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Abstract

We propose a novel spatially continuous framework for
convex relaxations based on functional lifting. Our method
can be interpreted as a sublabel–accurate solution to mul-
tilabel problems. We show that previously proposed func-
tional lifting methods optimize an energy which is linear be-
tween two labels and hence require (often infinitely) many
labels for a faithful approximation. In contrast, the pro-
posed formulation is based on a piecewise convex approxi-
mation and therefore needs far fewer labels – see Fig. 1. In
comparison to recent MRF-based approaches, our method
is formulated in a spatially continuous setting and shows
less grid bias. Moreover, in a local sense, our formulation
is the tightest possible convex relaxation. It is easy to im-
plement and allows an efficient primal-dual optimization on
GPUs. We show the effectiveness of our approach on sev-
eral computer vision problems.

1. Introduction

Energy minimization methods have become the central
paradigm for solving practical problems in computer vision.
The energy functional can often be written as the sum of
a data fidelity and a regularization term. One of the most
popular regularizers is the total variation (TV ) due to its
many favorable properties [4]. Hence, an important class of
optimization problems is given as

min
u:Ω→Γ

∫
Ω

ρ(x, u(x)) dx+ λ TV (u), (1)

∗Those authors contributed equally.

Pock et al. [17], 48 labels, 1.49 GB, 52s. Proposed, 8 labels, 0.49 GB, 30s.

Figure 1. We propose a convex relaxation for the variational model
(1), which opposed to existing functional lifting methods [17, 18]
allows continuous label spaces even after discretization. Our
method (here applied to stereo matching) avoids label space dis-
cretization artifacts, while saving on memory and runtime.

defined for functions u with finite total variation, arbitrary,
possibly nonconvex dataterms ρ : Ω × Γ → R, label
spaces Γ which are closed intervals in R, Ω ⊂ Rd, and
λ ∈ R+. The multilabel interpretation of the dataterm is
that ρ(x, u(x)) represents the costs of assigning label u(x)

to point x. For (weakly) differentiable functions TV (u)

equals the integral over the norm of the derivative, and
therefore favors a spatially coherent label configuration.
The difficultly of minimizing the nonconvex energy (1) has
motivated researchers to develop convex reformulations.

Convex representations of (1) and more general related
energies have been studied in the context of the calibration
method for the Mumford-Shah functional [1]. Based on
these works, relaxations for the piecewise constant [15] and
piecewise smooth Mumford-Shah functional [16] have been
proposed. Inspired by Ishikawa’s graph-theoretic globally
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optimal solution to discrete variants of (1), continuous ana-
logues have been considered by Pock et al. in [17, 18]. Con-
tinuous relaxations for multilabeling problems with finite
label spaces Γ have also been studied in [11].

Interestingly, the discretization of the aforementioned
continuous relaxations is very similar to the linear pro-
gramming relaxations proposed for MAP inference in the
Markov Random Field (MRF) community [10, 22, 24, 26].
Both approaches ultimately discretize the range Γ into a fi-
nite set of labels. A closer analysis of these relaxations re-
veals, however, that they are not well-suited to represent
the continuous valued range that we face in most computer
vision problems such as stereo matching or optical flow.
More specifically, the above relaxations are not designed
to assign meaningful cost values to non-integral configu-
rations. As a result, a large number of labels is required
to achieve a faithful approximation. Solving real-world vi-
sion problems therefore entails large optimization problems
with high memory and runtime requirement. To address this
problem, Zach and Kohli [27], Zach [25] and Fix and Agar-
wal [7] introduced MRF-based approaches which retain
continuous label spaces after discretization. For manifold-
valued labels, this issue was addressed by Lellmann et al.
[12], however with the sole focus on the regularizer.

1.1. Contributions

We propose the first sublabel–accurate convex relaxation
of nonconvex problems in a spatially continuous setting. It
exhibits several favorable properties:

• In contrast to existing spatially continuous lifting ap-
proaches [17, 18], the proposed method provides sub-
stantially better solutions with far fewer labels – see
Fig. 1. This provides savings in runtime and memory.

