
Efficient Convex Optimization for Minimal Partition
Problems with Volume Constraints
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Abstract. Minimal partition problems describe the task of partitioning a domain
into a set of meaningful regions. Two important examples are image segmenta-
tion and 3D reconstruction. They can both be formulated as energy minimization
problems requiring minimum boundary length or surface area of the regions. This
common prior often leads to the removal of thin or elongated structures. Volume
constraints impose an additional prior which can help preserve such structures.
There exist a multitude of algorithms to minimize such convex functionals under
convex constraints. We systematically compare the recent Primal Dual (PD) al-
gorithm [1] to the Alternating Direction Method of Multipliers (ADMM) [2] on
volume-constrained minimal partition problems. Our experiments indicate that
the ADMM approach provides comparable and often better performance.

1 Introduction

Both segmentation and 3D reconstruction approaches aim at partitioning a two or three
dimensional domain into a set of ’meaningful’ regions. For segmentation such regions
usually correspond to the projections of three-dimensional objects in an image, whereas
for 3D reconstruction the regions indicate the three dimensional objects themselves, e.g.
in a voxel grid. Such minimal partition problems come with regularization assumptions
which either promote a minimal boundary length [3–5] or a minimal surface area [6, 7].
These constraints often over-smooth the object boundaries. In segmentation the removal
of thin or elongated structures is the consequence. In 3D reconstruction the resulting
objects tend to be flat due to the minimal surface assumption. Therefore, constraints re-
stricting the object volume for specific regions are useful as an additional regularization
assumption to help preserve thin structures and obtain plastic object shapes, see Fig-
ure 1. Such volume constraints can be adapted interactively if the corresponding op-
timization problem can be solved in an efficient manner. Minimal partition problems

Fig. 1. Results of minimal partition problems (2D segmentation and 3D reconstruction from a
single image) with additional volume prior
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can be formulated as energy minimization problems over a continuous domain based
on the commonly used total variation functional [8–10] . A bunch of algorithms exists
for optimization of the resulting functionals. In this paper the focus will especially lie
on the identification of efficient optimization algorithms with respect to the integration
of additional constraints such as the volume priors.

2 Related Work

The PD and ADMM algorithms have been previously applied to optimize energies
resulting from minimal partition problems. In particular, Goldstein et al. [11] used
ADMM to solve the two region segmentation problem amongst other geometrical prob-
lems. Recently, ADMM was also applied within several multi-region segmentation ap-
proaches [12, 13]. Niethammer et. al. [14] solved the two region segmentation problem
with volume constraints using a branch and bound method. They employ ADMM to
solve a specific sub–problem in each iteration.

The PD algorithm [15, 16, 10, 1] has become a standard algorithm for solving con-
tinuous constrained convex optimization problems with saddle-point structure. It was
applied to multi-region segmentation without volume constraints [10, 5] as well as to
single view 3D reconstruction [6].

3 Contributions

Both the PD and ADMM algorithm are well known and thoroughly studied, and they
have been applied to minimal partition problems before. In this paper we make the
following contributions:

• We impose volume constraints on the standard n region minimal partition problem
and describe how to apply the ADMM and PD algorithm to minimize the resulting
energies. We show that especially ADMM is able to handle projections onto the
resulting constraint sets without closed form solution for their combined projection.

• We systematically compare the performance of both algorithms. While ADMM
and PD have been compared on standard problems in Computer Vision before, (see
[10]) we compare them on a lesser studied problem and also provide performance
comparisons on a recent GPU.

4 Minimal Partition Problems with Volume Constraints

Let Ω ⊂ R
d denote the partition domain, i.e. d = 2 for segmentation of 2D images,

and d = 3 for 3D reconstruction. The task of partitioning the domain Ω into a set of
n pairwise disjoint regions Ωi, with Ω =

⋃n
i=1 Ωi, Ωi ∩ Ωj = ∅ ∀i �= j, can be

solved by computing a labeling l :Ω → {1, . . . , n} indicating which of the n regions
each pixel/voxel belongs to: Ωi = {x ∈ Ω : l(x) = i}.

