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The Primal-Dual Hybrid Gradient Method for Semiconvex Splittings∗
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Abstract. This paper deals with the analysis of a recent reformulation of the primal-dual hybrid gradient
method, which allows one to apply it to nonconvex regularizers. Particularly, it investigates varia-
tional problems for which the energy to be minimized can be written as G(u) + F (Ku), where G is
convex, F is semiconvex, and K is a linear operator. We study the method and prove convergence
in the case where the nonconvexity of F is compensated for by the strong convexity of G. The
convergence proof yields an interesting requirement for the choice of algorithm parameters, which
we show to be not only sufficient, but also necessary. Additionally, we show boundedness of the
iterates under much weaker conditions. Finally, in several numerical experiments we demonstrate
effectiveness and convergence of the algorithm beyond the theoretical guarantees.
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1. Introduction. One of the most successful and popular approaches to ill-posed inverse
problems, particularly those arising in imaging and computer vision, is variational methods.
Typically, one designs an energy functional E : X → R ∪ {∞}, which maps an image u
from a Banach space X to a number on the extended real value line, such that a low energy
corresponds to an image with desired properties. The solution is then determined by finding
the argument that minimizes the corresponding energy functional. In this paper we are
concerned with energies that can be written as

E(u) = G(u) + F (Ku).

In many cases G(u) can be interpreted as a data fidelity term enforcing some kind of fidelity
to the measurements, and F (Ku) serves as a regularization term which incorporates prior
information about Ku, where K denotes a linear operator.

One property that many functionals appearing in practice have in common is that both
G and F often have easy-to-evaluate proximity operators; i.e., the minimization problem

(I + τ∂G)−1 (v) = argmin
u

G(u) +
1

2τ
‖u− v‖22

can be solved efficiently to a high precision or even has a closed-form solution. This observation
has lead to many very efficient optimization methods, such as the primal-dual hybrid gradient
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(PDHG) method [10, 33, 43], the alternating minimization algorithm (AMA) or equivalently
proximal forward-backward splitting (PFBS), and the alternating directions method of mul-
tipliers (ADMM). We refer the reader to [17, 23, 37] for a detailed overview of these different
splitting methods and their connections.

Although the majority of the proposed variational approaches in image processing and
computer vision have focused on the use of convex functionals, there are many interesting
nonconvex functionals such as the Mumford–Shah functional [27] or the related piecewise
smooth approximations [8, 26], nonconvex regularizers such as TVq approaches motivated by
natural image statistics (cf. [21, 24]), nonconvex constraints such as orthogonality constraints
or spherical constraints (cf. [41] and the references therein), or application/model-dependent
nonconvex functionals for which the prior knowledge cannot be appropriately represented in
a convex framework (cf., e.g., [16]). Interestingly, the proximity operators of the nonconvex
functions can often still be evaluated efficiently, such that splitting approaches seem to be a
very effective choice even in the nonconvex case.

This paper investigates the use of a particular splitting-based optimization technique for
certain nonconvex F with easy-to-evaluate proximity operators. As we will see, the proposed
algorithm coincides with the PDHG method in the convex case, but is reformulated such that
it can be applied in a straightforward fashion even to energies with nonconvex regularization
functionals. This reformulation was initially proposed in [38].

The rest of this paper is organized as follows. First, we will summarize and discuss the
literature on nonconvex optimization and point out some difficulties of existing methods.
Particularly, we discuss why many methods are rather costly in comparison to direct splitting
approaches, such as our proposed iterative PDHG scheme. In section 2 we will analyze the
behavior of the algorithm and prove that it converges to the minimum in cases where the
nonconvexity of F is compensated for by the strong convexity ofG. Additionally, we provide an
example showing that the parameter choices which are sufficient to guarantee the convergence
are also necessary. Furthermore, we will follow the analysis done for the same algorithm in the
case of a nonconvex G but convex F in [16] and show that the iterates remain bounded under
rather mild conditions. We can conclude the convergence to a critical point if additionally
the difference between two successive iterates tends to zero. In our numerical experiments in
section 3 we will first discuss some cases in which our full convergence proof holds and illustrate
why this class of problems can be efficiently tackled with splitting approaches. Next, we
provide numerical examples showing that convergence along subsequences to critical points is
achieved for a much wider class of problems and often goes beyond the theoretical guarantees.
Finally, we draw conclusions and point out future directions of research in section 4.

1.1. Related work. For the rest of this paper, let X and Y be finite-dimensional Hilbert
spaces endowed with an inner product 〈·, ·〉 and induced norm ‖ · ‖. In this paper we are
concerned with the following class of problems. Let K : X → Y be a linear operator and
consider the optimization problem

(P) min
u

G(u) + F (Ku),

where G : X → R ∪ {∞} is proper, convex, and lower semicontinuous, andF : Y → R ∪ {∞}
is proper, lower semicontinuous, and possibly nonconvex. For now we will not specify further
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properties of F , but in the absence of convexity one typically needs some kind of smoothness
assumption or, as in our case, ω-semiconvexity as defined in section 2. We will also work with
the equivalent problem

(PC) min
u,g

G(u) + F (g) subject to g = Ku.

We will also assume that the above minimization problems are well defined in the sense that
minimizers exist.

Generally, problems of the form (P) or even more general nonconvex minimization prob-
lems have been studied in several cases, and there exist a number of optimization techniques,
which provably converge to critical points. In the following we will briefly summarize these
approaches:

• The simplest and probably oldest approach is to use gradient descent in cases where
the entire energy is smooth. If E is coercive, and one uses gradient descent with
appropriate step sizes, the sequence is bounded and every accumulation point is critical
(cf. [7]). Gradient descent methods are, however, often inefficient. Additionally, they
require the whole energy to be smooth and thus cannot deal with hard constraints.

• In the case where the nonconvex part is smooth and the convex part is nondifferen-
tiable, one can apply forward-backward splitting techniques. We refer the reader to [5]
and the references therein for general convergence results for descent methods. To give
an example, recently, Ochs et al. [29] proposed a forward-backward splitting approach
called iPiano which additionally uses a heavy-ball type of approach and provably con-
verges to critical points under mild conditions. Another forward-backward splitting
based approach for nonconvex optimization was recently proposed by Chouzenoux,
Pesquet, and Repetti [13]. The basic idea of forward-backward splitting approaches is
to construct a sequence of minimizers

uk+1 = (I + τk∂G)−1
(
uk − τkK

T∇F
(
Kuk

))
.

While this approach works well and is applicable to many situations, it has the draw-
back that F must be differentiable. Thus any type of hard constraint has to be incor-
porated into G, which can make the above minimization problem hard to evaluate if
no efficient closed-form projection exists.

• For nonconvex functions which just need an additional squared �2 norm to become
convex (also called ω-semiconvex functions as defined in section 2), Artina, Fornasier,
and Solombrino proposed an augmented Lagrangian based scheme for constrained
problems and proved convergence to critical points [3].
The drawback of that approach, however, would be that the resulting scheme requires
the solution of an inner convex problem at each iteration, which might become costly.

• Along the same lines, there exist approaches in cases where the functional can be
written as the difference of two convex functions. For instance, if F (Ku) + ω

2 ‖Ku‖22
is convex, then the difference of convex functions algorithm (DCA; see, e.g., [15, Al-
gorithm 1]) would be

un+1 = argmin
u

G(u) + F (Ku) +
ω

2
‖Ku‖22 − ω〈KTKun, u〉.
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In this case the convergence to a critical point can be proven under mild conditions
(cf. [1, 15]). Once more, the scheme requires the solution of a convex optimization
problem at each iteration and will therefore be rather costly. Often times, the problem
with these approaches is that it is not clear how many iterations are required to solve
the inner convex problem.

• If G is convex and F is well approximated from above by a quadratic or an �1 norm,
there exist the iteratively reweighted least squares and iteratively reweighted �1 al-
gorithms. These methods solve a sequence of convex problems which majorize the
original nonconvex cost function. The latter method has been recently generalized
by Ochs et al. [30] to handle linearly constrained nonconvex problems which can be
written as the sum of a convex and a concave function. Furthermore they prove con-
vergence to a stationary point if the concave term is smooth. While in principle it
is still required to solve a sequence of convex subproblems, they precisely specify to
which accuracy each subproblem has to be solved, which makes their algorithm very
efficient in practice.

• Another track of algorithms is alternating minimization methods, which are based on
the well-known quadratic penalty method. In the classic quadratic penalty method the
constrained cost function is augmented by a quadratic term that penalizes constraint
violation in order to arrive at an unconstrained optimization problem:

(1.1) min
u,g

G(u) + F (g) +
τ

2
‖g −Ku‖22.

This augmented cost function is then solved for increasing values of τ → ∞; see, e.g.,
[28]. Since joint minimization over u and g is difficult, minimization is usually carried
out in an alternating fashion. Variations exist where the alternating minimizations
are repeated several times before increasing the penalty parameter τ ; see, e.g., [24] for
details. We refer the reader to [4] and the references therein for a discussion on the
convergence analysis for this class of methods.

• Finally, there exists some theory for the convergence of the PDHG method in cases
where the nonconvexity can be isolated in an operator with certain properties [40],
which is different from the problem we are investigating in this paper.

The above approaches that can deal with constraints or other nondifferentiabilities some-
times have the disadvantage that each step of the minimization algorithm involves the solution
of a convex problem, which can be expensive when solved exactly.