• In Sec. 3 we show that the functional lifting methods
[17, 18] are a special case of the proposed framework.

• In Sec. 3 we show that, in a local sense, our formu-
lation is the tightest convex relaxation which takes
dataterm and regularizer into account separately. It is
unknown whether this “local convex envelope” prop-
erty also holds for the discrete approach [27].

• Our formulation is compact and requires only half the
amount of variables for the dataterm than the formula-
tion in [27]. We prove that the sublabel–accurate total
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Figure 2. Lifted representation. Instead of optimizing over the
function u : Ω → Γ, we optimize over all possible graph func-
tions (here shaded in green) on Ω × Γ. The main idea behind our
approach is the finite dimensional representation of the graph at
every x ∈ Ω by means of u : Ω→ Rk (here k = 4).

variation can be represented in a very simple way, in-
troducing no overhead compared to [17, 18]. In con-
trast, the regularizer in [27] is much more involved.

• Since our method is derived in a spatially continuous
setting, the proposed approach easily allows different
gradient discretizations. In contrast to [25, 27] the reg-
ularizer is isotropic leading to noticeably less grid bias.

2. Notation and Mathematical Preliminaries

We make heavy use of the convex conjugate, which is
given as f∗(y) = supx∈Rn 〈y, x〉 − f(x) for functions
f : Rn → R ∪ {∞}. The biconjugate f∗∗ denotes its con-
vex envelope, i.e. the largest lower-semicontinuous convex
under-approximation of f . For a set C we denote by δC
the function which maps any element from C to 0 and is
∞ otherwise. For a comprehensive introduction to convex
analysis, we refer the reader to [19]. Vector valued func-
tions u : Ω → Rk are written in bold symbols. If it is
clear from the context, we will drop the x ∈ Ω inside the
functions, e.g., we write ρ(u) for ρ(x, u(x)), or α for α(x).

3. Functional Lifting

To derive a convex representation of (1), we rely on the
framework of functional lifting. The idea is to reformulate
the optimization problem in a higher dimensional space.
We numerically show in Sec. 5 that considering the con-
vex envelope of the dataterm and regularizer in this higher
dimensional space leads to a better approximation of the
original nonconvex energy. We start by sampling the range
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Figure 3. We show the nonconvex energy ρ(u) at a fixed point x ∈ Ω (red dashed line in both plots) from the stereo matching experiment in
Fig. 9 over the full range of 270 disparities. The black dots indicate the positions of the labels and the black curves show the approximations
used by the respective methods. Fig. 3a: The baseline lifting method [17] uses a piecewise linear approximation with labels as nodes.
Fig. 3b: The proposed method uses an optimal piecewise convex approximation. As we can see, the piecewise convex approximation is
closer to the original nonconvex energy and therefore more accurate.

Γ at L = k + 1 labels γ1 < . . . < γL ∈ Γ. This par-
titions the range into k intervals Γi = [γi, γi+1] so that
Γ = Γ1∪ . . .∪Γk. For any value in the range of u : Ω→ Γ

there exist a label index 1 ≤ i ≤ k and α ∈ [0, 1] such that

u(x) = γαi := γi + α(γi+1 − γi). (2)

We represent a value in the range Γ by a vector in Rk

u(x) = 1αi := α1i + (1− α)1i−1, (3)

where 1i denotes a vector starting with i ones followed by
k − i zeros. We call u : Ω → Rk the lifted representation
of u, representing the graph of u. This notation is depicted
in Fig. 2 for k = 4. Back-projecting the lifted u(x) to the
range of u using the layer cake formula yields a one-to-one
correspondence between u(x) = γαi and u(x) = 1αi via

u(x) = γ1 +

k∑
i=1

ui(x)(γi+1 − γi). (4)

We write problem (1) in terms of such graph functions, a
technique that is used in the theory of Cartesian currents [8].

