,j :=
M ′i,j . The procedure is summarized in Algorithm 1.

After running Algorithm 1 for each forest Gl, the solution
pk+1|El to (14) is given by the optimality condition

K>l p
k+1|El = vl − fl.

Since each Gl is a forest, the corresponding K>l matrix has
full column rank which implies that the linear system has a
unique solution. Rows of K>l corresponding to leaf nodes
in the tree contain exactly one nonzero element. There-
fore, we solve the linear equation by starting from leaves
toward the root. Consistency on the branch nodes is guar-
anteed due to the uniqueness of the solution. Even though
we only discussed the case of total variation F (·) = ‖ · ‖1,
we remark that for various other choices of F (e.g., Huber
penalty) efficient solvers on trees are conceivable.

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

Instance None [11] Diagonal [42] Nested Forest Linear Forest
name |V|

1024
|E|
|V| it time[s] it time[s] it time[s] it time[s]

synthetic
rmf-long.n2 64 2.87 – – – – 1794 62.9 (+0.7) 5070 24.4 (+1.2)
rmf-wide.n2 32 2.84 – – – – 159 2.6 (+0.3) 23518 62.2 (+0.6)
wash-rlg-long.n1024 64 2.99 73309 134.1 (+9.4) 14333 49.7 (+0.0) 5848 373.9 (+0.8) 18798 108.7 (+1.3)
bisection
horse-48112 47 2.99 – – 21593 38.3 (+0.0) 964 33.9 (+0.3) 19145 90.4 (+2.8)
alue7065-33338 33 1.61 – – 23218 21.5 (+0.0) 2499 21.4 (+0.17) 49452 99.4 (+1.7)
stereo
BVZ-venus1* 162 1.99 9068 20.8 (+7.9) 3741 20.2 (+0.0) 1111 90.7 (+0.9) 414 1.9 (+0.1)
BVZ-venus2* 162 1.99 10099 24.4 (+7.9) 3124 17.2 (+0.0) 1065 88.8 (+0.9) 384 1.7 (+0.1)
KZ2-sawtooth1 310 2.91 96974 736.5 (+31.8) 3468 51.7 (+0.0) 336 102.8 (+3.0) 526 14.9 (+6.1)
KZ2-sawtooth2 294 2.79 95849 675.3 (+33.1) 3520 48.2 (+0.0) 432 124.8 (+2.9) 652 15.7 (+5.8)
misc vision
texture graph 9 4.76 4860 1.6 (+1.45) 3554 1.9 (+0.0) 1091 9.12 (+0.1) 1669 1.7 (+0.3)
lazybrush-mangagirl* 579 1.99 – – – – 13318 5727.3 (+3.3) 6330 95.4 (+0.4)
imgseggmm-ferro 231 3.98 3594 32.2 (+75.9) 5806 95.0 (+0.0) 786 276.8 (+4.4) 775 25.6 (+3.1)

Table 2: We compare the number of iterations and time required to reach a relative primal dual gap of less than 10−10 on
various graph cut instances. The time for constructing the preconditioners is shown in brackets (for “None” it is the time
taken to estimate σmax(K)). “–” indicates that the method failed to reach the desired tolerance within 105 iterations. “*”
indicates that the graph has grid toplogy.

4 Numerical Validation

The preconditioned PDHG algorithm (2)–(3) for total vari-
ation minimization on weighted graphs is summarized in
Algorithm 2. We assume that the primal update can be ef-
ficiently computed, e.g. if G is separable.

For the experiments we compare the proposed precondi-
tioners to the unpreconditioned variant of PDHG (S = I ,
T = I , s = ‖K‖, t = ‖K‖), the diagonal preconditioners
from [42] with choice of α = 1 and s = t = 1. When using
the proposed preconditioners we employ the balanced step
size choice s =

√
L, t =

√
L.

We implemented all algorithms in MATLAB, whereas time
critical parts such as the total variation solver on a tree (Al-
gorithm 1) were implemented in C++.

4.1 Generalized Fused Lasso

The fused lasso [48], also known as the Rudin-Osher-
Fatemi (ROF) model [45] to the image processing commu-
nity is readily generalized to graphs:

min
u∈RV

1

2
‖u− f‖2 + ‖Ku‖1. (16)

Despite its simplicity, this model has a plethora of applica-
tions in statistics [52], machine learning [27, 8] and com-
puter vision [47, 39], often as a subproblem in sequential
convex programming for nonconvex minimization.