This is the reason why some authors have started applying the popular convex optimization
methods mentioned in the previous section to nonconvex problems as if they were convex (see,
e.g., [12, 11, 16, 31]). Although the results obtained in practice are convincing, very little is
known about the convergence of these methods. One theoretical result we would like to point
out is the one by Esser and Zhang in [16], where boundedness results and convergence under
an additional (iteration-dependent) assumption is shown. While [16] investigated the use of
the PDHG method for a particular type of nonconvex G and convex F , we will reproduce and
extend their results for nonconvex F and convex G.

We note that while this manuscript was under review, it was shown by Li and Pong [25]
that ADMM converges for nonconvex F and certain differentiable G, under the restriction
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that the operator K is surjective. In this work we consider a different setting, where the
operator K is not necessarily surjective.

The algorithm we are investigating has been initially proposed by Strekalovskiy and Cre-
mers [38] and is itself a reformulation of [43, 33, 10] to make it applicable to nonconvex F . A
detailed description as well as a derivation and its relation to the PDHG method is given in
the next section.

1.2. The algorithm. We study the following algorithm, which aims at solving (P) for
ω-semiconvex F with ω > 0 as defined in section 2. Given a (u0, q0) ∈ X×Y and for ū0 = u0,
σ ≥ 2ω, τσ‖K‖2 ≤ 1, τ > 0, σ > 0, θ ∈ [0, 1], iterate the following for all n ≥ 0:

(1.2)

gn+1 = argmin
g

σ

2
‖g −Kūn‖22 − 〈g, qn〉+ F (g),

qn+1 = qn + σ(Kūn − gn+1),

un+1 = argmin
u

1

2τ
‖u− un‖22 + 〈Ku, qn+1〉+G(u),

ūn+1 = un+1 + θ(un+1 − un).

For the above update scheme to be well defined in the absence of convexity, we need existence
and uniqueness of a minimizer for the minimization problem in g. We will see that this is
fulfilled for ω-semiconvex F and for all σ > ω. Note that the unusual step size criterion on σ,
i.e., σ ≥ 2ω, will follow from our main theoretical convergence result in section 2.

For convex F , the above algorithm is exactly the PDHG method as proposed in [33, 10].
If we stack the primal and dual variable zn := (un, qn)T and start the iteration scheme with
the primal variable update (which is equivalent to (1.2) for a different initial value u0), our
reformulation takes the following simple form:

(1.3) 0 ∈ T (zn+1) +M(zn+1 − zn)

with

(1.4) T =

(
∂G KT

−K (∂F )−1

)
, M =

(
τ−1I −KT

−θK σ−1I

)
,

where (∂F )−1 denotes the inverse of the set-valued operator ∂F . To see this, we use the
identity (∂F )−1 = (σI − σ(I + σ−1∂F )−1)−1 − σ−1I (see [6, Proposition 23.6 (ii)]), and
writing out (1.3) with that, we again obtain the algorithm

(1.5)

un+1 = (I + τ∂G)−1 (un − τKT qn
)
,

qn+1 =
(
I + σ(∂F )−1

)−1 (
qn + σK(2un+1 − un)

)
= qn + σ

(
K

(
2un+1 − un

)− (
I + σ−1∂F

)−1 (
K

(
2un+1 − un

)
+ σ−1qn

)︸ ︷︷ ︸
=:gn+1

)
,

which is exactly (1.2) for θ = 1 and with the order of primal and dual update reversed.
If F is proper, convex, and lower semicontinuous, it readily follows that (∂F )−1 = ∂F ∗,

and we arrive at the iteration scheme described in [32]. In that case it is easy to check that
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T is a maximally monotone operator, and since for θ = 1 the matrix M is symmetric and
positive definite [32, Remark 1] it is well known that the algorithm is just a special case of
the classical proximal point algorithm in a different norm. Thus it converges to a saddle point
ẑ ∈ X × Y with 0 ∈ T ẑ.

In that sense we can interpret (∂F )−1 as a natural generalization of the subdifferential
of the convex conjugate ∂F ∗ to nonconvex functions. However, for general nonconvex F the
operator T fails to be monotone, and thus the convergence analysis becomes more complicated.
There exist convergence results for the proximal point algorithm for nonmonotone operators,
in particular for operators whose inverse T−1 is ρ-hypomonotone [22, 18]. While for certain
choices of F and G we can show that T−1 is ρ-hypomonotone, the results obtained by this
analysis are much weaker than the ones provided in the rest of this paper. Analyzing the
algorithm from this set-valued operator point of view is left for future work.

Additionally, notice that for θ = 0, the primal-dual algorithm (1.2) is also remarkably
similar to ADMM, which we obtain by replacing 1

2τ ‖u−un‖2 by σ
2‖Ku−gn+1‖2 in the update

for un+1. The updates for gn+1 and qn+1 are exactly the same. Connections of this type
have been pointed out in [17], where the method we are considering here was interpreted
in the sense of a preconditioned ADMM algorithm. Further generalizations for simplifying
subproblems were investigated in [14].

1.3. Contribution. Our contribution in this paper is to present a generalized usage of the
algorithm proposed in [38] and to study its convergence behavior. We prove the convergence
for a certain choice of parameters in cases where the strong convexity of G dominates the
semiconvexity of the other term, F . We find a simple sufficient requirement for the step size
parameter, namely, that the step size for the minimization in g has to be twice as large as
necessary to make the subproblem convex, and we show that this criterion is also necessary
by constructing an example for a diverging algorithm (for an overall convex energy) in case
the step size requirement is violated. In a more general setting we can state the boundedness
of the iterates under mild conditions, and we can show a result similar to the one obtained in
[16] for nonconvex functions G. Finally, we demonstrate the efficiency of the proposed method
in several numerical examples which show that the convergence of the algorithm often goes
beyond the theoretical guarantees.

2. Theory.

2.1. Mathematical preliminaries. Before going into the analysis of the algorithm, let us
recall some definitions that give sense to the proposed algorithm and the following analysis.

Definition 2.1 (effective domain). Let E : X → R ∪ {∞}. We call the set

dom(E) := {u ∈ X | E(u) < ∞}
the effective domain of E. If dom(E) is a nonempty set, then we call E proper.

Definition 2.2 (subdifferential; cf. [35, Definition 8.3]). Let X be a finite-dimensional Hilbert
space and E : X → R ∪ {∞} a lower semicontinuous functional. We say that ξ ∈ X belongs
to the (regular) subdifferential ∂E(g) of E at a point g ∈ dom(E) if and only if

lim inf
ρ→g
ρ�=g

E(ρ) −E(g) − 〈ξ, ρ− g〉
‖ρ− g‖ ≥ 0.
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(a) The subdifferential of a func-
tion which is differentiable in the
classical sense consists of only one
element which is the derivative of
the function.
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(b) For convex functions, Defini-
tion 2.2 coincides with the usual
definition of the subdifferential of
convex functions. For the absolute
value function illustrated above,
we have ∂|0| = [−1, 1].
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(c) Illustration of the subgradients
of a nonconvex function. In our
example, ∂E(0) = (−∞, 1] due
to the lower semicontinuity at the
discontinuity.

Figure 1. Examples of subgradients of one-dimensional lower semicontinuous functions. The subgradients
are illustrated as tangent lines where the slope is an element of the subdifferential.

For g �∈ dom(E) we define ∂E(g) = ∅.
It is well known that this definition extends (and is consistent with) the usual definition

of the subdifferential for convex functions:

∂E(g) = {ξ ∈ X | E(ρ)− E(g) − 〈ξ, ρ− g〉 ≥ 0}, g ∈ dom(E).

For illustrative purposes Figure 1 shows some examples of subgradients for one-dimensional
functions.

Remark 2.1 (sum of subdifferentials, from [3], [35, Exercise 8.8(c)]). We say that E : X →
R ∪ {∞} is a C1 perturbation of a lower semicontinuous function if E = F̂ +Q for F̂ : X →
R ∪ {∞} being lower semicontinuous and Q : X → R being of class C1. For this type of
function the decomposition

∂E(u) = ∂F̂ (u) + ∂Q(u)

holds true with the subdifferential from Definition 2.2.
Definition 2.3 (critical point). Let E : X → R ∪ {∞} be a lower semicontinuous function.

We say that u ∈ X is a critical point if 0 ∈ ∂E(u).
Definition 2.4 (semiconvexity and strong convexity [3]).
• We call a lower semicontinuous function E : X → R∪{∞} ω-semiconvex if E+ ω

2 ‖·‖2
is convex.

• We call a lower semicontinuous function E : X → R ∪ {∞} c-strongly convex if for
all u, v ∈ X, q ∈ ∂E(u), ξ ∈ ∂E(v), it holds that

〈u− v, q − ξ〉 ≥ c‖u− v‖2.
One typically uses the term c-strongly convex for c > 0 and the term ω-semiconvex for

ω ≥ 0, but if one allows negative values for the constants, it is well known that both definitions
can be used to express the same thing.

Remark 2.2. An ω-semiconvex function is c-strongly convex with c = −ω. A c-strongly
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convex function is ω-semiconvex with ω = −c. For example, u �→ c
2‖u‖2 is c-strongly convex

and y �→ −ω
2 ‖y‖2 is ω-semiconvex.

Lemma 2.5. Let E(u) = (F ◦K)(u) +G(u) be the sum of a proper, lower semicontinuous
ω-semiconvex function F ◦K (with K : X → Y being a linear operator) and a proper, lower
semicontinuous convex function G. Additionally, let dom(F ◦ K) ∩ dom(G) �= ∅. Then the
following holds true:

∂E(u) = KT (∂F )(Ku) + ∂G(u).