3.1. Convexification of the Dataterm

For now, we consider a fixed x ∈ Ω. Then the dataterm
from (1) is a possibly nonconvex real-valued function (cf.
Fig. 3) that we seek to minimize over a compact interval Γ:

min
u∈Γ

ρ(u). (5)

Due to the one-to-one correspondence between γαi and 1αi
it is clear that solving problem (5) is equivalent to finding a
minimizer of the lifted energy:

ρ(u) = min
1≤i≤k

ρi(u), (6)

ρi(u) =

ρ(γαi ), if u = 1αi , α ∈ [0, 1],

∞, else.
(7)

Note that the constraint in (7) is essentially the nonconvex
special ordered set of type 2 (SOS2) constraint [3]. More
precisely, we demand that the “derivative” in label direction
(∂γu)i := ui+1 − ui is zero, except for two neighboring
elements, which add up to one. In the following proposition,
we derive the tightest convex relaxation of ρ.

Proposition 1. The convex envelope of (6) is given as:

ρ∗∗(u) = sup
v∈Rk

〈u,v〉 − max
1≤i≤k

ρ∗i (v), (8)

where the conjugate of the individual ρi is

ρ∗i (v) = ci(v) + ρ∗i

(
vi

γi+1 − γi

)
, (9)

with ci(v) = 〈1i−1,v〉 − γi
γi+1−γi vi and ρi = ρ+ δΓi

.

Proof. See supplementary material.

The above proposition reveals that the convex relaxation
implicitly convexifies the dataterm ρ on each interval Γi.
The equality ρ∗i = ρ∗∗∗i implies that starting with ρi yields
exactly the same convex relaxation as starting with ρ∗∗i .

Corollary 1. If ρ is linear on each Γi, then the convex en-
velopes of ρ(u) and σ(u) coincide, where the latter is:

σ(u) =

ρ(γαi ), if ∃i : u = 1αi , α ∈ {0, 1},

∞, else.
(10)

Proof. Consider an additional constraint δ{γi,γi+1} for each
ρi, which corresponds to selecting α ∈ {0, 1} in (7). The
fact that our relaxation is independent of whether we choose
ρi or ρ∗∗i , along with the fact that the convex hull of two
points is a line, yields the assertion.

For the piecewise linear case, it is possible to find an
explicit form of the biconjugate.



Proposition 2. Let us denote by r ∈ Rk the vector with

ri = ρ(γi+1)− ρ(γi), 1 ≤ i ≤ k. (11)

Under the assumptions of Prop. 1, one obtains:

σ∗∗(u) =

ρ(γ1) + 〈u, r〉, if ui ≥ ui+1,ui ∈ [0, 1],

∞, else.
(12)

Proof. See supplementary material.

Up to an offset (which is irrelevant for the optimization),
one can see that (12) coincides with the dataterm of [15], the
discretizations of [17, 18], and – after a change of variable
– with [11]. This not only proves that the latter is optimiz-
ing a convex envelope, but also shows that our method natu-
rally generalizes the work from piecewise linear to arbitrary
piecewise convex energies. Fig. 3a and Fig. 3b illustrate the
difference of σ∗∗ and ρ∗∗ on the example of a nonconvex
stereo matching cost.

Because our method allows arbitrary convex functions
on each Γi, we can prove that, for the two label case, our
approach optimizes the convex envelope of the dataterm.

Proposition 3. In the case of binary labeling, i.e., L = 2,
the convex envelope of (6) reduces to

ρ∗∗(u) = ρ∗∗ (γ1 + u(γ2 − γ1)) , with u ∈ [0, 1]. (13)

Proof. See supplementary material.