We solve (16) using the accelerated PDHG variant ([11, Al-
gorithm 2], γ = 0.25) since the energy (16) is 1-strongly
convex. In Table 1 we compare the number of iterations

required to solve (16) on small random graphs. We stop the
algorithm once the relative primal-dual gap drops below
10−12. It can be observed that there is a clear correlation
between the condition number κ(T−1/2K) and the num-
ber of required iterations, validating the discussion from
Section 2. The optimal preconditioning based on matroid
partitioning performs best.

We further validate our preconditioner on the maximum
flow benchmark [26]1. It is well known (cf. [10, 42]) that
the minimum cut in a flow network can be obtained by
thresholding the minimizing argument of (16). We remark
that graph cuts can be efficiently found by highly special-
ized combinatorial solvers such as that in [26]. The point of
this experiment is, however, to compare different precondi-
tioners for continuous first-order algorithms on challenging
real-world graphs.

In Table 2, we show iterations and run time for the pro-
posed forest preconditioners, the unpreconditioned PDHG
algorithm and the diagonal preconditioners [42]. Due to
the size of the graphs, matroid partitioning is intractable,
and we resort to the greedy nested forest and linear forest
approaches. Combinatorial preconditioning consistently
leads to a significant decrease in iterations. In all except
one case, the overall lowest run time is achieved either by
linear forest decomposition or greedy nested forest decom-
position. Despite the huge decrease in the total number
of outer iterations for the nested forest preconditioning, in
some cases, the overall run time is worse than without pre-
conditioning. This motivates the construction of precon-
ditioners like the greedy linear forests. These are clearly

1http://www.cs.tau.ac.il/˜sagihed/ibfs/

http://www.cs.tau.ac.il/~sagihed/ibfs/

Combinatorial Preconditioners for Proximal Algorithms on Graphs

Input (625× 391) + Scribbles Result (11 PDHG iterations)

Figure 2: Interactive image segmentation. Combinatorial
preconditioning works particularly well for graphs with un-
derlying grid topology. The multiclass segmentation shown
on the right is obtained after only 11 PDHG iterations.

suboptimal with respect to condition number, but yield a
good balance between efficient resolution of the backward
step and the number of outer iterations. The chains on reg-
ular grid achieve the best of both worlds and lead to an
improvement in runtime of an order of magnitude.

4.2 Multiclass Segmentation

As a second example, we consider the multiclass total vari-
ation segmentation problem

min
u∈R|V|×C

∑
i∈V

δ{ui ∈ ∆C}+ εH(ui) + 〈ui, ρi〉+ ‖Ku‖1,

under entropic regularization H(ui) =
∑C
c=1 ui,c log ui,c.

δ{ui ∈ ∆C} is the indicator function of the C-dimensional
unit simplex ∆C ⊂ RC .

The above model has various important applications in
vision [53, 40] and transductive learning [22]. As the
entropy term renders the objective (1/ε)-strongly convex
we can again use the accelerated PDHG algorithm ([11,
Algorithm 2] with γ = 1/ε). We set ε = 1 for all
experiments. Note that the model fits the general sad-
dle point problem (1) under the choice F (p) = ‖p‖1,
G(u) =

∑
i∈V δ{ui ∈ ∆C}+ εH(ui) + 〈ui, ρi〉. To com-

pute the proximal subproblem in (2) we first observe that
G∗(v) =

∑
i∈V ε log

(∑C
c=1 exp ((vi,c − ρi,c)/ε)

)
.

Thanks to Moreau’s identity we reduce (2) to the proximal
evaluation ofG∗, for which a few Newton iterations suffice.
In Table 3 we compare the performance of our combinato-
rial preconditioners on two of the aforementioned applica-
tions. For the transductive learning scenario, we follow the
procedure described in [22] to generate a k-nearest neigh-
bour graph (k = 10) on the synthetic “three moons” data
set. As in [22], the data term ρ ∈ R|V|×C specifies the cor-
rect labels for 5% of the points. We report a similar final
accuracy (98.9%) as the authors of [22]. As seen in Table 3,
the nested forest preconditioning performs best.