Recently, minimal partition problems have been formulated as energy minimization
problems on the basis of functions of bounded variation (BV), i.e. functions for which
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the total variation (TV) is finite. The key idea is to encode the regions Ωi by their
indicator function u ∈ BV(Ω, {0, 1})n

ui(x) =

⎧
⎨

⎩

1, if l(x) = i

0, otherwise
∀i = 1, . . . , n (1)

and to solve for ui using convex relaxation techniques. For segmentation and 3D re-
construction based on volumetric constraints we can formulate the following convex
relaxed optimization problem:

min
u∈BV(Ω,[0,1])n

n∑

l=1

∫

Ω

‖Dul(x)‖ +

∫

Ω

fl(x)ul(x) dx (2)

s.t. ul(x) ≥ 0,

n∑

l=1

ul(x) = 1 ∀x ∈ Ω,

∫

Ω

ul(x) dx = Vl, l ∈ {1, . . . , n}. (3)

The total variation of u in (2) measures the length of the region boundaries or the size
of the region surfaces, respectively, and the data term f : Ω → R

n indicates how
strongly a pixel is associated with each of the n regions. The first two constraints in (3)
together form a simplex constraint, which ensures that each pixel is assigned to exactly
one label. The linear volume constraints impose a specific volume Vl on each label. To
obtain a binary solution after solving the relaxed problem each pixel is assigned to the
label with maximum indicator function value ui(x). In the two label case, i.e. n = 2
this operation will yield a globally optimal solution of the binary problem [17]. Due to
the simplex constraint we obtain u2 = 1− u1 for this case and thus

min
u1∈BV(Ω,[0,1])

∫

Ω

‖Du1(x)‖ +

∫

Ω

(f1(x) − f2(x))u1(x) dx (4)

s.t. 0 ≤ u1(x) ≤ 1,

∫

Ω

u1(x) dx = V1, (5)

which is the original foreground/background segmentation and single view 3D recon-
struction functional of [6]. In this case, the data term f1−f2 is chosen so the projection
of the segmentation onto the image plane corresponds to the silhouette of the object.

The main problem in the optimization of these functionals are the constraints in (3),
which must all be fulfilled simultaneously. One of the simplest optimization strategies
for constrained optimization is Projected Gradient Descent. However, since the total
variation is non-smooth, this method cannot be applied directly. Furthermore, there ex-
ists no closed form projection onto the feasible set in (3). Projecting the primal variable
onto the intersection of several feasible sets by Dykstra’s projection algorithm [18] in
every iteration is inexact and inefficient.

A well-known algorithm for non-smooth problems involving the total variation is
the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [19]. However, it turns
out that this algorithm also requires a projection onto the feasible set in (3) in every
iteration, which makes the algorithm slow and inexact.

Therefore, algorithms which can handle constraints simultaneously without closed
form solution for their combined projection are required to obtain fast and accurate
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solutions. ADMM can handle such constraints by separate projections on each feasible
set. Apart from ADMM there is the Primal Dual algorithm [1, 10], which can handle
constraints by the method of Lagrange multipliers.

5 Efficient Convex Optimization

In the following we will present the ADMM and the PD method in detail and see how
to apply them to the volume constrained minimal partition task. In general, these algo-
rithms solve problems of the form

min
x∈Rn

F (Kx) +G(x) (6)

where K ∈ R
n×m is a linear operator, and F : Rm → R ∪ {∞}, G : Rn → R ∪ {∞}

are proper, closed and convex functions.