3.2. A Lifted Representation of the Total Variation

We now want to find a lifted convex formulation that em-
ulates the total variation regularization in (1). We follow [5]
and define an appropriate integrand of the functional

TV (u) =

∫
Ω

Φ(x,Du), (14)

where the distributional derivative Du is a finite Rk×d-
valued Radon measure [2]. We define

Φ(g) = min
1≤i≤j≤k

Φi,j(g). (15)

The individual Φi,j : Rk×d → R ∪ {∞} are given by:

Φi,j(g) =


∣∣∣γαi − γβj ∣∣∣ · |ν|2, if g = (1αi − 1βj ) νT,

∞, else,
(16)
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Figure 4. Illustration of the epigraph projection. In the left sub-
figure the projection onto the epigraph of the conjugate of a con-
vex quadratic ρi is shown. In the right subfigure the piecewise
linear case is illustrated. In the both cases all points that lie in the
gray sets are orthogonally projected onto the respective linear parts
whereas the points that lie in the green sets are projected onto the
parabolic part (in the quadratic case) respectively the kinks (in the
piecewise linear case). In the piecewise linear case the green sets
are normal cones. The red dashed lines correspond to the bound-
ary cases. γi, γi+1, µ1, µ2 are the slopes of the segments of ρ∗i
respectively the (sub-)label positions of ρi.

for some α, β ∈ [0, 1] and ν ∈ Rd. The intuition is that Φi,j

penalizes a jump from γαi to γβj in the direction of ν. Since
Φ is nonconvex we compute the convex envelope.

Proposition 4. The convex envelope of (15) is

Φ∗∗(g) = sup
p∈K
〈p, g〉, (17)

where K ⊂ Rk×d is given as:

K =
{
p ∈ Rk×d

∣∣∣ ∣∣∣pT(1αi − 1βj )
∣∣∣
2
≤
∣∣∣γαi − γβj ∣∣∣ ,

∀ 1 ≤ i ≤ j ≤ k, ∀α, β ∈ [0, 1]
}
.

(18)

Proof. See supplementary material.

The set K from Eq. (18) involves infinitely many con-
straints which makes numerical optimization difficult. As
the following proposition reveals, the infinite number of
constraints can be reduced to only linearly many, allowing
to enforce the constraint p ∈ K exactly.

Proposition 5. If the labels are ordered (γ1 < γ2 < . . . <

γL) then the constraint set K from Eq. (18) is equal to

K = {p ∈Rk×d | |pi|2 ≤ γi+1 − γi, ∀i}. (19)

Proof. See supplementary material.



Direct Optimization of
(25),

t = 0.6s, 11.78 MB

Baseline (L = 8),
t =∞, 113 MB

Baseline (L = 16),
t =∞, 226 MB

Baseline (L = 256),
t =∞, 3619 MB

Proposed (L = 2)
t = 1s, 27 MB

Proposed (L = 10)
t = 15s, 211 MB

Figure 5. Denoising comparison. We compare the proposed
method to the baseline method [17] on the convex ROF problem.
We show the time in seconds required for each method to produce
a solution within a certain energy gap to the optimal solution. As
the baseline method optimizes a piecewise linear approximation of
the quadratic dataterm, it fails to reach that optimality gap even for
L = 256 (indicated by t = ∞). In contrast, while the proposed
lifting method can solve a large class of non-convex problems, it
is almost as efficient as direct methods on convex problems.

This shows that the proposed regularizer coincides with
the total variation from [5], where it has been derived based
on (16) for α and β restricted to {0, 1}. Prop. 5 together
with Prop. 3 show that for k = 1 our formulation amounts
to unlifted TV optimization with a convexified dataterm.