Proof. Due to Remark 2.1, as well as the result that the subdifferential of the sum of
two convex functions is the sum of the subdifferentials if their domains have a nonempty
intersection (cf. [34]), we find that

∂ (G(u) + F (Ku)) = ∂
(
G(u) + F (Ku) +

ω

2
‖u‖2

)
− ωu

= ∂G(u) + ∂
(
F (Ku) +

ω

2
‖u‖2

)
− ωu

= ∂G(u) +KT (∂F )(Ku).

2.2. Convergence analysis. Throughout the rest of the paper, we will assume that the
assumptions of Lemma 2.5 hold. Particularly, we make the stronger assumption that F itself
is ω-semiconvex, such that the subproblem in g arising in (1.2) is strongly convex for σ > ω
and the iterates are well defined. Thus, let σ > ω hold for the rest of this work. With the
tools defined in the previous section, we can now state the optimality conditions for Algorithm
(1.2) to be

0 ∈ σ(gn+1 −Kūn) + ∂F (gn+1)− qn,(2.1)

0 ∈ 1

τ
(un+1 − un) +KT qn+1 + ∂G(un+1).(2.2)

The optimality conditions yield an interesting property of qn. Using the definition of qn in
the optimality condition for gn leads to

(2.3) qn ∈ ∂F (gn) ∀n ≥ 1,

such that the variable qn has an immediate interpretation. Notice that qn is one of the two
main variables in the PDHG method in the convex case, where it is typically updated with
a proximity operator involving the convex conjugate F ∗. Formulating the algorithm in terms
of an update of the primal variable g allows us to apply the same iterative scheme in the
nonconvex case. Notice that F ∗ is still defined in the case where F is nonconvex; however, F ∗

will be convex independent of the convexity of F . Using a PDHG formulation involving F ∗

would therefore implicitly use convex relaxation, which is not always desirable.

2.2.1. Convergence analysis: Semiconvex + strongly convex. In this subsection we
will investigate the convergence in the special case where F is semiconvex, G is strongly
convex, and the strong convexity dominates the semiconvexity. Our main result is stated in
the following theorem. For the sake of clarity and readability, we moved the corresponding
proof to Appendix A.

Theorem 2.3. If F is ω-semiconvex and G c-strongly convex with a constant c > ω‖K‖2,
then Algorithm (1.2) converges to the unique solution û = argminu G(u)+F (Ku) of (P) for
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σ = 2ω, τσ‖K‖2 ≤ 1, and any θ ∈ [0, 1], with the ergodic convergence rate ‖UN − û‖2 ≤ C/N ,
UN = 1

N

∑N
n=1 u

n.
Although the requirements of the theorem lead to the overall energy being strongly convex,

this is to the best knowledge of the authors the first convergence result for an algorithm where
a nonconvex part of the energy was separated from a convex part by variable splitting. We
will show some examples for energies our above convergence result can be applied to in the
numerical results in section 3. Regarding Theorem 2.3, we would like to note the following.

Remark 2.4. Theorem 2.3 states the convergence of the variable u only, due to the choice
σ = 2ω, which does not necessarily lead to a convergence for g as we will see in Example 1
below. Let us note, however, that we can modify Theorem 2.3 to also yield convergence of

g by choosing σ > 2ω, but small enough such that c > σ‖K‖2
2 . In the very first estimate of

the proof, this leads to having terms of both forms ‖un+1 − û‖2 as well as ‖gn+1 − ĝ‖2, with
strictly positive factors. The remaining proof continues as before, and one can conclude the
convergence of gn+1 → ĝ as well.

Remark 2.5. One might be tempted to apply a splitting method directly to one of the
following minimization problems:

(2.4) min
u

(
G(u) − ω

2
‖Ku‖2

)
︸ ︷︷ ︸

G̃1(u)

+
(
F (Ku) +

ω

2
‖Ku‖2

)
︸ ︷︷ ︸

F̃1(Ku)

,

(2.5) min
u

(
G(u)− ω

2
‖u‖2

)
︸ ︷︷ ︸

G̃2(u)

+
(
F (Ku) +

ω

2
‖u‖2

)
︸ ︷︷ ︸

F̃2(K̃u)

,

where K̃ =
(
K
I

)
.

In the first case, (2.4), the evaluation proximal operator with respect to G̃1 will require
the solution to at least a linear system, due to the linear operator in the norm.

In the second case, (2.5), the function F̃2(g) will still be nonconvex in the argument g;
thus typical convex splitting methods are not applicable.

Notice that the assumptions in Theorem 2.3 require σ = 2ω; i.e., σ needs to be chosen
twice as large as necessary to make the subproblem for the minimization in g convex. It is
interesting to see that this requirement is not based on a (possibly crude) estimate for the
convergence. In fact, it is not only sufficient but also necessary, as the next proposition shows.

Proposition 2.6. Let all assumptions for Theorem 2.3 be met, except that we choose σ < 2ω.
Then there exists a problem for which the sequences of un and gn of the proposed algorithm
with θ = 0 diverge for any fixed τ > 0.

Proof. Let us give a very simple example problem for which the algorithm diverges for
σ < 2ω. Consider

û = argmin
u

c

2
‖u‖2 − 1

2
‖u‖2.

Clearly, for c > 1 the problem is strongly convex and the solution is given by û = 0. We
apply the proposed algorithm with F (Ku) = −1

2‖u‖2, K being the identity, ‖K‖ = 1, and
G(u) = c

2‖u‖2 being c strongly convex. We assume σ < 2ω = 2 and can immediately see that
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σ > 1 has to hold for the subproblem in g to even have a minimizer, i.e., for the algorithm to
be well defined. Note that qn ∈ ∂F (gn) = {−gn} by (2.3) such that we can eliminate qn from
the algorithm; a short computation shows that

gn+1 = − 1

σ − 1
gn +

σ

σ − 1
un,

un+1 =
1

τ−1 + c
gn+1 +

τ−1

τ−1 + c
un.

Using the first formula to replace gn+1 in the second equation admits the fixed-point form(
gn+1

un+1

)
=

(
a1,1 a1,2
a2,1 a2,2

)(
gn

un

)
with

a1,1 = − 1

σ − 1
, a1,2 =

σ

σ − 1
,

a2,1 = − 1

(τ−1 + c)(σ − 1)
, a2,2 =

τ−1

τ−1 + c
+

σ

(τ−1 + c)(σ − 1)
.

Obviously, this iteration can diverge as soon as one eigenvalue of the matrix A is larger than
one: Simply choose the corresponding eigenvector as a starting point of the iteration. The
eigenvalues of a 2× 2 matrix are given by

d1 =
a1,1 + a2,2

2
+

√(
a1,1 + a2,2

2

)2

− (a1,1a2,2 − a1,2a2,1),

d2 =
a1,1 + a2,2

2
−

√(
a1,1 + a2,2

2

)2

− (a1,1a2,2 − a1,2a2,1).

Due to −(a1,1a2,2 − a1,2a2,1) = τ−1

(σ−1)(τ−1+c)
, we know that d1 and d2 are real. Note that

a2,1
c→∞→ 0 and a2,2

c→∞→ 0, such that we could choose c large enough such that

d2 = a1,1 + ε(c),

with ε(c) arbitrarily small. Assume we have picked some σ < 2. Then a1,1 < −1 and we can
pick a c large enough such that d2 < −1 and the algorithm diverges. Notice that for any finite
c, we have a2,1 �= 0 and a1,2 �= 0 such that neither (1, 0)T nor (0, 1)T are eigenvectors, which
means that both variables, un and gn, diverge.

Note that in the above example, the algorithm can diverge although the total energy
was strongly convex, which shows that the convergence result of Theorem 2.3 is not trivial.
Additionally, we could see that choosing a large c, i.e., making the total energy even more
strongly convex, led to an algorithm that provably diverges. As a second example, let us also
state that the case of un converging without gn converging can also happen in practice and is
not an artifact of the convergence estimates.

Example 1. Consider

û = argmin
u

c

2
‖u‖2 − 1

2
‖Ku‖2,
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with K = (1, 1)T . Clearly, for c > 2 the problem is strongly convex and the solution is given
by û = 0. If we apply the proposed algorithm with F (Ku) = −1

2‖Ku‖2, θ = 0, and start with
u0 = 0, q0 = (−1, 1), we obtain

gn+1 = (σ − 1)−1qn,

qn+1 = −gn+1,

un+1 = 0.

Notice that we only need σ ≥ 1 for the minimization problem in g to be convex and σ > 1 for
the problem to be strictly convex and coercive and for the iterates to be well defined. However,
F (g) is ω-semiconvex with ω = 1, and Theorem 2.3 tells us that we need σ ≥ 2ω for the
convergence. Looking at the above iteration, we see that indeed gn+1 = (−1)n(σ− 1)−(n+1)q0

such that gn diverges for σ < 2. It is interesting to see that Theorem 2.3 states the convergence
of the variable u only, which is due to the choice σ = 2ω, which, as we can see here, does
not need to lead to a convergence for g. As pointed out in Remark 2.4 we need to choose a
slightly larger σ to also obtain the convergence in g, which is consistent with the behavior of
the algorithm in this toy example.

In any case, this example as well as the previous proposition show that the estimates used
to prove the convergence of the algorithm seem to be sharp—at least in terms of the algorithm
parameters.

Although the assumptions in Theorem 2.3 seem to be rather restrictive, it is interest-
ing to see that there are some nontrivial optimization problems which meet the necessary
requirements, as we will see in the numerical experiments section.