Alternating Direction Method of Multipliers. We consider a slightly generalized
version of ADMM in scaled form, which is given by the update scheme

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xk+1 = argmin
x∈Rn

G(x) + τ
2‖Kx− yk + λk‖22

rk+1 = αKxk+1 + (1 − α)yk

yk+1 = argmin
y∈Rm

F (y) + τ
2‖rk+1 − y + λk‖22

λk+1 = λk + rk+1 − yk+1

(7)

where α ∈ (0, 2) is an over– or under-relaxation factor, and τ is a step size parameter.
For a derivation of this algorithm we refer the interested reader to [20]. A possible inter-
pretation of this algorithm is, that it alternatingly optimizes the Augmented Lagrangian
Lτ of the primal problem (6) in the variables x, y and λ:

Lτ (x, y, λ) = F (y) +G(x) + 〈λ,Kx− y〉 + τ

2
‖Kx− y‖22

This algorithm was first studied by Eckstein et. al. in [2], a proof of convergence of the
algorithm is given by Theorem 8 of that paper.

Preconditioned Primal Dual Algorithm. We also consider the recent algorithm by
Chambolle et al. [16, 10, 1] for finding a saddle point of the primal-dual formulation of
the problem (6)

min
x∈Rn

max
y∈Rm

〈Kx, y〉 +G(x) − F ∗(y) (8)

where F ∗ denotes the convex conjugate of F . The update steps of the algorithm are
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = (id+T∂G)−1(xk − TKTyk)

x̄k+1 = xk+1 + θ(xk+1 − xk)

yk+1 = (id+Σ∂F ∗)−1(yk +ΣK(x̄k+1))

(9)
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where T and Σ are preconditioning matrices that can be seen as generalized step sizes.
This algorithm alternatingly performs gradient descent and ascent steps on (8) in x
and y. For further information on the algorithm we refer the interested reader to [1].
Furthermore, it has been shown in [10] that the ADMM algorithm (with α = 1) and
the PD algorithm are identical, if K is equal to the identity matrix. However, in the
general case it is often necessary to solve a least squares problem involving the matrix
K in the ADMM algorithm, while the PD algorithm has a closed for solution for the
corresponding step.

5.1 Notation and Discretization

In the following we descretize the continuous domain into a regular grid of width W ,
height H and in the 3D case depth D. To make notation easier we introduce the index
set Ω = [1 . . .W ] × [1 . . .H ] to address the individual grid elements of x ∈ R

WH as
xi for some i ∈ Ω (and we define everything analogously in the 3D case).

For the discretization of the gradient operator ∇ we use forward differences and
von Neumann boundary conditions. Due to the duality of the gradient and divergence
operator the divergence operator is defined as div = −∇T , in order to satisfy the
identity 〈∇x, y〉 = −〈x, div y〉. We define the discrete Laplacian as Δ = −∇T∇.

Furthermore, we denote the isotropic discretization of the weighted TV

TVg(x) =

∫

Ω

g(t)‖∇x(t)‖2 dt as ‖∇x‖g =
∑

i∈Ω

gi‖(∇x)i‖2.

We will also make frequent use of the indicator function ιC of a set C

ιC(x) :=

{
0, x ∈ C
∞, x �∈ C

5.2 Application to Single View 3D Reconstruction

In the discrete setting we can write the continuous formulation of the single view 3D
reconstruction problem (4) as

min
u∈U∩V

‖∇u‖g + 〈u, f〉 (10)

where the set U corresponds to the simplex constraint and the set V to the volume
constraint in (3). In particular, we define the constraints as

U = {u ∈ X : 0 ≤ ui ≤ 1} and V =

{

u ∈ X :
∑

i∈Ω

ui = V
}

with X = R
WHD for a domain of width W , height H and depth D.
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Alternating Direction Method of Multipliers. We will now apply ADMM to problem

(10). We set K : X → Y as Ku =
(∇u u

)T
and write the constraints as indicator

functions ιU and ιV to arrive at the following equivalent formulation:

min
u∈X

‖∇u‖g + ιV (u)
︸ ︷︷ ︸

F (Ku)

+ 〈u, f〉 + ιU (u)
︸ ︷︷ ︸

G(u)

(11)

Applying the ADMM scheme (7) yields the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1 = argmin
u∈X