4. Numerical Optimization

Discretizing Ω ⊂ Rd as a d-dimensional Cartesian grid,
the relaxed energy minimization problem becomes

min
u:Ω→Rk

∑
x∈Ω

ρ∗∗(x,u(x)) + Φ∗∗(x,∇u(x)), (20)

where ∇ denotes a forward-difference operator with ∇u :

Ω → Rk×d. We rewrite the dataterm given in equation (8)
by replacing the pointwise maximum over the conjugates
ρ∗i with a maximum over a real number q ∈ R and obtain

Input image f Proposed (L = 5),
E = 20494,
t = 14.6s

Proposed (L = 10),
E = 18844,
t = 30.5s

Proposed (L = 20),
E = 18699,
t = 123.9s

Baseline (L = 256),
E = 18660,
t = 1001s

Baseline (L = 5),
E = 23864,
t = 4.7s

Baseline (L = 10),
E = 19802,
t = 6.3s

Baseline (L = 20),
E = 18876,
t = 12.8s

Figure 6. Denoising using a robust truncated quadratic dataterm.
The top row shows the input image along with the result obtained
by our approach for a varying number of labels L. The bottom
row illustrates the results obtained by the baseline method [17].
The energy of the final solution as well as the total runtime are
given below each image.

the following saddle point formulation of problem (20):

min
u:Ω→Rk

max
(v,q)∈C
p:Ω→K

〈u,v〉 −
∑
x∈Ω

q(x) + 〈p,∇u〉, (21)

C = {(v, q) : Ω→ Rk × R | q(x) ≥ ρ∗i (v(x)), ∀x, ∀i}.
(22)

We numerically compute a minimizer of problem (21) us-
ing a first-order primal-dual method [6, 16] with diagonal
preconditioning [14] and adaptive steps [9]. It alternates
between a gradient descent step in the primal variable and
a gradient ascent step in the dual variable. Subsequently
the dual variables are orthogonally projected onto the sets
C respectively K. In the following we give some hints on
the implementation of the individual steps. For a detailed
discussion we refer to [9]. The projection onto the set K is
a simple `2-ball projection. To simplify the projection onto
C, we transform the k-dimensional epigraph constraints in
(22) into 1-dimensional scaled epigraph constraints by in-
troducing an additional variable z : Ω→ Rk with:

zi(x) = [q(x)− ci (v(x))] (γi+1 − γi) . (23)



E = 279394 E = 208432 E = 196803 E = 194855

E = 278108 E = 208112 E = 196810 E = 194845

E = 277970 E = 208493 E = 196979 E = 194836

Figure 7. Comparison to the MRF approach presented in [27].
The first row shows DC-Linear, second row DC-MRF and third
row our results for 4, 8, 16 and 32 convex pieces on the truncated
quadratic energy (26). Below the figures we show the final non-
convex energy. We achieve competitive results while using a more
compact representation and generalizing to isotropic regularizers.

Using equation (9) we can write the constraints in (22) as

zi(x)

γi+1 − γi
≥ ρ∗i

(
vi(x)

γi+1 − γi

)
. (24)

We implement the newly introduced equality con-
straints (23) introducing a Lagrange multiplier s : Ω →
Rk. It remains to discuss the orthogonal projections onto
the epigraphs of the conjugates ρ∗i . Currently we support
quadratic and piecewise linear convex pieces ρi. For the
piecewise linear case, the conjugate ρ∗i is a piecewise linear
function with domain R. The slopes correspond to the x-
positions of the sublabels and the intercepts correspond to
the function values at the sublabel positions.

The conjugates as well as the epigraph projections of
both, a quadratic and a piecewise linear piece are depicted
in Fig. 4. For the quadratic case, the projection onto the epi-
graph of a parabola is computed using [23, Appendix B.2].

5. Experiments

We implemented the primal-dual algorithm in CUDA to
run on GPUs. 1 For d = 2, our implementation of the func-

1https://github.com/tum-vision/sublabel_relax

(a) Anisotropic Regularization (b) Isotropic Regularization

Figure 8. We compare the proposed relaxation with anistropic reg-
ularizer to isotropic regularization on the stereo matching example.
Using an anisotropic formulation as in [27] leads to grid bias.

tional lifting framework [17], which will serve as a baseline
method, requires 4N(L − 1) optimization variables, while
the proposed method requires 6N(L − 1) + N variables,
where N is the number of points used to discretize the do-
main Ω ⊂ Rd. As we will show, our method requires much
fewer labels to yield comparable results, thus, leading to an
improvement in accuracy, memory usage, and speed.