2.2.2. Convergence analysis: Discussion in the nonconvex case. In the case where the
energy is truly nonconvex, the situation is much more difficult and we do not have a full
convergence result yet. Based on the example of the diverging algorithm in Proposition 2.6,
we can already see that we will need some additional assumptions. Particularly, it seems that
we need the update of g to be somehow contractive, despite the nonconvexity. Still, there are
a few things one can state for fairly general nonconvex functions. The following analysis is
closely related to the analysis in [16], where the primal-dual algorithm for the nonconvex data
fidelity term (G in our notation) was analyzed.

Proposition 2.7. Let F be a differentiable function whose derivative is uniformly bounded
by some constant b ≥ ‖∇F (g)‖ for all g. Additionally, assume that there exist constants
a ∈ R

+ and t ∈ R
+ with t > b‖K‖, such that for all u with ‖u‖ ≥ a, we have

G((1 + ε)u) ≥ G(u) + tε‖u‖ ∀ε ≥ 0.

Then the sequence (un, qn, gn) is bounded and therefore converges along subsequences.
Proof. Since qn = ∇F (gn) (see (2.3)), the boundedness of qn is trivial. We prove the

boundedness of un by contradiction. Assume there exists a un+1 with ‖un+1‖ > a. Let us
pick the first iterate with this property (assuming ‖u0‖ < a), which ensures that ‖un‖ ≤ a.
We know that un+1 minimizes

E(u) =
1

2τ
‖u− un‖2 +G(u) + 〈u,KT∇F (gn+1)〉.
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Consider ũ(ε) = 1
1+εu

n+1. We will show that there exists a ũ(ε) which has a lower energy

than un+1, thus leading to a contradiction. One finds that

G(un+1) = G((1 + ε)ũ(ε)) ≥ G(ũ(ε)) + εt‖ũ(ε)‖

for all ε small enough such that ‖ũ(ε)‖ ≥ a. For these ε we have

G(un+1) + 〈un+1,KT∇F (gn+1)〉
≥ G(ũ(ε)) + 〈ũ(ε),KT∇F (gn+1)〉+ ε(t− c‖K‖)‖ũ(ε)‖
> G(ũ(ε)) + 〈ũ(ε),KT∇F (gn+1)〉.

Additionally, one finds that

‖un+1 − un‖2 = ‖(1 + ε)ũ(ε)− un‖2 = ‖ũ(ε)− un‖2 + ε2‖ũ(ε)‖2 + 2ε〈ũ(ε), ũ(ε) − un〉

and observes that 〈ũ(ε), ũ(ε)− un〉 ≥ 0 at least as long as ‖ũ(ε)‖ ≥ ‖un‖, such that for ε > 0
small enough we arrive at

E(un+1) > E(ũ(ε)),

which is a contradiction to un+1 being a minimizer of E. Therefore, un remains bounded.
Finally, notice that the boundedness of un and qn together with the update qn+1 = qn +
Kūn − gn+1 immediately implies the boundedness of gn.

The assumptions of Proposition 2.7 are met, for instance, for image denoising with an �2

fidelity term and smooth approximations to popular regularizations like truncated quadratic
or TVq. We will show some of these cases in our numerical results in section 3. Basically
the condition ensures the coercivity of the problem, which of course seems to be a reasonable
criterion to obtain boundedness of the iterates. To get a better understanding of what the
assumptions of Proposition 2.7 mean, we illustrate the idea in a one-dimensional case in
Figure 2.

−8 −6 −4 −2 0 2 4 6 8
−10

−5

0

5

10

15

 

 

Nonconvex F
Convex G
Resulting total energy E

−a a

Figure 2. Illustration of the conditions of Proposition 2.7 in a simple one-dimensional case. We have a
nonconvex part (blue) and a convex part (red) whose sum results in a total energy (green) which is nonconvex.
In this case it is important that at some point a the worst case slope of the nonconvex function (attained here
in the linear parts) is dominated by the convex function. We can see that this is a sufficient condition for the
total energy to be coercive.
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Let us give some more intuition for the rather technical condition in the above proposition.
Basically, we do not know more about KT∇F (gn+1) than it being bounded for all n. To
conclude the boundedness of un for all n, we need the minimizers of the energies Eφ(u) =
G(u)+ 〈u, φ〉 to have the property that even the supremum over their norms remains bounded
for all φ bounded by some constant b‖K‖. A bound for the worst case can be found by requiring
G(u) − b‖K‖‖u‖ to still be coercive. This is exactly what the condition of Proposition 2.7
ensures.

Unfortunately, it is not clear that the accumulation points of the bounded sequence gen-
erated by Algorithm (1.2) are critical. For the convergence to a critical point we need the
distance between successive iterates to vanish in the limit. The following result is similar to
the observations by Esser and Zhang in [16].

Proposition 2.8. If the sequences (un), (gn), and (qn) remain bounded (and thus are conver-
gent along subsequences), and we additionally have that ‖un+1−un‖ → 0 and ‖qn+1−qn‖ → 0,
then the iteration converges to critical points along subsequences.

Proof. If we pick a convergent subsequence (denoted with indices mn) that converges to
a point (û, ĝ, q̂), we have

‖qmn−1 − qmn‖ = σ‖gmn −Kūmn−1‖
≥ σ

(‖gmn −Kumn‖ − ‖Kumn −Kumn−1‖ − θ‖Kumn−1 −Kumn−2‖) ,
which ensures that Kû = ĝ. Additionally, taking the limit of the equation

−1

τ
(umn − umn−1) ∈ KT qmn + ∂G(umn)

shows that the accumulation point satisfies

−KT q̂ ∈ ∂G(û).

Using that q̂ ∈ ∂F (ĝ) (equation (2.3) along with the lower semicontinuity of F ) as well as
Kû = ĝ yields

KT∂F (Kû) + ∂G(û) � 0

and coincides with the definition of û being a critical point.
Note that if the assumptions of Proposition 2.7 are satisfied, the assumptions of Proposi-

tion 2.8 are also fulfilled.

3. Numerical experiments. In this section we will provide different types of numerical
examples. The first two subsections contain examples for which the overall function is strictly
convex, but a splitting approach used to divide the energy into a strongly convex and a
nonconvex part clearly simplifies the numerical method, such that the primal-dual approach
(1.2) can be applied with a convergence guarantee based on Theorem 2.3. Second, we consider
the case of Mumford–Shah regularized denoising in the case where the overall energy is truly
nonconvex. In this case we cannot guarantee the convergence a priori, but can guarantee
the boundedness of the iterates (Proposition 2.7) and have a way to check a posteriori if a
critical point was found (based on Proposition 2.8). Finally, we present numerical results
on Mumford–Shah based inpainting as well as on image dithering to further illustrate the
behavior of the algorithm in the fully nonconvex setting and to show that the numerical
convergence often goes beyond the current theoretical guarantees.
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3.1. Notation and discretization. Throughout the rest of this section Ω will denote a
d-dimensional discretized rectangular domain. For images with k channels u : Ω → R

k we
denote the gradient discretization as ∇u : Ω → R

d×k. We will make frequent use of the
following norms for g : Ω → R

d×k:

‖g‖2,1 :=
∑
x∈Ω

‖g(x)‖2, ‖g‖2,2 :=

√∑
x∈Ω

‖g(x)‖22,

where ‖·‖2 denotes the Frobenius norm. In the following ∇ is discretized by standard forward
differences, and we have the following bound on its norm ‖∇‖ ≤ √

4d (see [10]).

3.2. Joint denoising and sharpening via backward diffusion. One of the most popu-
lar variational denoising methods is the Rudin–Osher–Fatemi (ROF) model [36] with total
variation (TV) as a regularizer. A possible interpretation in the vectorial case is given as

min
u:Ω→Rk

c

2
‖u− f‖2 + ‖∇u‖2,1.

Based on Remark 2.2 we can see that the energy to be minimized is c-strongly convex, which
gives us the freedom to introduce further ω-semiconvex terms and, as long as c > ω, still
be able to use the primal-dual splitting approach as an efficient minimization method. One
possible example would be to incorporate a sharpening/edge enhancement term of the form
−ω

2 ‖∇u‖22,2 with ω < c‖∇‖−2. The latter constraint is needed for the assumptions of Theorem
2.3 to hold and leads to (3.1) being a convex problem. Note that incorporating a term like
−ω

2 ‖∇u‖22,2 into the energy can be interpreted as an implicit step for the backward heat

equation. Thus, if a blur is assumed to follow a diffusion process, the term −ω
2 ‖∇u‖22,2 would

aim at removing the blur. Similar approaches to image sharpening have been investigated in
the literature, mostly in the context of inverse diffusion equations (cf. [19, 20]).

The full energy minimization approach for joint denoising and sharpening could be

min
u:Ω→Rk

c

2
‖u− f‖2 + ‖∇u‖2,1 − ω

2
‖∇u‖22,2 + ι[0,1](u),(3.1)

where

(3.2) ι[0,1](u) =

{
0, 0 ≤ u(x) ≤ 1 ∀x ∈ Ω,

∞ else

restricts the range of u to be between zero and one. Generally, we expect the TV term to
be dominant for small oscillations in the data, thus removing some of the noise, while the
sharpening term will be dominant on large edges, leading to an increased contrast. Notice
that one can also iterate the above model by replacing f with the previous iterate uk starting
with u0 = f , which results in a combination of the TV flow [2] and inverse diffusion.