〈u, f〉 + ιU (u) +
τ
2 ‖
(∇u

u

)− ( vk

wk

)
+
( λk

1

λk
2

)‖22
( rk+1

1

rk+1
2

)
= α

(∇uk+1

uk+1

)
+ (1− α)

(
vk

wk

)

(
vk+1

wk+1

)
= argmin

(v w)T∈Y

‖v‖g + ιV (w) +
τ
2‖
( rk+1

1

rk+1
2

)− ( v
w

)
+
( λk

1

λk
2

)‖22
( λk+1

1

λk+1
2

)
=
( λk

1

λk
2

)
+
( rk+1

1

rk+1
2

)− ( vk+1

wk+1

)

(12)

The update steps in r1, r2, λ1 and λ2 are just simple arithmetic operations. It remains to
show how to solve the sub-optimization problems in u, v and w. Note that the coupled
optimization problem in v and w is separable into two independent sub-problems.

Solving the sub-problem in u. Ignoring the constraint ιU which corresponds to u ∈ U ,
the minimization problem is differentiable. The required optimality conditions are given
by the Euler-Lagrange equation:

∂E

∂u
=
f

τ
+ (u− wk + λk

2)− div(∇u− vk + λk
1) = 0

⇔ u = (I −Δ)−1(−f

τ
+ wk − λk

2 − div vk + div λk
1)

This smooth, constrained problem can be approximately solved by the Projected Gra-
dient Descent method:

ûi+1 = projU (û
i − γ

∂E

∂u
)

with stepsize γ for i = 1 . . .N − 1 and û1 = uk, and finally setting uk+1 = ûN .
However, we chose to approximately solve for u by alternating Jacobi iterations

with point-wise projection to the constraint set U in the same fashion as [11]. In our
experiments we found this to be slightly faster than Projected Gradient Descent, while
producing the same final result. We noticed that using only two iterations to solve this
sub-problem seem to suffice to make the ADMM algorithm converge.

Solving the sub-problem in v. The closed-form solution for the minimizer of the opti-
mization problem

vk+1 = argmin
v

‖v‖g + τ

2
‖v − (rk1 + λk

1)‖22
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is given by the coupled shrinkage formula

vk+1 = shrinkg(r
k
1 + λk

1 , τ)

which we define similarly to [11, 21] as

(shrinkg(x, τ))i =

{
0, if ‖xi‖2 ≤ gi

τ
xi − gi

τ
xi

‖xi‖2
, otherwise.

Solving the sub-problem in w. The closed form solution to the optimization problem in
w is given by the orthogonal projection of rk2 + λk

2 onto the convex set V .

wk+1 = argmin
w

ιV (w) +
τ

2
‖w − (rk2 + λk

2)‖22 = projV (r
k
2 + λk

2).

Furthermore, a short calculation shows that

projV (x) = x− 1

|Ω|

(
∑

i∈Ω

xi − V
)

where the set V is defined as above.

Preconditioned Primal Dual Algorithm. We formulate the single view 3D recon-
struction functional as the saddle–point problem

min
u∈X

max
ξ∈Y1,λ∈Y2

〈∇u, ξ〉 + 〈λ,1Tu〉
︸ ︷︷ ︸

〈Ku, (ξ λ) T 〉

+ 〈u, f〉 + ιU (u)
︸ ︷︷ ︸

G(u)

− (ιP (ξ) + 〈λ,V〉)
︸ ︷︷ ︸

F∗( (ξ λ) T )

(13)

where P = {ξ ∈ Y1 : ‖ξ‖∞ ≤ g}. Applying scheme (9) yields:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

uk+1 = projU (u
k − T (− div ξk + λk − f))

ūk+1 = uk+1 + θ(uk+1 − uk)

ξk+1 = projP (ξ
k +Σ1∇ūk+1)

λk+1 = λk +Σ2(
∑

i

ūk+1
i − V)

(14)

For a detailed derivation of these update equations, we refer the interested reader to
[1], where the algorithm is applied to similar problems without the additional volume
constraint. We pick T and Σ =

(
Σ1 0
0 Σ2

)
according to the diagonal preconditioning

scheme [1] (with α = 1), note that in our case K has full rank.