5.1. Rudin-Osher-Fatemi Model

As a proof of concept, we first evaluate the novel relax-
ation on the well-known Rudin-Osher-Fatemi (ROF) model
[20]. It corresponds to (1) with the following dataterm:

ρ(x, u(x)) = (u(x)− f(x))
2
, (25)

where f : Ω → R denotes the input data. While there
is no practical use in applying convex relaxation methods
to an already convex problem such as the ROF model, the
purpose of this is two-fold. Firstly, it allows us to measure
the overhead introduced by our method by comparing it to
standard convex optimization methods which do not rely on
functional lifting. Secondly, we can experimentally verify
that the relaxation is tight for a convex dataterm.

In Fig. 5 we solve (25) directly using the primal-dual
algorithm [9], using the baseline functional lifting method
[17] and using our proposed algorithm. First, the globally
optimal energy was computed using the direct method with
a very high number of iterations. Then we measure how
long each method took to reach this global optimum to a
fixed tolerance.

The baseline method fails to reach the global optimum
even for 256 labels. While the lifting framework introduces
a certain overhead, the proposed method finds the same
globally optimal energy as the direct unlifted optimization
approach and generalizes to nonconvex energies.

https://github.com/tum-vision/sublabel_relax


One of the input images Proposed (L = 2) Proposed (L = 4) Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 270) Baseline (L = 2) Baseline (L = 4) Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)

Figure 9. Stereo comparison. We compare the proposed method to the baseline method on the example of stereo matching. The first
column shows one of the two input images and below the baseline method with the full number of labels. The proposed relaxation requires
much fewer labels to reach a smooth depth map. Even for L = 32, the label space discretization of the baseline method is strongly visible,
while the proposed method yields a smooth result already for L = 8.

5.2. Robust Truncated Quadratic Dataterm
The quadratic dataterm in (25) is often not well suited

for real-world data as it comes from a pure Gaussian noise
assumption and does not model outliers. We now consider
a robust truncated quadratic dataterm:

ρ(x, u(x)) =
α

2
min

{
(u(x)− f(x))2, ν

}
. (26)

To implement (26), we use a piecewise polynomial approx-
imation of the dataterm. In Fig. 6 we degraded the input im-
age with additive Gaussian and salt and pepper noise. The
parameters in (26) were chosen as α = 25, ν = 0.025 and
λ = 1. It can be seen that the proposed method requires
fewer labels to find lower energies than the baseline.

5.3. Comparison to the Method of Zach and Kohli

We remark that Prop. 4 and Prop. 5 hold for arbitrary
convex one-homogeneous functionals φ(ν) instead of |ν|2
in equation (16). In particular, they hold for the anisotropic
total variation φ(ν) = |ν|1. This generalization allows us
to directly compare our convex relaxation to the MRF ap-
proach of Zach and Kohli [27].

In Fig. 7 we show the results of optimizing the two mod-
els entitled “DC-Linear” and “DC-MRF” proposed in [27],
and of our proposed method with anisotropic regularization
on the robust truncated denoising energy (26). We picked
the parameters as α = 0.2, ν = 500, and λ = 1. The
label space is also chosen as Γ = [0, 256] as described
in [27]. Note that overall, all the energies are better
than the ones reported in [27]. It can be seen from Fig. 7
that the proposed relaxation is competitive to the one pro-

posed by Zach and Kohli. In addition, the proposed relax-
ation uses a more compact representation and extends to
isotropic and convex one-homogeneous regularizers. To il-
lustrate the advantages of isotropic regularizations, Fig. 8a
and Fig. 8b show a comparison of our proposed method for
isotropic and anisotropic regularization for the example of
stereo matching discussed in the next section.