Notice that (3.1) is a good example for a functional which is convex but difficult to
minimize without splittings that divide the energy into a strongly convex and a nonconvex
part. A convex splitting would have to compute a proximity operator with respect to c

2‖u−
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f‖2 − ω
2 ‖∇u‖2 + ι[0,1](u), which is difficult to solve without an additional splitting. Forward-

backward splittings have to use ‖∇u‖2,1 in the backward step, since it is nondifferentiable,
such that one has to solve a full TV denoising problem at each iteration. Similar problems
occur in differences of convex approaches.

To the best knowledge of the authors this manuscript is the first work to theoretically
justify the splitting into a convex and a nonconvex part by considering the problem

min
u,g

c

2
‖u− f‖2 + ‖g‖2,1 − ω

2
‖g‖22,2 + ι[0,1](u) subject to g = ∇u.(3.3)

Figure 3 shows the result of the flow arising from (3.1) (called enhanced TV flow in Figure 3)
in comparison to a plain TV flow for c = 30 and ω = 0.7 c

‖∇‖2 . While both the TV and the

inverse diffusion TV flows are able to remove the noise from the image, we can see that in
the course of the iteration, the inverse diffusion TV flow results remain significantly sharper.
Strong image edges even get enhanced during the iterations such that, due to the nature
of backward diffusion, the iterations have to be stopped at some point to avoid significant
overshooting.

We do not claim the above energy to be a state-of-the-art image enhancement technique.
However, the above experiment shows that we can add a certain amount of semiconvexity to
any strongly convex energy without limiting our abilities to tackle the resulting problem with
an efficient splitting approach. We believe that the inclusion of such nonconvexities in the
regularization might help in the design of energy functionals that describe the desired effects
even more accurately than purely convex ones.

3.3. Illumination correction. In the previous subsection, the linear operator in the non-
convex term was exactly the same as the one we would typically use for the splitting in solving
a plain TV problem. Additionally, the proximity operator for the TV plus the nonconvex term
could be solved in closed form. In this subsection, we would like to use a toy example to show
that this does not have to be the case, and one could imagine adding nonconvex terms which
are treated completely independent of the convex ones. Consider, for instance, terms of the
form

N(Au) = ‖(Au − r)2 − e‖1,(3.4)

where A is a linear operator, r and e are given values, and the square is a componentwise
operation. Due to the �1 norm, this term has the interpretation that (Au− r)2 − e is sparse,
i.e., that many components meet ((Au− r)i,j)

2 = ei,j. Looking at the function N(Au) in one
dimension in Figure 4, it is obvious that such an N is nonconvex and nondifferentiable for
positive e. It is, however, ω-semiconvex, such that adding N(Au) with a sufficiently small
weight to any strongly convex function leads to an overall convex energy, and our convergence
theory regarding a splitting into a convex and nonconvex part applies.

As a toy problem, consider again the ROF denoising model for three color channels (k = 3),
with the additional idea to perform a particular illumination correction by requiring many
gray values defined as red channel plus green channel plus blue channel over three to be close to
either a number b1 or a number b2. In other words, we introduce the term ‖(13

∑
k ui,j,k−r)2−

e‖1, where r and e are just numbers in R. For instance, for r = 0.6 and e = (0.3)2 the term
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TV flow, 0 iterations. TV flow, 1 iterations. TV flow, 2 iterations.

Enhanced TV flow,
0 iterations.

Enhanced TV flow,
1 iterations.

Enhanced TV flow,
2 iterations.

TV flow, 3 iterations. TV flow, 4 iterations. TV flow, 5 iterations.

Enhanced TV flow,
3 iterations.

Enhanced TV flow,
4 iterations.

Enhanced TV flow,
5 iterations.

Figure 3. Example of incorporating a nonconvex enhancement term into the TV flow. (Image courtesy of
The MathWorks, Inc.)

would prefer many intensity values to be either 0.3 or 0.9. With this term we can modify the
tonemapping; notice that intensity contrast enhancement is a special case obtained for r = 0.5
and e > (0.5)2, where the relevant part of N is merely the negative quadratic of the intensity.
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Figure 4. One-dimensional example for the function N(Au) discussed above. N is nonconvex, nonsmooth,
but ω-semiconvex.

The energy of our variational model reads as follows:

min
u:Ω→R3

c

2
‖u− f‖2 + ‖∇u‖2,1 + ω

2
N(Au) + ι[0,1](u).(3.5)

Writing the color image u in vector form, we can introduce a new variable g along with the
constraint Ku = g, where

K =

⎛⎜⎜⎝
∇ 0 0
0 ∇ 0
0 0 ∇

A

⎞⎟⎟⎠ ,(3.6)

and ∇ denotes the discrete gradient operator of a single channel image in matrix form. We
can apply the proposed algorithm, which then decouples the minimization of the nonconvex
term involving N from the rest of the energy, and all proximity operators that need to be
evaluated in the algorithm have a closed-form solution.

Figure 5 shows some results of the method obtained by minimizing (3.5). We compare the
original noisy image with the one obtained by (3.5) without the nonconvex term (i.e., ω = 0)
and with the nonconvex term (i.e., ω = α − ε for a small ε) for r = 0.6, e = (0.3)2. It is
interesting to see how strong the effect of the nonconvex term is: We see big intensity changes
and particularly a stronger denoising effect in the background. To illustrate that our idea of
using (3.4) is to obtain many entries that meet ((Au − r)i,j)

2 = ei,j, we plotted the sorted
pixel intensities of the plain TV denoising solution as well as the sorted pixel intensities of
our model with the additional nonconvex term. As we can see, there is a drastic increase in
the number of pixels for which the intensity is exactly 0.3 or 0.9.

Again, the exaggerated effect of Figure 5 was for illustration purposes. One could imagine
cases where the original image has a low dynamic range and does not fully use the possible
range of values from zero to one. In this case the approach seems more reasonable, and we
obtain the results shown in Figure 6.

While we are not certain if the idea of incorporating the nonconvex term for illumination
correction has wide applicability, our experiments do show that whenever one has a strongly
convex energy, one has the freedom to model any desirable image property with a semiconvex
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Figure 5. Example of incorporating a nonconvex tonemapping term into the ROF model. (a) Original
noisy image. (b) TV denoised image. (c) Image after TV denoising along with encouraging intensity values to
be either 0.3 or 0.9. (d) Sorted intensity distribution of the pixels of the original image. (e) Sorted intensity
distribution of the pixels of the TV denoised image. (f) Sorted intensity distribution of the pixels of the image
reconstructed with the nonconvex term.

(a) (b) (c)

Figure 6. Example of incorporating a nonconvex tonemapping term into the ROF model. (a) Noisy image
with small range of values. (b) TV denoised image. (c) Image after TV denoising along with encouraging
intensity values to be either 0 or 1.

term without complicating the minimization algorithm. As we have seen, the condition of
being semiconvex is rather weak (particularly when working in a bounded domain) such that
one has a great freedom in the design of such terms. Furthermore, we have seen that the effect
of these additional nonconvex terms is not negligible. Additionally we would like to mention,
that since the effect of the nonconvex terms is influenced by their weight and therefore by the
strong convexity constant, the effect of any nonconvex term can be enhanced in an iterative
fashion by computing the corresponding flow (which for a simple �2 data term amounts to
replacing the data f by the previous iterate uk).
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Figure 7. We show the truncated quadratic regularizer (3.9) along with the smoothed ω-semiconvex variant
given in [3]. Parameters are α = 10, λ = 0.1, and ε0 = 0.5.

3.4. Mumford–Shah regularization. In the remaining subsections we will give examples
where the overall energy is nonconvex. Our main convergence theorem does not hold, but we
observe convergence experimentally nonetheless.

The Mumford–Shah functional provides means to compute a discontinuity-preserving
piecewise smooth approximation of the input image. Strekalovskiy and Cremers [38] ini-
tially proposed the nonconvex primal-dual algorithm (1.2) to efficiently find a minimizer of
the Mumford–Shah problem. The following discretization was considered:

(3.7) min
u:Ω→Rk

∑
x∈Ω

(u(x) − f(x))2 + (R̂MS ◦ ‖ · ‖2)(∇u(x)),

where R̂MS : R → R is the truncated quadratic regularizer

(3.8) R̂MS(t) = min{λ, αt2}.
Since (3.8) is not ω-semiconvex due to the truncation, it seems to be necessary for the

step size σ to approach infinity in order for the algorithm to converge. The authors of [38]
employed the variable step size scheme from [10, Algorithm 2], which along with σ → ∞ has
the nice property that it provably converges in the fully convex setting with rate O(1/n2) if
the data term is strongly convex.

We propose to use a slight modification of (3.8) in order to obtain ω-semiconvexity of the
regularizer. We consider the smoothed version R̂ε

MS : R → R of (3.8) as described in [3]. It is
shown in Figure 7 and given as

(3.9) R̂ε
MS(t) =

⎧⎪⎨⎪⎩
α t2, t < s1,

π(t), s1 ≤ t ≤ s2,

λ, t > s2,

where s1 =
√

λ/α − ε, s2 =
√

λ/α + ε. π(t) = A(t− s2)
3 + B(t− s2)

2 + C is a cubic spline
from [3] with constants

(3.10) A = − α

4ε
, B = −α(2

√
λ/α+ ε)

4ε
, C = λ.
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Lemma 3.1. The smoothed truncated quadratic regularizer (3.9) is ω-semiconvex with con-

stant ω = α (2+ε0)
2 ε0

, where ε = ε0
√

λ/α. Furthermore, the composition Rε
MS : Rd×k → R given

by Rε
MS(g) = (R̂ε

MS ◦ ‖ · ‖2)(g) is also ω-semiconvex with the same constant.