5.3 Application to Volume Constrained Multi-region Segmentation

In the general multi-region case forN ≥ 2, the discretization of the continuous problem
formulation (2) is given by

min
u∈UN∩S∩V

N∑

l=1

‖∇ul‖g + 〈ul, fl〉 (15)
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where u = (ul)
N
l=1. The constraints are implemented by the three sets

U = {u ∈ X : ui ≥ 0}, V = V1 × ...× VN and

S =

{

u ∈ XN :

N∑

l=1

(ul)i = 1

}

, where Vl =

{

ul ∈ X :
∑

i∈Ω

(ul)i = Vl

}

with X = R
WH . The intersection U ∩ S is the simplex constraint and the set V the

volume constraint. Furthermore the target volumes for the individual regions are given
by (Vl)

N
l=1.

Alternating Direction Method of Multipliers. We again rewrite the constraints as
indicator functions and arrive at

min
u∈XN

ιV ∩S(u) +

N∑

l=1

‖∇ul‖g
︸ ︷︷ ︸

F (Ku)

+

N∑

l=1

〈ul, fl〉 + ιU (ul)

︸ ︷︷ ︸
G(u)

(16)

where K : XN → Y , Y := Y N
1 × Y N

2 with Ku =
(∇u1 ... ∇uN u1 ... uN

)T
. By

applying the ADMM scheme (7) to this formulation we arrive at the following algorithm
for the multi-region segmentation problem. Each step is performed for l = 1..N , since
the minimization problem can be solved separately for each ul and vl.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
l = argmin

ul∈X
〈ul, fl〉 + ιU (ul) +

τ
2‖
(∇ul

ul

)− ( vk
l

wk
l

)
+
( λk

1,l

λk
2,l

)‖22
( rk+1

1,l

rk+1
2,l

)
= α

(∇uk+1
l

uk+1
l

)
+ (1− α)

( vk
l

wk
l

)

vk+1
l = argmin

vl∈Y1

‖vl‖g + τ
2 ‖rk+1

1 − vl + λk
2,l‖22

wk+1 = argmin
w∈Y N

2

ιV ∩S(w) +
τ
2 ‖rk+1

2 − w + λk
2‖22

( λk+1
1,l

λk+1
2,l

)
=
( λk

1,l

λk
2,l

)
+
( rk+1

1,l

rk+1
2,l

)− ( vk+1
l

wk+1
l

)

(17)

Solving the sub-problems in ul and vl. These minimization problems are solved in the
same way as above.

Solving the sub-problem in w. Solving the minimization problem in w amounts to
finding the orthogonal projection onto the convex set V ∩ S:

wk+1 = argmin
w

ιV ∩S(w) +
τ

2
‖w − (rk2 + λk

2)‖22
= projV ∩S(r

k
2 + λk

2)

For the projection of x = (xl)
N
l=1 ∈ XN onto this convex set we find the following

analytical solution

projV ∩S(x) =

(
xl − 1

N

N∑
j=1

xj − 1

|Ω|

(∑
i∈Ω

(xl)i − 1

N

N∑
j=1

∑
i∈Ω

(xj)i − Vl

)
· 1X

)N

l=1
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which can be evaluated very efficiently using only basic arithmetic operations. This
closed form projection looks somewhat daunting, but can be obtained in a straightfor-
ward manner by writing the problem in w as an unconstrained optimization problem
with Lagrange multipliers.