5.4. Stereo Matching

Given a pair of rectified images, the task of finding a
correspondence between the two images can be formulated
as an optimization problem over a scalar field u : Ω → Γ

where each point u(x) ∈ Γ denotes the displacement along
the epipolar line associated with each x ∈ Ω. The over-
all cost functional fits Eq. (1). In our experiments, we
computed ρ(x, u(x)) for 270 disparities on the Middlebury
stereo benchmark [21] in a 4×4 patch using a truncated sum
of absolute gradient differences. We convexify the match-
ing cost ρ in each range Γi by numerically computing the
convex envelope using the gift wrapping algorithm.

The first row in Fig. 9 shows the result of the proposed
relaxation using the convexified energy between two labels.
The second row shows the baseline approach using the same
amount of labels. Even for L = 2, the proposed method
produces a reasonable depth map while the baseline ap-
proach basically corresponds to a two region segmentation.

5.5. Phase Unwrapping

Many sensors such as time-of-flight cameras or interfer-
ometric synthetic aperture radar (SAR) yield cyclic data ly-



One of the input images Proposed (L = 2) Proposed (L = 4) Proposed (L = 8) Proposed (L = 16) Proposed (L = 32)

Baseline (L = 374) Baseline (L = 2) Baseline (L = 4) Baseline (L = 8) Baseline (L = 16) Baseline (L = 32)

Figure 10. Depth from focus comparison. We compare our method to the baseline approach on the problem of depth from focus. First
column: one of the 374 differently focused input images and the baseline method for full number of labels. Following columns: proposed
relaxation (top row) vs. baseline (bottom row) for 2, 4, 8, 16 and 32 labels each.

ing on the circle S1. Here we consider the task of total
variation regularized unwrapping. As is shown on the left
in Fig. 11, the dataterm is a nonconvex function where each
minimum corresponds to a phase shift by 2π:

ρ (x, u(x)) = dS1 (u(x), f(x))
2
. (27)

For the experiments, we approximated the nonconvex en-
ergy by quadratic pieces as depicted in Fig. 11. The label
space is chosen as Γ = [0, 4π] and the regularization pa-
rameter was set to λ = 0.005. Again, it is visible in Fig. 11
that the baseline method shows label space discretization
and fails to unwrap the depth map correctly if the number
of labels is chosen too low. The proposed method yields a
smooth unwrapped result using only 8 labels.

5.6. Depth From Focus

In depth from focus the task is to recover the depth of a
scene, given a stack of images each taken from a constant
position but in a different focal setting, so that in each image
only the objects of a certain depth are sharp. images. We
compute the dataterm cost ρ by using the modified Lapla-
cian function [13] as a contrast measure.

Similar to the stereo experiments, we convexify the cost
on each label range by computing the convex hull. The
results are shown in Fig. 10. While the baseline method
clearly shows the label space discretization, the proposed
approach yields a smooth depth map. Since the proposed
method uses a convex lower bound of the lifted energy, the
regularizer has slightly more influence on the final result.
This explains why the resulting depth maps in Fig. 10 and
Fig. 9 look overall less noisy.

0 4π

Piecewise convex energy Input image Ground truth

Baseline (L = 8) Baseline (L = 16) Baseline (L = 32) Proposed (L = 8)

Figure 11. We show the piecewise convex approximation of the
phase unwrapping energy, followed by the cyclic input image
and the unwrapped ground truth. With only 8 labels, the pro-
posed method already yields a smooth reconstruction. The base-
line method fails to unwrap the heightmap correctly using 8 labels,
and for 16 and 32 labels, the discretization is still noticable.

6. Conclusion

In this work we proposed a tight convex relaxation that
can be interpreted as a sublabel–accurate formulation of
classical multilabel problems. The final formulation is a
simple saddle-point problem that admits fast primal-dual
optimization. Our method maintains sublabel accuracy even
after discretization and for that reason outperforms existing
spatially continuous methods. Interesting directions for fu-
ture work include higher dimensional label spaces, mani-
fold valued data and more general regularizers.
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