For the second application, we consider interactive image
segmentation [40]. Following that paper, we compute the
data term ρ from user scribbles (see Fig. 2). The weights

None [11] Diag. [42] Nest. Forest Lin. Forest
name it (time[s]) it (time[s]) it (time[s]) it (time[s])

3MOONS 333 (2.8) 474 (8.2) 88 (1.1) 303 (3.1)

icgbench-1* 113 (47.0) 131 (41.3) 52 (41.9) 13 (3.1)
icgbench-2* 124 (54.7) 159 (54.1) 58 (47.9) 11 (2.6)
icgbench-3* 78 (29.1) 95 (25.9) 42 (27.2) 9 (1.6)

Table 3: We compare iterations and time (in brackets) re-
quired for PDHG under various choices of preconditioner
to reach a relative primal-dual gap less than 5 · 10−4.
On general graphs, the greedy nested forests perform well
while on regular grids (indicated with “*”) the linear forest
decomposition into chains works best.

are chosen based on the input image I ∈ R|V|×3 as

ωi,j = exp
(
−ξ‖Ii − Ij‖2

)
, ∀(i, j) ∈ E .

This essentially encourages the segmentation boundary to
coincide with image discontinuities. We use a fixed scale
parameter ξ = 0.1 in all experiments. The performance of
the different preconditioning strategies is shown in Table 3.
Due to the underlying grid topology the natural linear forest
decomposition into chains can be employed, which outper-
forms the other preconditioners and PDHG without precon-
ditioning by an order of magnitude. While the nested forest
preconditioner is competitive w.r.t. iterations, the proximal
subproblem on the large spanning tree is very expensive. In
contrast, the subproblem on the short chains can be com-
puted efficiently.

5 Conclusion

We proposed a novel combinatorial preconditioner for
proximal algorithms on weighted graphs. The precondi-
tioner is driven by a disjoint decomposition of the edge
set into forests. Our theoretical analysis provides condi-
tions under which such a decomposition achieves an opti-
mal condition number. Furthermore, we have shown how
provably optimal preconditioners can be obtained: on two-
dimensional regular grids by a splitting into horizontal and
vertical chains, on general graphs by means of matroid par-
titioning. We additionally proposed two fast heuristics to
construct reasonable preconditioners on large scale graphs.
We demonstrated how the resulting scaled proximal evalu-
ations can be carried out by means of an efficient message
passing algorithm on trees. In an extensive numerical eval-
uation we confirmed practical gains of preconditioning in
terms of overall runtime as well as outer iteration numbers.

Acknowledgements

We thank Thomas Windheuser for fruitful discussions on
combinatorial preconditioning. We gratefully acknowledge
the support of the ERC Consolidator Grant 3D Reloaded.

Thomas Möllenhoff, Zhenzhang Ye, Tao Wu, Daniel Cremers

References
[1] Z. Allen-Zhu, Y. Li, R. Oliveira, and A. Wigder-

son. Much faster algorithms for matrix scaling. In
Proceedings of the 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS, 2017.

[2] K. J. Arrow, L. Hurwicz, and H. Uzawa. Studies in
Linear and Nonlinear Programming. Stanford Uni-
versity Press, 1958.

[3] A. Barbero and S. Sra. Modular proximal optimiza-
tion for multidimensional total-variation regulariza-
tion. arXiv:1411.0589, 2014.

[4] A. Beck and M. Teboulle. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2:183–202, 2009.

[5] S. Becker and M. J. Fadili. A quasi-Newton proximal
splitting method. In Proceedings of the 26th Interna-
tional Conference on Neural Information Processing
Systems, NIPS, 2012.

[6] K. Benzi, V. Kalofolias, X. Bresson, and P. Van-
dergheynst. Song recommendation with non-negative
matrix factorization and graph total variation. In Pro-
ceedings of the 42nd IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP,
2016.

[7] K. Bredies and H. Sun. Preconditioned Douglas–
Rachford splitting methods for convex-concave
saddle-point problems. SIAM J. Numer. Anal., 53:
421–444, 2015.

[8] X. Bresson, T. Laurent, D. Uminsky, and
J. Von Brecht. Multiclass total variation clus-
tering. In Proceedings of the 27th International
Conference on Neural Information Processing
Systems, NIPS, 2013.

[9] A. E. Brouwer and W. H. Haemers. Spectra of
Graphs. Springer, 2012.