Preconditioned Primal Dual Algorithm. Rewriting (15) as a saddle point problem
with Lagrange multipliers yields

min
u∈X

max
(ξ,λ,μ)∈Y

N∑

l=1

〈∇ul, ξl〉 + 〈λl,1
Tul〉 + 〈μ,

N∑

l=1

ul〉
︸ ︷︷ ︸

〈Ku, (ξ λ μ) T 〉

+

N∑

l=1

〈ul, fl〉 + ιU (ul)

︸ ︷︷ ︸
G(u)

− (ιP (ξ) + 〈λ,V〉 + 〈μ,1〉)
︸ ︷︷ ︸

F∗( (ξ λ μ) T )

(18)

with P =
{
ξ ∈ Y N

1 : ‖ξl‖∞ ≤ g
}

, where Y := Y N
1 ×Y N

2 × Y3. Applying the primal-
dual algorithm (9) yields the following update scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uk+1
l = projU (u

k
l − T (− div ξkk + λk

l + μk − f))

ūk+1
l = uk+1

l + θ(uk+1
l − uk

l )

ξk+1
l = projP (ξ

k
l +Σ1∇ūk+1

l )

λk+1
l = λk

l +Σ2(
∑

i

(ūk+1
l )i − Vl)

μk+1 = μk +Σ3(
N∑

l=1

(ūk+1
l )− 1X)

(19)

Again, we omit the detailed derivation of the update equations and refer to [1] to see how

to apply the PD algorithm to saddle point problems. We again chose Σ =
(Σ1 0 0

0 Σ2 0
0 0 Σ3

)

and T according to the diagonal preconditioning scheme with α = 1.

6 Numerical Experiments

For evaluating the ADMM and the PD algorithm with respect to runtime for minimal
partition problems under additional volume constraints we apply these algorithms to
two important problems: 3D reconstruction as formulated in [6] and image segmen-
tation based on the formulation in [5] with additional volume constraints. Both algo-
rithms were implemented according to the update rules described above and run until
the RMSE error ‖u − u∗‖2/

√|Ω| dropped below a threshold of ε = 5.0 ∗ 10−3. The
optimal solution u∗ of the energy minimization problem was computed by letting the
algorithms run for a very long time.

We chose the ADMM parameters as τ = 1, α = 1.5 and we used 2 Jacobi iterations
for the multi-region segmentation problem and 5 for the 3D reconstruction problem.
For the PD algorithm we set θ = 1 and chose T and Σ as described above.
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Fig. 2. 3D reconstruction: Results from a single image, first row: original image, second row:
reconstructed geometry, third row: textured result. The results look identical for PD and ADMM.

a) b) c) d)

Fig. 3. Segmentation: a) original input images, b) ground truth, c) segmentation results without
volume constraints and d) with volume constraints. The results look identical for PD and ADMM.
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The algorithms were implemented in C++/CUDA and run on graphics processing
units (GPUs). We used 32–bit floating point precision. All numerical experiments were
carried out on a PC with a 3.4GHz Intel i7-3770 CPU with 32GB RAM and a NVIDIA
GeForce GTX680 graphics card on a Linux distribution.

6.1 Results for 3D Reconstruction

For 3D reconstruction we used a total number of 18 test images and computed the
reconstruction for each of them using PD and ADMM, see Figure 2. To examine how
the algorithms scale with the resolution of the reconstruction domain Ω we used three
different resolutions. A rather coarse resolution with few (≈ 3.4 · 104) voxels (sm), an
intermediate (≈ 8.0 · 105) resolution (med) and a fine resolution with a large number
(≈ 3.6 · 106) of voxels (big).

For each resolution the average runtime and standard deviation over all test images is
given in Table 1. Figure 4 shows an example for the different performances of PD and
ADMM on the giraffe image in Figure 2. The horizontal line indicates the termination
criterion where the desired accuracy of the solution is reached. Results on the other
test images look similar. From the results we can conclude that the ADMM algorithm
converges faster than the PD algorithm for the 3D reconstruction problem instance of
the minimal partition problems with volume constraints.

Table 1. 3D reconstruction: Average and standard deviation of the runtime and number of iter-
ations for the PD and ADMM algorithm over 18 different single view 3D Reconstruction exam-
ples. The results show that ADMM performs better.