Proof. A sufficient condition for R̂ε
MS + ω

2 t
2 to be convex is that the second derivative is

nonnegative:

(3.11) (R̂ε
MS)

′′(t) + ω ≥ 0 ∀t ∈ R.

We only have to consider the region s1 ≤ t ≤ s2, since R̂ε
MS is nonconvex only in that part:

(3.12) min
s1≤t≤s2

{6A(t − s2) + 2B}+ ω ≥ 0 ⇒ ω ≥ −2B =
α (2 + ε0)

2 ε0
.

Since R̂ε
MS(t) +

ω
2 t

2 is increasing and convex, the composition ((R̂ε
MS + ω

2 (·)2) ◦ ‖ · ‖2)(g) is
convex as well.

Evaluation of the proximal mapping. For computing the proximal mapping of Rε
Ms we note

that a slight modification of [42, Theorem 4] to our setting of ω-semiconvex functions also
holds.

Remark 3.1. Let h : R → R be increasing and ω-semiconvex. Furthermore, let f := h◦‖·‖
and τ−1 > ω. Then the proximal mapping for f is given as

(3.13) (I + τ∂f)−1(ũ) = (I + τ∂h)−1(‖ũ‖) ũ

‖ũ‖

with the convention 0/0 = 0.

The proximal mapping (I+τ∂R̂ε
MS)

−1 can be evaluated by considering the three piecewise

parts of R̂ε
MS individually.

3.4.1. Piecewise smooth approximations. First we consider a smoothed version of the
functional (3.7) to validate experimentally if the algorithm also converges in the truly non-
convex setting.

The energy we are aiming to minimize is given as

(3.14) min
u:Ω→Rk

∑
x∈Ω

Rε
MS(∇u(x)) +

∑
x∈Ω

(f(x)− u(x))2.

In Figure 8 we show a piecewise smooth approximation of the input image computed by
minimizing the functional (3.14) with the nonconvex primal-dual algorithm. The chosen
parameters were α = 10, λ = 0.1, and ε0 = 0.5. Unlike the approach used in [38], we use
completely constant step sizes σ = 2ω, τσ ≤ ‖∇‖−2. We see that the end result is dependent
on the initialization. Using a smooth initialization u0 = 0 yields an overall smoother image
than using the input image u0 = f .

Since we do not have a full convergence theorem for energies which are completely non-
convex, we validate the convergence for this and the following two examples numerically. The
convergence results are detailed in Appendix B.
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Input Image. u0 = 0. u0 = f.

Figure 8. We compute a piecewise smooth approximation of the input image by minimizing the functional
(3.14). The parameters were α = 10, λ = 0.1, and ε0 = 0.5. Unlike the approach used in [38], we use
completely constant step sizes τ and σ. We see that the end result is dependent on the initialization. Using a
smooth initialization u0 = 0 yields an overall smoother result than setting u0 = f .

3.4.2. Image inpainting. Image inpainting aims to fill in an inpainting region I ⊂ Ω in
the image. We consider minimizing the functional

(3.15) min
u:Ω→Rk

∑
x∈Ω

Rε
MS(∇u(x)) +

∑
x∈Ω\I

χ(f(x), u(x)),

where χ is the following inpainting indicator function:

(3.16) χ(f, u) =

{
0, f = u,

∞, f �= u.

The so-called cracktip problem [9] is an instance of Mumford–Shah regularized image
inpainting where an analytical globally optimal solution is known.

In Figure 9 we show the results of the nonconvex primal-dual algorithm applied to the
inpainting problem. The image size here is 127 × 127 and the according parameters are
α ≈ 96.82 and λ = 0.5. We chose ε0 = 0.9. We found that by using constant step sizes from
the beginning, the algorithm often gets stuck in bad local minima. There are several methods
to avoid getting stuck in bad local minima, such as graduated nonconvexity. Another method
that works very well in practice is using large step sizes in the beginning and decreasing the
step size according to some parameter γ. We employed the adaptive step size scheme

(3.17) θn = 1/
√

1 + 2γτn, σn+1 = σn/θn, τn+1 = τnθn,

and as soon as σn reached 2ω, we kept the step sizes fixed and set θ = 1. It was shown
experimentally in [38] that this step size scheme works remarkably well in practice. The step
size parameters used are given in Figure 9, and we set τ0 = ‖∇‖2/σ0. Interestingly, for the
right choice of parameters, the nonconvex PDHG algorithm converges to the globally optimal
solution.
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Global minimum. Initialization. Initialization. Initialization. Initialization.

Relaxation [33]. σ0 = 2, γ = 3
40 . σ0 = 2, γ = 3

40 . σ0 = 2, γ = 3
40 . σ0 = 1, γ = 1

8 .

Figure 9. In this figure we show the Mumford–Shah inpainting results obtained with the nonconvex
PDHG algorithm. The first row shows the analytical solution to the cracktip problem along with the different
initializations. The second row shows the results obtained by the nonconvex primal-dual algorithm next to the
convex relaxation [33]. Note that the results obtained by the nonconvex primal-dual algorithm heavily depend
on the initialization and chosen step size scheme.

3.5. Image dithering. In this section we propose a simple nonconvex variational model
for image dithering. For a different variational approach to image dithering, we refer the
interested reader to [39].

Given a grayscale input image f : Ω → R, dithering aims to produce a binary image that is
a visually similar continuous approximation to the given image f . We model visual similarity
by a convolution with a gaussian kernel k of standard deviation σ = 1.75.

The variational approach is a deconvolution problem with the constraint that the solution
u is binary. In order to softly enforce that constraint, we add a concave regularization term
on u. The overall cost function is

(3.18) min
u:Ω→R

‖k ∗ u− f‖2︸ ︷︷ ︸
G(u)

+λ
∑
x∈Ω

− (2u(x)− 1)2 + ι[0,1](u)︸ ︷︷ ︸
F (u)

.

Note that both proximal mappings in F and G are simple to evaluate. Furthermore, it can
be verified quickly that F is ω-semiconvex with ω = 8λ. The proximal mapping in G has
an efficient solution by means of the FFT (cf. [10]), and the proximal mapping in F has the
following analytic solution given pointwise at x ∈ Ω:

(I + τ∂F̂ )−1(g̃(x)) = proj[0,1]

(
g̃(x)− 4λτ

1− 8λτ

)
.

In Figure 10 we show the result of minimizing (3.18) directly with the PDHG algorithm. The
parameters used in the example were λ = 0.01, σ = 2ω, τ = 1/σ. The initial u0 was chosen
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Input image u0. Result û on (3.18). Binarized û. k ∗ û.
Figure 10. Variational image dithering. From left to right: We show the input image along with the result

of minimizing the nonconvex cost functional (3.18) using the primal-dual algorithm and a thresholded version
of the minimizer. Notice that the result is almost binary. On the right we show the minimizer convolved with
the gaussian kernel k.

as a thresholded random image and we set q0 = 0. By comparing the final result with a
thresholded version of the result, we can see that it is almost binary. Overall the algorithm
required around 200 iterations to converge.

4. Conclusion. In this paper we studied the PDHG method for minimizing energies of
the form E(u) = G(u) + F (Ku) for ω-semiconvex functions F . We analyzed its convergence
and were able to prove that splittings into a strongly convex and a nonconvex part converge
if the strong convexity dominates the nonconvexity and the algorithm parameters are chosen
appropriately. We constructed a simple example illustrating that the choice of algorithm
parameters arising from the convergence proof are not only sufficient but also necessary for
the convergence. In the more general case where the total energy is nonconvex we were able to
prove boundedness of the iterates and found an a posteriori criterion to verify the convergence
of the algorithm to a critical point.

In terms of the practical relevance of our convergence proof, we demonstrated in two
numerical examples that any variational model with a strongly convex energy gives us the
freedom to introduce semiconvex terms that encourage a certain behavior which is impossible
to represent in a framework with merely convex terms. Thanks to our analysis of the PDHG
method the minimization of energies with additional nonconvex terms does not increase the
computational costs as long as the nonconvex term has an easy-to-evaluate proximity operator.

Additionally, we demonstrated that the convergence of the investigated PDHG method
goes beyond the theoretical guarantees: For Mumford–Shah denoising, Mumford–Shah in-
painting, and image dithering, we observed the convergence of the algorithm for all our nu-
merical experiments and could use the a posteriori criterion to verify that the final result is a
critical point of the original problem.

Appendix A. Proof of Theorem 2.3. In the appendix, we prove our main convergence
result (Theorem 2.3). We start our convergence analysis by deriving an equation that gives
us some insight about how certain iteration errors behave. It is formulated in a lemma and
derived in a rather general form such that it can be a basis for future convergence analysis.
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Lemma A.1. Let (vn, ρn, ξn, ζn) be any sequence such that the following holds:

0 ∈ σ(ρn+1 −Kv̄n) + ∂F (ρn+1)− ξn,(A.1)

ξn+1 = ξn + σ(Kv̄n − ρn+1),(A.2)

0 =
1

τ
(vn+1 − vn) +KT ξn+1 + ζn+1, ζn+1 ∈ ∂G(vn+1).(A.3)

Let (un, gn, qn, zn) be the iterates generated by Algorithm (1.2), where zn ∈ ∂G(un) is the
subgradient arising from the optimality condition of the minimization in u. Let us denote
une = un − vn, gne = gn − ρn, qne = qn − ξn, zne = zn − ζn. Then the following estimate holds:

(A.4)

0 =
1

2τ
(‖un+1

e ‖2 − ‖une ‖2) +
1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2) + 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kūne 〉

+
1

2τ
‖un+1

e − une ‖2 −
σ

2
θ
(‖Kune ‖2 − ‖Kun−1

e ‖2)− σ(θ + θ2)

2
‖Kune −Kun−1

e ‖2

+ 〈zn+1
e , un+1

e 〉 − σ

2
‖Kune ‖2 + 〈qn+1

e , gn+1
e 〉+ σ

2
‖gn+1

e ‖2.
Proof. Notice that the conditions (A.1), (A.2), (A.3) are exactly the optimality condi-

tions to the iteration constructed by Algorithm (1.2). We will later be able to choose either
(vn, ρn, ξn, ζn) = (um, gm, qm, zm) or (vn, ρn, ξn, ζn) = (û, ĝ, q̂, ζ̂), with (û, ĝ, q̂, ζ̂) being a crit-
ical point to our original optimization problem (P).