[10] A. Chambolle and J. Darbon. On total variation mini-
mization and surface evolution using parametric max-
imum flows. Int. J. Comput. Vis., 84:288–307, 2009.

[11] A. Chambolle and T. Pock. A first-order primal-dual
algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis., 40:120–145, 2011.

[12] A. Chambolle and T. Pock. On the ergodic con-
vergence rates of a first-order primal–dual algorithm.
Math. Program., 159:253–287, 2016.

[13] A. Chambolle and T. Pock. An introduction to con-
tinuous optimization for imaging. Acta Numer., 25:
161–319, 2016.

[14] L. Condat. A direct algorithm for 1D total variation
denoising. IEEE Signal Process. Lett., 20:1054–1057,
2013.

[15] P. L. Davies and A. Kovac. Local extremes, runs,
strings and multiresolution. Ann. Stat., 29:1–48,
2001.

[16] S. Diamond and S. Boyd. Stochastic matrix-free equi-
libration. J. Optim. Theory Appl., 172:436–454, 2017.

[17] L. Dümbgen and A. Kovac. Extensions of smoothing
via taut strings. Electron. J. Stat., 3:41–75, 2009.

[18] J. Edmonds. Minimum partition of a matroid into in-
dependent subsets. J. Res. Natl. Bur. Standards, 69B:
67–72, 1965.

[19] E. Esser, X. Zhang, and T. F. Chan. A general frame-
work for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM J.
Imaging Sci., 3:1015–1046, 2010.

[20] C. Fougner and S. Boyd. Parameter selec-
tion and pre-conditioning for a graph form solver.
arXiv:1503.08366, 2015.

[21] M. P. Friedlander and G. Goh. Efficient evaluation of
scaled proximal operators. Electron. Trans. Numer.
Anal., 46:1–22, 2017.

[22] C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi,
A. Flenner, and A. G. Percus. Multiclass data seg-
mentation using diffuse interface methods on graphs.
IEEE Trans. Pattern Anal. Mach. Intell., 36(8):1600–
1613, 2014.

[23] P. Giselsson and S. Boyd. Diagonal scaling in
Douglas-Rachford splitting and ADMM. In Proceed-
ings of the 53rd IEEE Conference on Decision and
Control, CDC, 2014.

[24] P. Giselsson and S. Boyd. Preconditioning in fast dual
gradient methods. In Proceedings of the 53rd IEEE
Conference on Decision and Control, CDC, 2014.

[25] P. Giselsson and S. Boyd. Metric selection in fast
dual forward–backward splitting. Automatica, 62:1–
10, 2015.

[26] A. Goldberg, S. Hed, H. Kaplan, R. Tarjan, and
R. Werneck. Maximum flows by incremental breadth-
first search. European Symposium on Algorithms,
ALGO ESA, 2011.

[27] M. Hein and S. Setzer. Beyond spectral clustering –
tight relaxations of balanced graph cuts. In Proceed-
ings of the 25th International Conference on Neural
Information Processing Systems, NIPS, 2011.

[28] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram.
The total variation on hypergraphs – learning on hy-
pergraphs revisited. In Proceedings of the 27th Inter-
national Conference on Neural Information Process-
ing Systems, NIPS, 2013.

[29] A. J. Hoffman. On approximate solutions of systems
of linear inequalities. J. Res. Natl. Bur. Standards, 49:
263–265, 1952.

Combinatorial Preconditioners for Proximal Algorithms on Graphs

[30] W. Imrich and I. Peterin. Recognizing Cartesian prod-
ucts in linear time. Discrete Math., 307:472–483,
2007.

[31] N. A. Johnson. A dynamic programming algorithm
for the fused lasso and l0-segmentation. J. Comput.
Graph. Stat., 22(2):246–260, 2013.

[32] A. Joshi. Topics in Optimization and Sparse Linear
Systems. PhD thesis, UIUC, 1997.

[33] D. E. Knuth. Matroid partitioning. Technical report,
Stanford University, 1973.

[34] V. Kolmogorov, T. Pock, and M. Rolinek. Total vari-
ation on a tree. SIAM J. Imaging Sci., 9:605–636,
2016.

[35] J. D. Lee, Y. Sun, and M. A. Saunders. Proxi-
mal Newton-type methods for minimizing composite
functions. SIAM J. Optim., 24:1420–1443, 2014.