Runtime in Seconds Number of Iterations

|Ω| PD ADMM PD ADMM

sm 0.15 (± 0.10) 0.10 (± 0.05) 1015 (± 618) 300 (± 152)

med 13.47 (± 11.64) 8.35 (± 7.32) 5716 (± 5664) 1471 (± 1399)

big 115.30 (± 113.60) 79.16 (± 91.80) 11724 (± 12136) 3171 (± 3776)

Table 2. Segmentation: Average and standard deviation of the runtime and iteration numbers for
the PD and ADMM algorithms on the Graz benchmark for interactive segmentation containing
262 test examples. We can conclude that ADMM outperforms the PD method.

Runtime in Seconds Number of Iterations

PD ADMM PD ADMM

4.17 (± 6.41) 3.52 (± 5.95) 6843 (± 8257) 2950 (± 3822)
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Fig. 4. 3D reconstruction: Exemplary convergence of the ADMM and the PD algorithm. The
horizontal line indicates the termination criterion based on the accuracy of the algorithm (vertical
axis). The ADMM algorithm converges significantly faster than the PD algorithm.

Fig. 5. Segmentation: Exemplary convergence of the ADMM and the PD algorithm for a single
image from the Graz benchmark for interactive segmentation. The horizontal line indicates the
termination criterion based on the accuracy of the algorithm (vertical axis). For the multi-region
segmentation problem the ADMM algorithm converges slightly faster than the PD algorithm.

6.2 Results for Volume Constrained Multi-region Segmentation

For the performance evaluation of the multi-region segmentation approach we use the
Graz interactive segmentation benchmark proposed by Santner et al. [4]. This bench-
mark contains 262 hand labeled pairs of user scribbles with ground truth. Since this
benchmark is only used for evaluating the performance of the algorithm the volume
constraints are computed from the ground truth segmentations for each image. The
data terms fi in (2) are computed based on [5], but are not part of the performance
evaluation.

Figure 5 exemplarily shows the performance in terms of runtime and number of it-
erations for the first image of the Graz database, which contains four labels. The other
performance plots look similar. On average we obtain the results in Table 2 over all im-
ages of the benchmark. From the results we can conclude that ADMM is also faster for
the multi-region segmentation problem as an instance of the minimal partition problems
with volume constraint. Figure 3 shows some qualitative segmentation results based on
an optimized volume constraint.
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Fig. 6. Cumulative distribution functions over the runtimes for the 18 3D reconstruction examples
and the 262 segmentation examples. The plots indicate for each runtime T in seconds (horizontal
axis) the ratio of examples with runtimes below T seconds P (t ≤ T ) (vertical axis). The faster
the curve grows the more efficient is the algorithm. For both instances of partition problems the
ADMM algorithm yields better performance results.

6.3 Cumulative Distribution Function of Runtimes

Finally, we show the cumulative distribution functions (CDF) of the runtimes for both
partition problems instances, i.e. 3D reconstruction and multi-region segmentation, in
Figure 6. The vertical axis shows the ratio of samples with runtimes below T seconds on
the horizontal axis (P (t ≤ T )). The 3D reconstruction results are based on 18 sample
images, which causes the staircase pattern in the plot. For the segmentation results we
had 262 sample images. The CDF plots confirm that the ADMM algorithm in general
converges faster than the PD algorithm.

7 Conclusion

We have compared two algorithms for solving the minimal partition problem with ad-
ditional volume constraints, PD and ADMM. In the PD algorithm the constraints are
handled by Lagrange multipliers, and every iteration step has a closed form solution.
Contrary, the ADMM algorithm requires an approximate solution of a least squares
problem in every iteration, and the constraints are handled by orthogonal projections
onto the corresponding sets. The results suggest that both algorithms can be extended
in a straightforward manner in order to handle additional convex constraints.

We conducted several experiments on 3D reconstruction examples and on the Graz
interactive segmentation benchmark. Our experiments indicate that the ADMM ap-
proach provides comparable and often better performance. On average, it yields shorter
runtimes than the PD algorithm and requires significantly less iterations, while the qual-
ity of the results is identical.
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