We subtract (A.1), (A.2), (A.3) from the optimality conditions for (un, gn, qn, z) generated
by Algorithm (1.2) to obtain

0 ∈ σ(gn+1
e −Kūne ) + (∂F (gn+1)− ∂F (ρn+1))− qne ,(A.5)

0 =
1

τ
(un+1

e − une ) +KT qn+1
e + zn+1

e ,(A.6)

qn+1
e = qne + σ(Kūne − gn+1

e ).(A.7)

First of all note that (A.5) together with (A.7) implies that qn+1
e ∈ (∂F (gn+1) − ∂F (ρn+1)).

Now taking the inner product of the first equation (A.7) with gn+1
e yields

0 = σ(‖gn+1
e ‖2 − 〈Kūne , g

n+1
e 〉)− 〈qne , gn+1

e 〉+ 〈qn+1
e , gn+1

e 〉(A.8)

⇒ 0 =
σ

2
(‖gn+1

e ‖2 − ‖Kūne ‖2 + ‖gn+1
e −Kūne ‖2)− 〈qne , gn+1

e 〉+ 〈qn+1
e , gn+1

e 〉.(A.9)

Taking the inner product of the second equation (A.6) with un+1
e yields

0 =
1

τ
(‖un+1

e ‖2 − 〈une , un+1
e 〉) + 〈qn+1

e ,Kun+1
e 〉+ 〈zn+1

e , un+1
e 〉(A.10)

⇒ 0 =
1

2τ
(‖un+1

e ‖2 − ‖une ‖2 + ‖un+1
e − une ‖2) + 〈qn+1

e ,Kun+1
e 〉+ 〈zn+1

e , un+1
e 〉.(A.11)

Adding the two equations (A.9) and (A.11), we obtain

0 =
1

2τ
(‖un+1

e ‖2 − ‖une ‖2 + ‖un+1
e − une ‖2)

+ 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kūne 〉+ 〈qne ,Kūn − gn+1
e 〉

+
σ

2
(‖gn+1

e ‖2 − ‖Kūne ‖2 + ‖gn+1
e −Kūne ‖2) + 〈zn+1

e , un+1
e 〉+ 〈qn+1

e , gn+1
e 〉.(A.12)
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Observe that

‖qn+1
e ‖2 = ‖qne + σ(Kūne − gn+1

e )‖2 = ‖qne ‖2 + σ2‖Kūne − gn+1
e ‖2 + 2σ〈qne ,Kūne − gn+1

e 〉
(A.13)

⇒ 〈qne ,Kūne − gn+1
e 〉 = 1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2)−
σ

2
‖Kūne − gn+1

e ‖2.(A.14)

Plugging (A.14) into the previous equation (A.12) yields

0 =
1

2τ
(‖un+1

e ‖2 − ‖une ‖2 + ‖un+1
e − une ‖2)

+ 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kūne 〉+
1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2) +
σ

2
(‖gn+1

e ‖2 − ‖Kūne ‖2)
+ 〈zn+1

e , un+1
e 〉+ 〈qn+1

e , gn+1
e 〉.(A.15)

Due to ūn = un + θ(un − un−1), we have

‖Kūne ‖2 = ‖Kune ‖2 + θ2‖Kune −Kun−1
e ‖2 + 2θ〈Kune ,Kune −Kun−1

e 〉
= ‖Kune ‖2 + θ2‖Kune −Kun−1

e ‖2
+ θ

(
2‖Kune ‖2 − 2〈Kune ,Kun−1

e 〉+ ‖Kun−1
e ‖2 − ‖Kun−1

e ‖2)
= ‖Kune ‖2 + θ2‖Kune −Kun−1

e ‖2
+ θ

(‖Kune ‖2 − ‖Kun−1
e ‖2 + ‖Kune −Kun−1

e ‖2)
= ‖Kune ‖2 + θ(‖Kune ‖2 − ‖Kun−1

e ‖2) + (θ + θ2)‖Kune −Kun−1
e ‖2.(A.16)

Using the above equation (A.16) in our main estimate (A.15), we obtain

0 =
1

2τ
(‖un+1

e ‖2 − ‖une ‖2) +
1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2) + 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kūne 〉

+
1

2τ
‖un+1

e − une ‖2 −
σ

2
θ
(‖Kune ‖2 − ‖Kun−1

e ‖2)− σ(θ + θ2)

2
‖Kune −Kun−1

e ‖2

+ 〈zn+1
e , un+1

e 〉 − σ

2
‖Kune ‖2 + 〈qn+1

e , gn+1
e 〉+ σ

2
‖gn+1

e ‖2,(A.17)

and hence the assertion.
Lemma A.2. Using the notation of Lemma A.1, let (vn, ρn, ξn, ζn) = (û, ĝ, q̂, ẑ) not depend

on n. Then the following estimate holds:

0 ≥ 1

2τ
(‖un+1

e ‖2 − ‖une ‖2) +
1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2) +
1

2τ
‖un+1

e − une ‖2 −
σθ2

2
‖Kune −Kun−1

e ‖2

+
θ

2τ
‖un − un−1‖2 − σθ

2
‖Kune −Kun−1

e ‖2 + θ
(
G(un)−G(un−1)− 〈q̂,K(un−1 − un)〉)

+ 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kune 〉 −
σ

2
θ
(‖Kune ‖2 − ‖Kun−1

e ‖2)
+ 〈zn+1

e , un+1
e 〉 − σ

2
‖Kune ‖2 + 〈qn+1

e , gn+1
e 〉+ σ

2
‖gn+1

e ‖2.
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Proof. We start with the equality from Lemma A.1 and observe that now

−〈qne ,Kūne 〉 =− 〈qne ,Kune 〉+ θ〈qn − q̂,K(un−1 − un)〉
=− 〈qne ,Kune 〉+ θ〈qn,K(un−1 − un)〉 − θ〈q̂,K(un−1 − un)〉.

Using the fact that un is determined by solving a minimization problem, it is obvious that
the corresponding energy evaluated at the minimizer un is lower than the energy evaluated at
the previous iterate, un−1. Hence,

1

2τ
‖un − un−1‖2 + 〈un,KT qn〉+G(un) ≤ 〈un−1,KT qn〉+G(un−1)

⇒〈un−1 − un,KT qn〉 ≥ 1

2τ
‖un − un−1‖2 +G(un)−G(un−1),

such that

−〈qne ,Kūne 〉 ≥ − 〈qne ,Kune 〉

+ θ

(
1

2τ
‖un − un−1‖2 +G(un)−G(un−1)− 〈q̂,K(un−1 − un)〉

)
.

Using this estimate in the equality from Lemma A.1 as well as reordering the terms leads to
the assertion.

Remark A.1. It is easy to see that a point such that we can choose (vn, ρn, ξn, zn) =
(û, ĝ, q̂, ẑ) is exactly a critical point to our optimization problem (P). Hence, such a point
exists whenever the energy has at least one critical point.

We will now use the lengthy estimate of Lemma A.2 to prove our convergence result with
the idea that each line of the estimate can be controlled when summing over all n if certain
convexity properties hold. Most terms form telescope sums, such that only the first and the
last summands remain.

Proof of Theorem 2.3. The ω-semiconvexity of F along with the strong convexity of G
allows us to estimate that

〈zn+1
e , un+1

e 〉 − σ

2
‖Kun+1

e ‖2 + 〈qn+1
e , gn+1

e 〉+ σ

2
‖gn+1

e ‖2

≥ c‖un+1 − û‖2 − σ

2
‖K(un+1 − û)‖2 − ω‖gn+1 − ĝ‖2 + σ

2
‖gn+1 − ĝ‖2

≥ (
c− ω‖K‖2) ‖un+1 − û‖2,

since we picked σ = 2ω. We start with the estimate derived in Lemma A.2, keep the first row

unchanged, use σθ2‖K‖2
2 ≤ 1

2τ in the second row, state that the third row is nonnegative due
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to τσ‖K‖2 ≤ 1, and use the above estimate to state that

0 ≥ 1

2τ
(‖un+1

e ‖2 − ‖une ‖2) +
1

2σ
(‖qn+1

e ‖2 − ‖qne ‖2)

+
1

2τ

(‖un+1
e − une ‖2 − ‖une − un−1

e ‖2)
+ θ

(
G(un)−G(un−1)− 〈q̂,K(un−1 − un)〉)

+ 〈qn+1
e ,Kun+1

e 〉 − 〈qne ,Kune 〉
+

σ

2

(‖Kun+1
e ‖2 − ‖Kune ‖2

)− σ

2
θ
(‖Kune ‖2 − ‖Kun−1

e ‖2)
+

(
c− ω‖K‖2) ‖un+1 − û‖2.