[36] C. S. A. Nash-Williams. Decomposition of finite
graphs into forests. J. London Math. Soc., 39:12–12,
1964.

[37] I. Necoara, Y. Nesterov, and F. Glineur. Linear con-
vergence of first order methods for non-strongly con-
vex optimization. arXiv:1504.06298, 2015.

[38] Y. Nesterov. A method for solving the convex pro-
gramming problem with convergence rate O(1/k2).
Soviet Mathematics Doklady, 269:543–547, 1983.

[39] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison.
DTAM: Dense tracking and mapping in real-time. In
Proceedings of the 13th International Conference on
Computer Vision, ICCV, 2011.

[40] C. Nieuwenhuis and D. Cremers. Spatially varying
color distributions for interactive multilabel segmen-
tation. IEEE Trans. Pattern Anal. Mach. Intell., 35
(5):1234–1247, 2013.

[41] N. Parikh and S. Boyd. Proximal algorithms. Founda-
tions and Trends in Optimization, 1:123–231, 2013.

[42] T. Pock and A. Chambolle. Diagonal preconditioning
for first order primal-dual algorithms in convex op-
timization. In Proceedings of the 13th International
Conference on Computer Vision, ICCV, 2011.

[43] T. Pock, D. Cremers, H. Bischof, and A. Chambolle.
An algorithm for minimizing the piecewise smooth
Mumford-Shah functional. In Proceedings of the 11th
International Conference on Computer Vision, ICCV,
2009.

[44] B. T. Polyak. Some methods of speeding up the
convergence of iteration methods. USSR Computa-
tional Mathematics and Mathematical Physics, 4:1–
17, 1964.

[45] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total
variation based noise removal algorithms. Physica D:
Nonlinear Phenomena, 60(1):259–268, 1992.

[46] D. A. Spielman. Algorithms, graph theory, and linear
equations in Laplacian matrices. In Proceedings of
the International Congress of Mathematicians, ICM,
2010.

[47] J. Stühmer, S. Gumhold, and D. Cremers. Real-time
dense geometry from a handheld camera. In Proceed-
ings of the 32nd DAGM Symposium on Pattern Recog-
nition, 2010.

[48] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and
K. Knight. Sparsity and smoothness via the fused
lasso. J. R. Stat. Soc., 67(1):91–108, 2005.

[49] P. M. Vaidya. Solving linear equations with sym-
metric diagonally dominant matrices by construct-
ing good preconditioners. (A talk based on the
manuscript was presented at the IMA Workshop
on Graph Theory and Sparse Matrix Computation),
1991.

[50] P.-W. Wang and C.-J. Lin. Iteration complexity of
feasible descent methods for convex optimization. J.
Mach. Learn. Res., 15:1523–1548, 2014.

[51] H. Weyl. Das asymptotische Verteilungsgesetz der
Eigenwerte linearer partieller Differentialgleichungen
(mit einer Anwendung auf die Theorie der Hohlraum-
strahlung). Mathematische Annalen, 71:441–479,
1912.

[52] B. Xin, Y. Kawahara, Y. Wang, and W. Gao. Efficient
generalized fused Lasso and its application to the di-
agnosis of Alzheimer’s disease. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence,
2014.

[53] C. Zach, D. Gallup, J.-M. Frahm, and M. Nietham-
mer. Fast global labeling for real-time stereo using
multiple plane sweeps. In Proceedings of the Vision,
Modeling and Visualization Workshop, 2008.

[54] K. Zhong, I. E. H. Yen, I. S. Dhillon, and P. Raviku-
mar. Proximal quasi-Newton for computationally in-
tensive `1-regularized M -estimators. In Proceedings
of the 28th International Conference on Neural Infor-
mation Processing Systems, NIPS, 2014.

[55] M. Zhu and T. F. Chan. An efficient primal-dual
hybrid gradient algorithm for total variation image
restoration. CAM Reports 08-34, UCLA, 2008.

	Introduction
	Preconditioner and Condition Number
	Combinatorial Preconditioners
	Preconditioning via Graph Partitioning
	Two Classes of Forest Preconditioners
	Chains on Regular Grid
	Nested Forests on General Graphs

	Proximal Evaluation on Forests

	Numerical Validation
	Generalized Fused Lasso
	Multiclass Segmentation

	Conclusion