Summing over the above inequality from n = 1 to n = N yields

0 ≥ 1

2τ
(‖uN+1

e ‖2 − ‖u1e‖2) +
1

2σ
(‖qN+1

e ‖2 − ‖q1e‖2)

+
1

2τ

(‖uN+1
e − uNe ‖2 − ‖u1e − u0e‖2

)
+ θ

(
G(uN )−G(u0)− 〈q̂,K(u0 − uN )〉)

+ 〈qN+1
e ,KuN+1

e 〉 − 〈q1e ,Ku1e〉
+

σ

2

(‖KuN+1
e ‖2 − ‖Ku1e‖2

)− σ

2
θ
(‖KuNe ‖2 − ‖Ku0e‖2

)
+

(
c− ω‖K‖2) N∑

n=1

‖un+1 − û‖2.

Denoting the constant

κ =
1

2τ
‖u1e‖2 +

1

2σ
‖q1e‖2 +

1

2τ
‖u1e − u0e‖2 + θG(u0)

+ 〈q̂,Ku0〉+ 〈q1e ,Ku1e〉+
σ

2

(‖Ku1e‖2 − θ‖Ku0e‖2
)
,

we have

κ ≥ 1

2τ
‖uN+1

e ‖2 + 1

2σ
‖qN+1

e ‖2 + 1

2τ
‖uN+1

e − uNe ‖2

+ θ
(
G(uN ) + 〈KT q̂, uN 〉) + 〈qN+1

e ,KuN+1
e 〉

+
σ

2

(‖KuN+1
e ‖2 − θ‖KuNe ‖2)+ (

c− ω‖K‖2) N∑
n=1

‖un+1 − û‖2.(A.18)

We observe that

〈qN+1
e ,KuN+1

e 〉 ≥ −‖K‖‖qN+1
e ‖‖uN+1

e ‖
≥ − 1√

τσ
‖qN+1

e ‖‖uN+1
e ‖

≥ −
(

1

2σ
‖qN+1

e ‖2 + 1

2τ
‖uN+1

e ‖2
)
,(A.19)
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where we used the inequality 2ab ≤ a2 + b2 with a = 1√
τ
‖uN+1

e ‖ and b = 1√
σ
‖qN+1

e ‖ in the

last step. Using (A.19) in (A.18) yields

κ ≥ 1

2τ
‖uN+1

e − uNe ‖2 + θ
(
G(uN ) + 〈KT q̂, uN 〉)

+
σ

2

(‖KuN+1
e ‖2 − θ‖KuNe ‖2)+ (

c− ω‖K‖2) N∑
n=1

‖un+1 − û‖2.(A.20)

Additionally, any stationary point (û, ĝ, q̂) meets −KT q̂ ∈ ∂G(û). Since G is c-strongly
convex, we have

G(uN )−G(û)− 〈−KT q̂, uN − û〉 ≥ c

2
‖uN − û‖2

⇒ G(uN ) + 〈KT q̂, uN 〉 ≥ G(û)− 〈−KT q̂, û〉+ c

2
‖uN − û‖2

≥ G(û)− 〈−KT q̂, û〉+ σ

4
‖KuNe ‖2.(A.21)

Using (A.21) in (A.20), we obtain

κ ≥ 1

2τ
‖uN+1

e − uNe ‖2 + θ
(
G(û)− 〈−KT q̂, û〉+ σ

4
‖KuNe ‖2

)
+

σ

2

(‖KuN+1
e ‖2 − θ‖KuNe ‖2)+ (

c− ω‖K‖2) N∑
n=1

‖un+1 − û‖2,(A.22)

which yields

κ− θ(G(û) + 〈KT q̂, û〉) ≥ 1

2τ
‖uN+1

e − uNe ‖2

+

(
σ

2
‖KuN+1

e ‖2 − σθ

4
‖KuNe ‖2

)
+

(
c− ω‖K‖2) N∑

n=1

‖un+1 − û‖2.(A.23)

The left-hand side is independent of N . If we choose θ = 0, the right-hand side is non-
negative, and since (c − ω‖K‖2) > 0, the sum

∑N
n=1 ‖un+1 − û‖2 is bounded. Due to the

convexity of ‖u− û‖2 we can apply Jensen’s inequality to conclude that

N∑
n=1

‖un+1 − û‖2 = N
N∑

n=1

1

N
‖un+1 − û‖2 ≥ N‖UN − û‖2,

with UN =
∑N

n=1
1
N un+1, which yields the ergodic convergence rate of 1/N for UN → û.

For θ > 0 we can first conclude the boundedness of ‖KuNe ‖2 with the help of

κ− θ(G(û) + 〈KT q̂, û〉) ≥ 2
(σ
4
‖KuN+1

e ‖2
)
−

(σ
4
‖KuNe ‖2

)
and then make the same argument as above.

Appendix B. Experimental convergence results. In Figure 11 we show experimental
convergence to a critical point for the three examples where we don’t have a full convergence
theorem yet.
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Figure 11. We experimentally show that the distance between the successive iterates ‖un+1 − un‖ and
‖qn+1 − qn‖ approaches zero. Using Proposition 2.8 we can indeed verify that the iterates produced by the
algorithm converge to a critical point of the respective energy functionals (3.14), (3.15), and (3.18). This
suggests the conjecture that the algorithm also converges for energies which are overall ω-semiconvex.

Mumford–Shah denoising. In the first row of Figure 11 we show that ‖un+1 − un‖ and
‖qn+1 − qn‖ approach zero for the Mumford–Shah denoising example. The input image and
parameters were chosen as in Figure 8 with varying λ. Using Propositions 2.7 and 2.8, we
experimentally verify convergence to a critical point of our energy functional.

Mumford–Shah inpainting and image dithering. Similarly to the previous paragraph, we also
experimentally verify convergence for the Mumford–Shah inpainting and dithering examples
in Figure 11. Parameters were chosen as described in sections 3.4.2 and 3.5.
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2001.
[10] A. Chambolle and T. Pock, A first-order primal-dual algorithm for convex problems with applications

to imaging, J. Math. Imaging Vis., 40 (2011), pp. 120–145.
[11] R. Chartrand, Nonconvex splitting for regularized low-rank + sparse decomposition, IEEE Trans. Signal

Process., 60 (2012), pp. 5810–5819.
[12] R. Chartrand and B. Wohlberg, A nonconvex ADMM algorithm for group sparsity with sparse groups,

in IEEE International Conference on Acoustics, Speech and Signal Processing, 2013.
[13] E. Chouzenoux, J.-C. Pesquet, and A. Repetti, Variable metric forward-backward algorithm for

minimizing the sum of a differentiable function and a convex function, J. Optim. Theory Appl., 162
(2014), pp. 107–132.

[14] W. Deng and W. Yin, On the Global and Linear Convergence of the Generalized Alternating Direction
Method of Multipliers, Tech. Report 12-52, UCLA CAM Report, revised 2014.

[15] T.P. Dinh, H.M. Le, H.A. Le Thi, and F. Lauer, A difference of convex functions algorithm for
switched linear regression, IEEE Trans. Automat. Control, 59 (2014), pp. 2277–2282.

[16] E. Esser and X. Zhang, Nonlocal Patch-Based Image Inpainting through Minimization of a Sparsity
Promoting Nonconvex Functional, tech. report, preprint, 2014.

[17] E. Esser, X. Zhang, and T.F. Chan, A general framework for a class of first order primal-dual
algorithms for convex optimization in imaging science, SIAM J. Imaging Sci., 3 (2010), pp. 1015–
1046.

[18] R. Garciga Otero and A. Iusem, Fixed-point methods for a certain class of operators, J. Optim.
Theory Appl., 159 (2013), pp. 656–672.

[19] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Forward-and-backward diffusion processes for adaptive image
enhancement and denoising, IEEE Trans. Signal Process., 11 (2002), pp. 689–703.

[20] G. Gilboa, N. Sochen, and Y.Y. Zeevi, Image sharpening by flows based on triple well potentials, J.
Math. Imaging Vis., 20 (2004), pp. 121–131.

[21] J. Huang and D. Mumford, Statistics of natural images and models, in Proceedings of the International
Conference on Computer Vision and Pattern Recognition (CVPR), 1999.

[22] A.N. Iusem, T. Pennanen, and B.F. Svaiter, Inexact variants of the proximal point algorithm without
monotonicity, SIAM J. Optim., 13 (2003), pp. 1080–1097.

[23] N. Komodakis and J.-C. Pesquet, Playing with Duality: An Overview of Recent Primal-Dual Ap-
proaches for Solving Large-Scale Optimization Problems; available from https://hal.archives-ouvertes.
fr/hal-01010437, 2014.

[24] D. Krishnan and R. Fergus, Fast image deconvolution using Hyper-Laplacian priors, in Proceedings
of the 24th Annual Conference on Neural Information Processing Systems, 2009, pp. 1033–1041.

[25] G. Li and T.K. Pong, Global Convergence of Splitting Methods for Nonconvex Composite Optimization,

https://hal.archives-ouvertes.fr/hal-01010437
https://hal.archives-ouvertes.fr/hal-01010437


THE PDHG METHOD FOR SEMICONVEX SPLITTINGS 857

arXiv preprint, http://arxiv.org/abs/1407.0753, 2014.
[26] J.M. Morel and S. Solimini, Variational Methods in Image Segmentation, Birkhäuser, Boston, 1995.
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